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The Maxwell equations in a weak gravitational field are reduced to one scalar wave equation. A 
similar result is also obtained for a slowly varying gravitational field of arbitrary strength, up to 
and including terms of second order in the photon wavelength. The index of refraction, the phase 
velocity, and the group velocity of the electromagnetic waves have been calculated. 

PACS numbers: 04.40. + c, 41.10.H~ 

1. In a gravitational field we write Maxwell's equations where, as can be seen by substituting into the equations (3), 
in the form for xu -+O (a = 0,1,2), $-(xu )2 ,  and in general p and x do 

where gC"" is the metric tensor, and 

We make use of light-cone coordinates xO = t  - z, 
x3 = (t  + z)/2. As the x3 coordinate axis we choose the null 
geodesic along which the wave propagates in the limit of 
infinite frequency w. We additionally define the coordinate 
system so that along this geodesic the metric tensor should 
coincide with the metric tensor of a flat space: g'" = vpv, 
v30 = vso = 1 , ~ " "  = qmn = - Smn , (m,n = 1,2), all other 
components of vpv vanish. Furthermore, a choice of the 
coordinate system allows us to make the Christoffel symbols 
vanish along the geodesic (Ref. 1) so that the deviation of the 
metric tensor from the flat one, f pv = g+"' - Vv , is a quan- 
tity small of second order in xu (a = 0,1,2,). 

We reduce the system of equations (1) in this locally 
inertial frame to a second-order equation for a single un- 
known function. We proceed in a manner similar to the one 
usual in flat-space electrodynamics. We differentiate the 
equation (1) with Y = n = 1,2 with respect to xO, make use of 
the second pair of Maxwell equations 

a*F,v+a,F,l+a,FL,=O (2) 

and again of Eq. (1) for Y = 0. As a result of all this we obtain 

(-aaoa3+a,am) ~ , , - a ,  [ v'~,+L') F ~ , + L , ~ ~ F , I J  + 

Here m, n take on the values 1,2, and dm dm = 6': + 13:. 
We shall assume that the wavelength w- ' is small com- 

pared to the characteristic distances D over which the gravi- 
tational field varies, and compared to the size d of the wave 
packet; in turn d ( D .  Without restricting ourselves to the 
geometric optics approximation, we retain in the equations 
terms of the order w2d 2 ,  wd, 1, a2d  3D - l, wd 2 D -  , and 
w2d 4D - 2  (it is obvious that (xu I < d ,  a = 0,1,2). This allows 
us to calculate the effects of focusing and defocusing of a 
beam, effects which depend on the polarization, as well as 
the corrections to the group and phase velocities. We search 
for the solution in the form 

not vanish. 
Taking account of Eq. (4), Maxwell's equations (2) lead 

to the following estimates: 

F30-Fiz- ( d + o - ' )  Fn0, F3,- ( d Z D - ' f a - ' )  F,,. 

As a result of this we obtain to the desired degree of accuracy 
two equations that interconnect only the large field compo- 
nents: 

[-2aoa3+ama, 

-jwa,av- ( ~ ~ + a ~ f ~ ~ )  ao- ( ~ ~ + 2 a ~ p )  a m - a o ~ ~ ]  F , ~  

+ [ ( L , ~ O - L ~ , ~ - ~ , ~ O ~ )  ao- (Lomo-aof"m) an+ am 
+ (Lnmk-Lnkm-dnfkm) ak-dnLm-anLom0+aoLnmo] Fmo=O, (5) 

where m,n,k = 1,2. 

It is convenient to introduce the new functions En by 
means of the substitution 

FnO=E,+i/2fnkEb (6 )  

As a result we obtain to the desired accuracy a system of 
equations with an antisymmetric off-diagonal part, which 
can be diagonalized by transforming to a helicity basis: 

EI=2-I"(-hEi-iE,) , h=+l. (7) 
The final equation has the form 

{-2aoa3+amam 

- f 0 0 & z - 2 f O ~ ~ 0 3 - f k m a ~ a m ~ ~ f S k ~ O ~ k +  (280g33-amgm3 

+1/za3gmm) a,- (3a0g3~-akgkm 

-amgo3+tlzamg,) am+ao2g33-aOd,gm3 

+R,2,2-ih [ (d2g13-alg23) do+ ( ~ o g 2 3 - ~ 2 g 3 0 + a 1 g 1 2  

-azgi,) di-  (dogi3-aig3o 

+azgiz-a,gz2) (aiamgm,-a2amg,,) - ~ R ~ , , , I  E,=O. 

