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We use numerical methods to study the dynamics of a Langmuir caviton which results from the 
modulational instability of long-wavelength pumping at the plasma frequency. In the final stage 
of the collapse, when the Landau damping of the plasma oscillations becomes important, the 
caviton "burns up" and the Langmuir energy is absorbed by resonant electrons. 

PACS numbers: 52.35.Mw, 52.35.P~ 

1. INTRODUCTION 

The Langmuir collapse phenomenon predicted in Ref. 1 
plays a fundamental role in contemporary plasma turbu- 
lence theory,' as it guarantees the short-wavelength transfer 
of Langmuir oscillations to the absorption region. As there is 
no rigorous analytical solution, doubt has been expressed in 
a number of papers (see, e.g., Ref. 3) about the existence of 
supersonic collapse, i.e., collapse at a sufficiently high level 
of energy of the plasma oscillations, E ' /16mT> m/M. To 
refute this conclusion it is important to carry out numerical 
collapse simulation in which solutions are constructed 
which describe the nonlinear dynamics of a packet of Lang- 
muir waves, the formation of a caviton with plasmons (Lang- 
muir wave quanta) trapped in it, and the transition of the 
caviton into the self-similar regime of explosive ~ o l l a ~ s e . ~ - ~  
Nonetheless, in a recently published paper7 there was again 
reached, in our opinion, the erroneous conclusion that the 
dynamics of a packet of strong Langmuir waves is reversible. 
This was in fact based only upon a specific choice of initial 
conditions for which the collapse is impossible (see Sec. 2). 

The problem of obtaining a more exact numerical solu- 
tion of the hydrodynamic equations describing the nonlinear 
dynamics of a packet of Langmuir waves remains therefore 
of vital interest. The present paper is devoted just to this. 4 
caviton is here considered under turbulence conditions, i.e., 
in the presence of a constantly acting pumping wave at the 
plasma frequency and of damping of the Langmuir wave in 
the short-wavelength region. 

2. LANGMUIR COLLAPSE OF AN ISOLATED CAVITON. 
PUMPING WAVE AND COLLAPSE 

The starting set of equations are the equations obtained 
for the first time by one of the present authors' for Langmuir 
oscillations, modified to take into account the presence of 
pumping energy in the oscillations and their resonant damp- 
ing by particles: 

a$ d6n 2iA - +A2$=div (6nV$)  -Eo - +2irAQ, 
a t  a 2  

(1) 

d26n -- alp v l p  
A ~ ~ = A { I E O - ~ ~  + ( z I ) .  

In these equations is the complex amplitude of the high- 
frequency potential 

'p,='121p(t, r )  exp ( - i o , t )  + c.c. 
o, = (4~n,e'/m)' '~ is the plasma frequency, Sn the change 

in the density in the slow quasi-neutral plasma motions, and 
Eo the amplitude of the pumping wave at the plasma fre- 
quency and is directed along thez-axis. The pump is defined 
as the average electric field in the plasma: 

and, hence, 

We assume that there is an energy source (electromagnetic 
wave, electron beam) which sustains thz pumping at a con- 
stant level, i.e., dEo/dt = 0. Moreover, T i s  an integral oper- 
ator which takes into account the Landau damping of short- 
wavelength plasma oscillations. When writing it down we 
took it into account that the caviton collapse is substantially 
anisotropic, i.e., 6' /6'z ) d/ar  (a collapsing caviton is always 
a dipole and is flattened in the direction of the dipole axis4). 
In that case we can assume the plasma oscillations to be one- 
dimensional when calculating the damping: 

f ( t ,  r ,  z') dz', (4) 

where r (z) is the Fourier transform of the Landau damping 
rate: 1 

r ( z )  = - dksaZrk,  
2n 

and f (u)  is the distribution function of the electrons at reso- 
nance with the oscillations. We have used in Eqs. (1) to (4) the 
following scales for length, time, field, and density: 

The number of plasmons 

z I =  J ' I V $ I Z ~ ~  
is not an integral of motion of the original set of equations; 
this quantity is altered by the pumping and damping: 
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The integral of motion of Eqs. (1) and (2), which is conserved 
when pumping and damping are present, has the form 

where v is the ion velocity. When there is no pumping, the 
fact that the integral I ,  is negative is a sufficient condition for 
collapse. This problem is analyzed in detail in Ref. 5. If, 
however, the Langmuir caviton arises on the background of 
a constantly acting pumping (and this is just the situation 
realized in Langmuir turbulence), collapse turns out to be 
possible also when 12>0 (vide infra). The absence of collapse 
in the numerical simulation of the dynamics of a Langmuir 
packet, performed in Ref. 7, was connected precisely with 
the fact that they considered the case Eo = 0 and initial con- 
ditions for which Sn = 0 and thus I,  > 0. 

