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The metal-insulator transition is considered. The concept of drop structure of an infinite 
cluster is developed. The critical exponents for the percolation theory are found in terms of 
these concepts. The results agree with contemporary experiments on dilute antiferromag- 
nets. A numerical simulation of planar anisotropic systems is carried out. It is shown that 
when the percolation threshold is approached the systems become rapidly isotropic. This 
phenomenon can be understood in terms of the drop structure of an infinite cluster. 

PACS numbers: 7 1.30. + h 

We consider here the conductivity of a composite values of 2 and { increase and become infinite at the 
consisting of a metal and an insulator. The decrease of percolation thershold: 
the bulk concentration p of the metal in such a system 5- P C  - 9'- ( p - p , )  -c. 
decreases the conductivity a. At metal concentrations 

(2) 

lower than the critical p,,  called the percolation thresh- It follows from (2) that the conductivity of the ICS, 
old, the conductivity of the composite is zero. Near the and hence of the entire composite, vanishes at the per- 
percolation threshold the dependence of the conductiv- colation threshold in accord with 
ity on the metal concentration is described by the simple ( T V ~  ( P - P c )  E + v ( ~ - z )  

power law1.* 9 

Since p, is finite, the conductivity at the percolation 
threshold becomes zero because the greater part of the 
metal does not participate in the current flow. The current 
flows only along percolation channels that make up the 
infinite-cluster skeleton (ICS).' 

An important step towards understanding how the 
metal-insulator transition in composites was made in 
Ref. 2 where the authors advanced the hypothesis that 
the ICS, i.e., the aggregate of percolation channels, has a 
structure. The ICS is a network with characteristic geo- 
metric distance between sites equal to the correlation 
length 6. The ICS network sites are connected by single- 
conductor macrobonds (Fig. la) whose length 2 is in 
general larger than 6. With decreasing metal concentra- 
tion the ICS network becomes less and less dense, the 

where d is the dimensionaltiy of the space. It follows 
therefore that in the side and bond model the critical ex- 
ponent t is 

t=g+v (d-2). (4) 

It can be shown2 that in this model the critical exponent 
is independent of the dimensionality of space and is 
strictly equal to unity. Thus, the ICS structure model de- 
veloped in Ref. 2 presents a qualitative picture of a met- 
al-insulator junction and yields the connection between 
the critical exponents. In the three-dimensional case, the 
experimental3 and ~a lcu la ted ' .~-~  values of the critical 
exponent t lie in the range 1.6-1.8, those of the critical 
exponent v lie according to Refs. 7 and 8 in the range 0.8- 
0.9, and relation (4) with = 1 is well satisfied. In the two- 
dimensional case, v = 1.33 (Refs. 7 and 9-12) and it fol- 
lows from (2) that the distance between the ICS network 

FIG. 1 .  a) Backbone of infinite cluster in the form of a mesh of micro- 
bonds. b) Backbone of infinite cluster with drop structure. In both 
cases the backbone of the infinite cluster is self-similar, inasmuch as it 
has the same structure at different scales. A photograph of an ICS 
fragment with dimension LAB,  taken with the minimum resolved di- 
mension &LAB is equivalent to a photograph of an ICS fragment hav- 
ing a linear dimension LA. , .  and taken with a minimum resolved di- 
mension €LA . B .  . 
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sites increases more rapidly than the length of the macro- 
bond, which is of course impossible.13 For all that, there 
are no grounds for assuming that the ICS structure is dif- 
ferent in principle in the cases d = 2 and d = 3. Conse- 
quently, over scales smaller than 6 the ICS structure does 
not reduce to a single-conductor macrobond. The ICS 
should contain more complicated formations, which we 
shall call drops. Such drops were observed in computer 
simulation of c~mposi tes '~- '~ and in an experimental in- 
vestigation of island films." 

DROP STRUCTURE OF INFINITE CLUSTER 

It was proposed in Refs. 15 and 18 that at scales 
smaller than the correlation length 6 the ICS is a self- 
similar structure consisting of drops joined by single-con- 
ductor microbonds. A way of calculating the critical expo- 
nents was also indicated in Ref. 15. 

We assume that the ICS consists of drops joined by 
macrobonds (Fig. lb). Drops of size b consist of drops of 
size b /2 joined by single-conductor macrobonds of 
length b 'Iv. In turn, in a scale 26 drops of size b are joined 
by single-conductor macrobonds of length (2b )I /" into a 
new drop of size 26. As shown in Fig. Ib, the ICS structure 
is in this case self-similar: the law of construction of a 
drop of size 26 out of drops of size b is the same as the law 
of constructing a drop of size b/2. At first glance these 
assumptions seem rather arbitrary. This is not at all the 
case, however. Near the percolation threshold the sys- 
tem is scale-invariant near the percolation threshold, and 
the self-similarity of the ICS7~'3-1s~'9~20 is a geometric 
expression of this fact. We shall show below that drops of 
scale b/2 combine into drops of scale b with the aid of 
macrobonds whose length is of order b I/".  