(8) 
Summation is understood over all pairs of repeated indices; 
g,, = B,, - fPv; we note that if one takes into account 
terms of higher order in the gravitational field, the&, de- 
fined by this equation cannot be obtained from 
f pv = g@" - vPv by simply lowering the indices. Further- 
more f O0 = f3, + 2 f03 f33 - f 3k f 3 k .  In our approximation 
the Riemann curvature tensor equals 
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even though the gravitational field is not assumed to be weak 
2. In the linear approximation with respect to the gravi- 

tational field the equation (8) simplifies noticeably, since the 
derivatives d3E, and dm E, are themselves proportional to 
the gravitational field. As a result we obtain 

(-2a,d3+dmd,, ,-02g33-io V+ W) EA=O, (9) 

where 

Note that this equation is valid without assuming that the 
photon wavelength is short [this is due to the fact that in the 
expression for W we have retained the term (1/2)dodg,, , 
which was omitted from Eq. (8)]. 

We shall search for a solution of Eq. (9) in the form (4), 
although it is not quite consistent to put w$ + p + w-'X 
into the exponent, since the equation (9) is valid only in the 
weak-field approximation. However, this form is convenient 
for the calculation of corrections to the phase and group 
velocities of an electromagnetic wave traveling in a gravita- 
tional field. Substituting the expression (4) into the equation 
(9) we obtain the following system of equations which deter- 
mine $, p, and x to lowest order in the gravitational field. 

From this it follows, in particular, that 

Making further use of the identities 

amamgs3=2R33-d3zg,mf 2a3dmgmS, 

one can simplify the expression (1 1) considerably 

We note that d3x does not depend directly either on the 
metric tensor or on the Christoffel symbols, and is deter- 
mined only by the Riemann curvature tensor. In the region 
where there are no sources of the gravitational field, i.e., 
R,, = 0, the integral terms in Eq. (12) vanish, and the result 
acquires a maximally simple form 

a3xa i / z  (R,2i2+ihRi23,)  . (13) 

3. We now derive an expression for the phase velocity of 
a wave in a gravitational field, relative to an observer at rest 
in the given coordinate frame. The three-velocity of a point 
experiencing the displacement dxp is2 

ui= ( g , , )  "dxi/ (g , ,d t+g, ,dz i )  . (14) 

Here the indices i, j take on the spatial valuesx, y, z, while t is 
the time coordinate. The transition from x0 and x3 to z and t 
is achieved by means of a coordinate-independent rotation of 
all space, leading to a trivial change of the tensorial quanti- 
ties and I'tv. 

Assume that the surface of constant phase is defined by 
the equation @ (x, y, z, t ) = 0. We represent a displacement of 
a point of this surface in the form 

axw-pP+aurr, (15) 

wherep, = d, @, and d = (g,,)-''2(1, 0, 0, 0) is the four- 
velocity of the observer. The condition d@ = 0 that the 
phase be constant means that pp dxp = 0, hence 

Substituting Eq. (16) into (14) and calculating the square of 
the phase three-velocity 

This quantity may be interpreted as the square of the 
index of refraction, n2, for light in an external gravitational 
field. A simple calculation yields 

As can be seen from Eqs. (10) and (13), along the x3 axis we 
have 

However, if one takes into account the explicit expression for 
u, it follows from Eqs. (10) and (19) that in an arbitrary coor- 
dinate system the index of refraction depends only on the 
curvature tensor. This is quite natural: for example, in a 
frame in which thex, andx, axes rotate along the trajectory, 
n must depend, of course, on the sign of the circular polariza- 
tion A. 

Utilizing Eq. (1 8) one can obtain an expression for the 
group velocity of a wave packet: 

Thus, the first-order correction to the index of refraction and 
the group velocity in the coordinate system that was used is 
determined by the scalar curvature of a two-dimensional 
surface orthogonal to the trajectory of the wave packet. The 
sign of the correction is not defined and the group velocity v 
may be either larger or smaller than unity. This, however, 
does not violate the causality condition, which implies that 
the velocity of the wave front is bounded by one. This veloc- 
ity is4 

lim n-' (a) 
m-+oI 
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and, as expected, this equals one according to Eq. (19). Here 
v > 1 signals only a deformation of wave packet. 

The phase @ has a nonvanishing imaginary part, and 
accordingly there appears an imaginary part on the refrac- 
tive index: 

Along the coordinate axis x3 we have ad,, = 0, and if in 
addition to that the wave propagates in empty space, the 
expression for Im n becomes quite simple: 

Thus, if R,,,,f 0 then for one of the signs of the circular 
polarization the wave amplitude increases, and for the other 
sign it decreases. 