The condition that I,  be negative coincides as to order 
of magnitude with the condition for the occurrence of the 
modulational instability8 of the Langmuir oscillations 
trapped in the caviton-a high-frequency-field formation 
from which the field-pressure force ejects the plasma. The 
collapse-the implosion of the caviton-is connected with 
the fact that the high-frequency pressure is negative and has 
the character of an eruption for which the formal singularity 
I E I + co is reached after a finite time. When I E I , 1 we can 
neglect on the left-hand side of Eq. (2) terms which do not 
contain time derivatives (the speed of the implosion is appre- 
ciably larger than the sound speed). The supersonic collapse 
is then, neglecting pumping and damping (r -+ 0, Eo -+ 0), 
described by the following self-similar solution of Eqs. ( I ) ,  
(2): 

V(E) r 6n = h ( t )  = 
ho 

(to-t)"" 1 = (to-t) 2'a (to-t)&'a - 
Here a = 1, 2, 3 is the dimensionality of the caviton. The 
solution (8) conserves the number of plasmons in the caviton: 
I ,  = const. Using this solution in the right-hand side of Eq. 
(6) we easily verify that in the case of a three-dimensional 
caviton and r + 0 the plasmon-number conservation con- 
dition used in obtaining (8) becomes asymptotic when there 
is pumping and is satisfied with greater accuracy the closer 
we approach the singularity t -+ to: 

I,xconst+O [ ( to - t )  exp {3iho ( t o - t ) -" ) I .  (9) 
A three-dimensional caviton thus loses the connection with 
the source when collapsing and in this sense the solution (8) 
is a universal one and is independent of the presence of 
pumping. 

In the present section we report the results of a numeri- 
cal simulation of Langmuir collapse-the transition of a ca- 
viton into the self-similar regime, the characteristics of this 
regime, and the influence of the pumping on the collapse 
process. 

We solved the set of Eqs. (1) to (4) numerically in the 
rectangular region O(z(L, O(r(R with first-kind boundary 
conditions for all functions with respect to z and with the 
condition that derivatives with respect to r vanish at the 

boundaries of the region: 

We first simulated the nonlinear dynamics of a dipole cavi- 
ton when there is no pumping or damping. The initial high- 
frequency charge was chosen in the form 

The initial change in the density and its time-derivative 
were given as follows: 

We show in Fig. 1 the dynamics of the collapse for the pa- 
rameter values a = 1.2, b = 0.6, p, = 4.0, il = 0.24. The 
present calculation differs from earlier  one^^.^ by its high 
accuracy, in particular by the large number of points along r 
and z: in the rectangle L X R = (77/2) X a we took 128 x 32 
points. Nonetheless the results for the collapse of an isolated 
caviton are close to those obtained in Refs. 4 and 5. The 
increase in the field amplitude is, within the framework of 
the applicability of the model considered, unlimited-E in- 
creases when one goes from Fig. l a  to Fig. Ib at least by a 
factor lo3. In the course of time the increase takes on the 
character of an explosive collapse according to the law: 

IE1 'VJ ( to- t)- ' ,  ISn 1 VJ ( to - t )  -'/a, 

which agrees with the solution (8) for a = 3 (Fig. 2). In the 
final self-similar stage of the collapse the caviton changes 

L 

FIG. 1. Dynamics of free Langmuir collapse. a,b) IE l 2  (solid curves) and 
- 6n (dashed curves) as functions ofzfor r = 0: a) t = 0 and b) t = 1.3; c,d) 

lines of constant IE 1' at the same times. 
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FIG. 2. Self-similar t-dependence of IE I *  and /6nl-3'4 [the straight lines 
correspond to Eqs. (a)]: 1) for the variant shown in Fig. 1; 2) for the variant 
corresponding to the initial conditions (12) in a pumping field E, = 2.0; 3) 
for the variant shown in Fig. 3. 

from an initially isotropic to an appreciably anisotropic 
one-flattened along the z axis with k, /k, -- 0.2. 