We consider a regular lattice in which the bonds are 
conducting with probability p and nonconducting with 
probability 1 -p. We are interested in the behavior of the 
system near the percolation threshold where the correla- 
tion length 6 is much larger than any microscopic dimen- 
sion. In this concentration density, lattice systems should 
represent accurately the behavior of composite materi- 
als. We break next, with probability 1 -p,, the bonds be- 
longing to the ICS. For each p there exists a maximum 
fraction (1 -p2,) of bonds which can be broken without 
dividing the ICS into finite pieces. It is natural to call the 
quantity p,, the threshold of percolation on the ICS. Obvi- 
ously, at p =p, we havep,, = 1. We note that this condi- 
tion is not satisfied for the ICS model proposed in Ref. 20. 

We consider next an ICS fragment of size b. We break 
the bonds with probability 1 - p,. There is then a probability 

p;(b) that after the bonds are broken this fragment is not 
divided into parts. Ifp, >p,,, thenp; (b )-+I as b-t co , but if 
p2 <pZC then p; (b )4 as b+m. The critical exponent v can 
be obtained in this case from the standard renormalization- 
group relation (see, e.g., Ref. 10) 

The left-hand side of (5) is particularly easy to calculate if 
p = pc ; then p,, = 1 and it is necessary to find the quanti- 
ty dp; (b )/dp,lP2 = , . It can be easily shown" that this is 
simply the average total length 2 of the unduplicated 
bonds over an ICS fragment of size b. Consequently 

In blln P = v ,  8 m b 1 / v .  (6)  

In other words, each ICS fragment must contain unduplicat- 
ed bonds whose total length increases with increasing linear 
size b of the fragment. This circumstance was noted earlier in 
Ref. 18. When drops of scale b /2 combine to form drops of 
scale b the single-lead macrobonds contained in the drop of 
scale b /2 are doubled. Consequently the length of the macro- 
bonds that join the drops of scale b /2 should be b '/". If 
b = 6 a ( p  -p,)-", then Ya{'/"a(p -p,)-'. This re- 
sult was obtained by another method in Ref. 2. 

In the three dimensional case v = 0.8 - 0.9 and the 
relative length of the macrobond Y/bab1 / " - '  in- 
creases with increasing scale. Therefore the site and 
bond model2 describes well the behavior of many quanti- 
ties, including the conductivity, near the percolation 
threshold. We note that an ICS with such a structure is 
self-similar if it is assumed that it can be represented, in a 
scale b <l, as a helix with a pitch b /k. The self-similarity 
of the ICS means then that k does not depend on b (Fig. 
la). When the scale is doubled the macrobond length is 
then increased by k times (Fig. 2a). On the n-th step, 
when b = 2" a, < 6, we have 

where a, is the characteristic microscopic dimension. In- 
asmuch as Y -b '/" in this model, we can uniquely deter- 
mine k = 2"". It might seem that the assumption that a 
single characteristic length exists contradicts the sin- 
uous behavior of the macrobond (k #2), since one more 
scale, the macrobond length 2, appears. Actually, how- 
ever, Y appears as the total order parameter. The fact 
that the natural dimensionality of 2 coincides with the 
dimensionality of length does not mean at all that the 
critical dimensionality of 2 must be the same as that of 
the correlation length 6. 

FIG. 2. All sorts of configurations that arise when 
four drops of scale b are joined to form a drop of 
scale 2b. The drops of scale b are ioined into droos 
of scale 26 by -single-conductor macrobonds bf 

0 'a 

9 length 2 m (2b)'"'. 

b 
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The critical exponent P' that determines the ICS den- 
sity is equal in the site and bond model to vd - c,-- 1.7, 
which at d = 3 is double the value a '  = 0.9 obtained from 
the numerical cal~ulations.'~ This result can be under- 
stood by assuming that an appreciable part of the metal 
contained in the ICS is concentrated in drops. It is not yet 
clear at present, however, the behavior of which macro- 
scopic quantities can be affected by this circumstance in 
the three-dimensional case. 

In the two-dimensional case we h a ~ e ' . ~ - ' ~  v = 1.33 
and the relative distance bl"/b between the drops de- 
creases with increasing scale b. The drop structure of the 
ICS becomes important. 