4. In connection with what was said so far we would like 
to dwell on the assertion one can find in the literature that 
photons in a gravitation field propagate faster than light if 
radiative corrections are taken into account. In Ref. 5 it was 
noted that the radiative corrections lead to a change of the 
characteristics of the wave equation for the photon for fre- 
quencies small compared to the electron mass m, . The addi- 
tion to the index of refraction turns out to be negative for one 
of the polarizations and independent of the frequency in the 
limit w(m,. Based on the assumption that Im n is positive 
definite, and making use of the dispersion relation for n(w), 
the authors of Ref. 5 have concluded that 
n(w = 0) > n ( w - - t ~ ) ,  and consequently, n ( o + ~ )  < 1, so that 
for one of the polarizations causality is explicitly violated. A 
similar assertion for neutrinos was later made in Ref. 6 

From what was said one can infer two inadequacies of 
the mentioned reasoning. First, the value n(0) has in fact 
never been computed in a gravitational field. In particular, 
there is the correction (19) to n(w+m) which is much larger 
than the one which was found in Ref. 5. However, the 
expression (19) is valid only for oD, 1, which prevents one 
from realistically calculating n(0). Second, the sign of Im n is 
undefined when the wave propagates through inhomogen- 
eous media, as can be seen from the expressions (21) and (22). 
The physical reason for this is clear. In a homogeneous medi- 
um without instability (no particle creation) the change of 
the amplitude of the wave is due only to the elimination of 
particles from the beam, which is reflected in the condition 
Im n > 0. If the medium is not homogeneous focusing (or 
bunching) processes are possible, leading to a growth of the 
amplitude; this corresponds to Im n < 0. One can illustrate 
this assertion on a simple example from quantum mechan- 
ics. The quasiclassical expression for a wave propagating 
along the x axis in a potential U (x), 

can be rewritten for w) U in the form 

i' 1 
= exp i o x  - - dx' U ( x ' )  + - [ 2 ,  4wZ 

X )  1. (23) 

From this it follows that 

It is obvious that the sign of this quantity may be arbitrary. 
Thus, the conclusion reached in Refs. 5 and 6 that cau- 

sality is violated, seems unfounded. Unfortunately, our pre- 
vious attempt7 to refute this assertion was unsuccessful. 

5. We return to an arbitrary gravitational field in which 
the wave propagation is described by Eq. (8). Substituting the 
solution in the form (4), it is easy to derive a system of nonlin- 
ear equations for the functions $, p, andx. Since we consider 
the size of the wave packet to be considerably smaller than 
the characteristic lengths over which the external field var- 
ies, it is convenient to expand these functions in powers of 
xu (a = 0, 1,2). In particular, in the expansion of $, the ap- 
proximation we have adopted allows us to retain only terms 
up to fourth order: 
$='/z$,B (23) ~ = x B + ~ / s l p ~ g ,  ( x 3 )  X ~ X ~ X ~ + ' / ~ & $ ~ ~ , I  ( x 3 )  xaxf'x~xe.  

(24) 
The equation for the function $ 

~ a 3 ~ - z a o ~ a 3 ~ + a n ~ a n ~ + 2 ~ p o a ) I ~ - ~ a C ~ a Y ~ = ~ o  (25) 

leads to the following system of equations for qap: 

d3$a~+$an$0n=R~as~ (26) 

(herea, p = 0, 1,2, and n = 1,2). The functions $, ,, $,,, and 
$,, satisfy an independent subsystem of nonlinear equations: 

d3+krn+$~n$mn=K~k3rn.  (27) 

After determining t,bkrn, the calculation of $,, and re- 
duces to solving a linear system 

a 3 $ 6 m f  $on$mn=R3~3rn)  (28) 

and finally, for known $,, the function $,, is found by plain 
integration 

The equations for the functions $aBY and qbaB,, are also 
easily obtained from Eq. (25). We do not write them out here, 
in view of their bulkiness. 

The equations for the functions p andx which are anal- 
ogous to Eq. (25) turn out to be nonlinear. In our approxima- 
tion e, can be written in the form 

C p = C p ( O )  ( x 3 )  +Cpa ( x 3 )  ~ ~ + ~ / , c p , g  ( x 3 )  x a 9 ,  (30) 
and it suffices to consider x for xa = 0. The equation for 
q7'O'(x3) has the simple form 

a3cp'0'=t/2i (31) 

but the other equations, which are also easily derived, turn 
out to be clumsy, and we do not write them out here. 

In conclusion, we note that making use of Eq. (17) it is 
easy to find the index of refraction for xa = 0: 

where p, is defined according to Eq. (30). This yields in 
particular, that the index of refraction, and with it the phase 
and group velocities, do not depend on the helicity A. 

By iterations it is not difficult to obtain the nonlinear 
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corrections to the real and imaginary parts of the index of 
refraction. Further investigations of the solution would re- 
quire a knowledge of the explicit form of the gravitational 
field. 

We are grateful to I. P. Grishchuk and I. Yu. Kob7arev 
for useful discussions. 
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