The dynamics of the Langmuir collapse when there is 
pumping at the plasma frequency was studied for greatly 
differing initial conditions. For instance, we considered the 
collapse arising from the initial conditions for the field and 
the density corresponding to a quasi-planar soliton: 

with g o  = 4.0, a, = - 1/30, B,, = 1 and the pumping am- 
plitude Eo = 2. As time goes on the stage of explosive col- 
lapse is reached when the picture of the spatial distribution 
of the field and density repeats to a large extent the one 
shown in Fig. 1 with the only difference that in the case 
considered the caviton turns out to be appreciably more an- 
isotropic: k, /k, < 0.1. In agreement with the analysis given 
above the growth of the field and of the density when there is 
pumping is, as before, described by the same self-similar re- 
lations (8). This is illustrated in Fig. 2, from which it follows 
that the presence of pumping, without changing the law of 
the self-similar collapse, affects only the time taken by the 

caviton to reach the self-similar regime. 
In the presence of pumping a caviton may result from 

the modulational instability of the pumping wave, starting 
from an initially sinusoidal perturbation of the field and of 
the density, as illustrated in Fig. 3. We show in that figure 
the dynamics of a packet of Langmuir waves arising from a 
weak (initial amplitude E = lop2)  initial modulation of the 
pumping field E, = 2, while the wavelength of the modula- 
tion lies in the modulational instability region A = 3. In that 
case we changed the boundary conditions with respect to z 
and used the periodicity condition instead of (6), and also 
chose the region L X R = n- x T. 

The modulational instability leads to a deepening of the 
density well, to a localization of the electric field in the den- 
sity minimum, and, finally, to the formation of a collapsing 
caviton. 

It is important that the case shown in Fig. 3 illustrates 
the appearance of collapse in the presence of pumping start- 
ing from initial conditions with I, > 0 (for the initial condi- 
tions used I, = 2 X lo-'). In the self-similar collapse stage 
the law governing the growth of the field and density is as 
before given by Eq. (8) and only the stage where the self- 
similar regime is reached depends on the initial conditions. 

3. LANGMUIR COLLAPSE AND LANDAU DAMPING. ABSENCE 
OF STATIONARY CAVITONS 

In the final stage of the collapse, when the oscillations 
trapped in the caviton have a sufficiently short wavelength, 
Landau damping of the plasma oscillations becomes impor- 
tant and this diminishes the pressure of the plasmons 
trapped in the caviton. We explained above that this pres- 
sure is the cause of the collapse, so that in principle Landau 
damping may lead to a stabilization of the collapse. As there 
is no analytical solution of this problem we performed a nu- 
merical simulation of the corresponding problem using Eqs. 
(1) to (4). 

In the case when the Landau damping is due to plasma 
electrons with a Maxwellian distribution function 

the damping cannot halt the explosive collapse of the dipole 
caviton. In this case the structures of the electric field and of 
the density are close to that shown in Fig. 1; the collapse law 
remains self-similar up to amplitudes I E 1 z 4 X lo4, which 
corresponds to lE /2/16n-n,T~6 when the initial hydrody- 
namic equations, in fact, cease to be valid and nonetheless 
the collapse continues. This result is the consequence of the 
three-dimensional geometry of the caviton, when the short- 
wavelength transfer of plasma oscillations connected with 
the deepening of the density well proceeds more slowly than 
the growth of the amplitude of the electric field in its center, 
as follows from the self-similar solution (8). Using this solu- 
tion one obtains easily for the characteristic wave number in 
the Langmuir spectrum the following relation which is satis- 
fied with good accuracy in the numerical experiment (see 
Ref. 2): 
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Here E (0) is the initial value of the electric field in the col- 
lapsing caviton; we have assumed that initially the pressure 
balance condition ISn(O)(TzE ' /16r is satisfied in such a 
caviton. It follows from (14) that at the limit of the applicabi- 
lity of the hydrodynamic equations (the limit E ' z  16m,Tis 
determined by the appearance of plasmon-plasmon interac- 
tions) the main part of the energy of the plasma oscillations is 
concentrated already in the long-wavelength region of the 
spectrum, and Landau damping is not able to halt the col- 
lapse. 

In real plasma turbulence the role of Landau damping 
can increase because the absorption of plasma oscillations 
leads to an acceleration of the plasma electrons and to the 
formation of "tails" in their distribution function, so that the 
absorption region is shifted to the long-wavelength part of 
the spectrum. 

To simulate that process we considered collapse under 
such circumstances that the resonant electrons had a veloc- 
ity distribution in the shape of a two-temperature Maxwell 
distribution: 

( 1  5 )  
here a ,  = nT/n ,  is the fraction of particles in the "tail" and 
PT = T,/T,, is the tail temperature. We note that in that 
case the initial set of Eqs. ( I ) ,  (2) is modified by taking into 
account the contribution from the tail particles to the disper- 
sion of the Langmuir oscillations. The dimensionless set of 
Eqs. ( I ) ,  (2) remains unchanged but the scales of the various 
quantities are changed as follows: 

FIG. 3. Dynamics of Langmuir collapse occurring due 
to the action of a pump E, = 2.0 from the initially sinu- 
soidal modulation of field and density in the plasma. 
a,b,c) IE I 2  (solid curves) and - Sn (dashed curves) as 
functions of z for r = 0: a) t = 1.45, b) t = 2.74, c) 
t = 2.77; d,e,f) lines ofconstant IE l 2  at the same times. 

We show in Fig. 4 the dynamics of the collapse of a 
dipole caviton with the same initial conditions as in Eq. (12) 
but with E,, = 0 and the presence of damping by the "tail" 
electrons with a ,  = 0.02, P, = 25. During the collapse the 
caviton reaches the self-similar regime but at E 2 /  
167in0T=: 1/3 Landau damping stops the collapse. After 
that the energy of the plasma oscillations in the caviton de- 
creases rapidly down to a value E 2/16m,T- 10W2 and the 
caviton continues for a while to intensify in energy, after 
which it becomes a source of sound waves diverging from it. 

Finally, we show in Fig. 5 the dynamics of Langmuir 
collapse under those conditions where it exists in plasma 
turbulence. The collapsing caviton is formed from the ini- 
tially sinusoidal field modulation as the result of the modula- 
tional instability of the pumping wave with amplitude 
E,, = 2. The initial amplitude of the modulation is E = l op2  
and the wavelength of the modulation A = 3 lies in the mo- 
dulational-instability region for the chosen value of E,. As a 
result of the collapse the amplitude of the electric field in- 
creases according to the self-similar law up to a value E 2/ 

16an,Tz 1/4, after which the energy of the plasma oscilla- 
tions decreases to a value E2/167in,T- 1/150 due to the 
Landau damping by tail electrons with a ,  = 0.02,PT = 25. 
Sound waves are emitted from the caviton in which the ba- 
lance between the gaskinetic and plasma pressures is violat- 
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FIG. 4. Dynamics of Langmuir collapse from an initially 
soliton-shaped field and density distribution in the pres- 
ence of Landau damping for a two-temperature Maxwel- 
lian electron distributin function. a,b,c) IE I Z  (solid curves) 
and - 6n (dashed curves) as functions of z for r = 0; a) 
t = 2.482, b) t = 2.509, c) t = 2.596; d,e,f) lines of constant 
IE I Z  at the same times. 

ed. The caviton thus completely "burns up" and transfers 
the Langmuir energy trapped by it to the short-wavelength 
absorption region. The quasi-stationarity of the turbulence 
is guaranteed by the continuous creation of cavitons that 
transfer the energy dissipated from the pumping wave to the 
region of effective Landau damping. On the other hand, it 
was observed in Ref. 9 that stationary cavitons of Langmuir 
waves are formed as the result of the evolution of the col- 
lapse. From our point of view the discrepancy between these 
results can easily be explained on the basis of physical con- 
siderations. In the present paper we simulated the collapse of 
a real three-dimensional caviton. According to the solution 
(8) the collapse of such a caviton proceeds with increasing 
speed. As the collapse proceeds the role of the ion inertia 
increases and the dispersed ions continue by inertia to deep- 
en the caviton even under conditions when the dissipation of 
Langmuir energy is effective. At the same time, in two-di- 
mensional cavitons considered in Ref. 9, the collapse pro- 
ceeds with a constant speed and there is no inertial dispersal 
of ions. Moreover, the use in that paper of a model mass ratio 
M / m  = 25 appreciably narrowed the inertial range of the 
turbulence (the region between source and absorption). It is 
also important that the smallness of the growth rate of the 
beam instability which starts off the Langmuir turbulence in 
the numerical simulation9 led to a slow energy dissipation in 
the turbulence, and the modulational instability in that pa- 
per remained therefore close to threshold. The formation of 
a quasi-stationary lattice of solitons under similar conditions 
was also observed in a one-dimensional numerical simula- 
tion.'' 

One should emphasize that the results of Refs. 9 and 10 
do not at all contradict the conclusion about the existence of 
Langmuir collapse. The collapse, i.e., the implosion of a 
Langmuir caviton, was observed also in those papers. How- 
ever, due to the fact that they were close to threshold for the 
modulational instability the effective collision frequency 
which characterizes the speed of the dissipation of the ener- 
gy of the Langmuir oscillations was small and the collapse 
remained a rather rare event and under those conditions a 
quasi-stationary lattice of cavitons was formed. One can 
thus conclude that the quasi-stationary caviton picture ob- 
served in Ref. 9 is a consequence of the peculiarities of the 
statement of the numerical experiment and does not reflect 
the real features of three-dimensional Langmuir turbulence. 
This problem is discussed in more detail in Ref. 10. 

On the whole the numerical simulation of Langmuir 
collapse performed in the present paper has confirmed the 
assumption stated in Refs. 2 and 5 that the collapsing cavi- 
ton can serve as the elementary cell of plasma turbulence. 
The caviton is formed as a result of the modulational insta- 
bility of the pumping wave in the long-wavelength region of 
the source. Collapsing self-similarly it transfers the Lang- 
muir energy trapped by it to the short-wavelength region 
where this energy is absorbed by resonance electrons. 

Moreover, in a number of cases, e.g., when the fast 
transfer of resonant electrons from the turbulence region 
makes the deformation of their distribution function inap- 
preciable, Landau damping is unable to halt the collapse, 
and plasmon-plasmon interactions (the intrinsic non-linear- 
ity of the Langmuir oscillations) play an important role in 
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the absorption of the oscillations in the short-wavelength 
region. 

'V. E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972) [Sov. Phys. JETP 
35,908 (1972)l. 

'A. A. Galeev, R. Z. Sagdeev, V. D. Shapiro, and V. I. Shevchenko, Zh. 
Eksp. Teor. Fiz. 73, 1352 (1977) [Sov. Phys. JETP 46, 711 (1977)l. 

3A. G. Litvak and G. M. Fraiman, Vzaimodeistvie sil'nikh tlektromag- - -  - 

nitnykh voln v plotnoi plazme (Interactions of strong electromagnetic 
waves in a dense plasma), in: Nelineinye volny (Non-linear waves) Mos- 
cow, 1981, p. 61. 

4L. M. Degtyarev and V. E. Zakharov, Pis'ma Zh. Eksp. Teor. Fiz. 21,9 
(1974) [JETP Lett. 21, 4 (1974)l. 

5L. M. Degtyarev and V. E. Zakharov, Preprint Inst. Appl. Math. No 

FIG. 5. Dynamics of Langmuir collapse occurring due to 
the action of a pump E, = 2.0 from an initially sinusoidal 
field and density modulation in the presence of damping 
for a two-temperature Maxwellian electron distribution 
function. a,b,c) - 6 n  as function ofzfor r = 0: a) t = 0.01, 
b) t = 2.88, c) t = 3.28; d,e,f) IE 12asfunctionofzfor r = 0 
at the same times; g,h,i) lines of constant 16nj at the same 
times; j,k,l) lines of constant IE 1' at the same times. 

6L. M. Degtyarev and A. L. Ovdeenko, Preprint M. V. Keldysh Inst. 
Appl. Math. Acad. Sc. USSR, No 123, 1982. 

'T. Taiima. M. V. Goldman, J. N. Leboeuf, and T. M. Dawson, Phys. - .  -.. 

~ l u i d ~ ~ , ' 1 8 2  (1981). 
RA. A. Vedenov and L. I. Rudakov, Dokl. Akad. Nauk SSSR 159, 767 
(1964) [Sov. Phys. Dokl. 9, 1073 (1965)J. 

9T. C. Weatherall, D. R. Nicholson, and M. V. Goldman, Steady State 
Turbulence with a Narrow Inertial Range, Preprint No 79, Univ. of 
Colorado, 1982. 

"I. M. Ibragimov, R. Z. Sagdeev, G. I. Solov'ev, V. D. Shapiro, and V. I. 
Shevchenko, Fiz. Plazmy 9, 715 (1983) [Sov. J. Plasma Phys. 9, 414 
(1983)l. 

Translated by D. ter Haar 

715 Sov. Phys. JETP 58 (4), October 1983 Degtyarev et a/. 71 5 