In a real system, drops of scale b combine into drops 
of scale 2b by various methods, so that a set of 2b-drop 
configurations exists. It follows from the self-similarity 
property of the ICS that these configurations are identical 
at any scale b. Such a hierarchical structure of ICS can 
yield, in principle, all the critical exponents exactly, but in 
this case it is necessary to take full count of the entire set 
of drops. For the actual calculations we have confined 
ourselves to a set of configurations in which a drop of size 
b consists of not more than four drops of size b/2 (see 
Fig. 2). This is a Wheatstone bridge in which the macro- 
bonds are present with a certain probability p,, assumed 
to equal 0.5. These premises agree well with the results 
of computer simulation of a percolation system.I5 

When drops of size b are joined into a drop of size 26, 
some of the b-drops move along and some across the 
drop (Fig. lb) in the directions AB and AC, respectively. 
We introduce therefore the conductivity a along the drop 
and the conductivity ul across the drop. When calculat- 
ing the conductivity of a 2b-drop we consider only config- 
urations that have a percolation channel in the corre- 
spoding direction. Knowing a ( b )  and al(b ) we can find 
a(2b). To this end we calculate the conductivity between 
the points A and B (Fig. lb) in the drops shown in Fig. 2a. 
For example, the conductivity along the first or second 
drop of Fig. 2b is equal to 

We average next over all the configurations shown in Fig. 
2a. Similarly, to find al(2b ) we calculate the conductivity 
between the points A and C (Fig. Ib) for the configuration 
on Fig. 2b and average. Assuming that the conductivity 
a, of the macrobond is inversely proportional to its 
length, we obtain for the variables a = u(b )/ab (b ) and 
k = a(b )/a, (b ) the following relations: 

a(2b)  =a(b)2 ' / "2 - ' (a (b ) ,  k ( b ) ) ,  

+ 16ak+8a2) (3+3a+2k)] L/2'Z (a ,  k)) -', 

In (9), just as in Ref. 21, we used in the averaging the 
geometric mean. Applying the doubling procedure n 
times we arrive at larger scales L -2" b. The quantities a 
and k tend simultaneously with the increase of L to val- 
ues corresponding to the stable stationary point of the 
system (9): a* = 0 and k *z0.7. Linearizing the system 
(9) in the vicinity of this point we easily obtain the asymp- 
totic behavior of a(L ) at large L: 

a (L) mLt', tf=ln Z (a*, k')/ln 2 ~ 1 . 0 3 .  (10) 

A system with dimension larger than the correlation 
length has macroscopic properties, and consequently 

i.e., t / v =  1.03. The obtained value of the exponent t 
agrees well with latest calculated values t /  
v = 1 f 0.05.15722 

We can determine similarly the following: the critical 
behavior of the ICS density B ( p )  a ( p  -p, )B' ; the length 
of the shortest path through a fragment of the system of 
size b <{, namely Y,, a bC' , and the average number N 
of percolation channels through such a fragment. The 
values of f l  ', ( ' and N are listed in Table I. 

Although we have previously dealt with the back- 
bone of an infinite cluster, the model proposed is in fact 
valid for the infinite cluster itself. An infinite cluster in- 
cludes, besides the ICS, drops that are attached to the 
ICS at one point. No current flows through such chan- 
nels, and they make no contribution to the conductivity. 
These drops are usually called "dead ends."13 On a 
scale b <S we cannot determine whether we are dealing 
with part of the ICS or with part of a dead end of scale 
b ' > b, b ' <{. Consequently the dead ends have the same 
structure as the ICS, i.e., a dead end of scale b is a drop 
consisting of drops of scale b /2, etc. Self-similarity is 
therefore a property not only of the ICS, but also of an 
infinite cluster. Repeating the reasoning used in the cal- 
culation of f ,  we can find an exponent that describes the 
critical behavior of the specific volume of an infinite clus- 
ter, P ( p) = ( p - p, (see Table I). 

If the critical exponents B and Y are known, the other 
exponents (a, y, 8,) can be determined from the scaling 
relations.13 Thus the hypothesis that an infinite cluster is 
made up of drops has enabled us to obtain from a single 
viewpoint the critical exponents that determine the ICS 
topology ( P ' ,  c'), the transport properties (t, A, ...), and 
the "thermodynamics" ( 0 ,  ...) of percolation systems 
near the percolation threshold. 

CONDUCTIVITY OF ANISOTROPIC SYSTEMS NEAR THE 
PERCOLATION THRESHOLD 

An important criterion of the validity of any premise 
concerning the organization of an ICS is the behavior of 
anisotropic systems near the percolation thre~hold.'~ Let 
us consider the problem of conductivity of a regular lat- 
tice, in which conducting and nonconducting bonds are 
distributed with respective to probabilities p and (1 -p). 
The conducting bonds have along the zx and y directions 
respective conductivities a,, and a,,. The degree of an- 
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TABLE I. 

*Present work. 

isotropy of the conductivity is defined as 

Drop model 

1.03 

0.46 
1.25 
0.15 

1.27 
1.05 

a(p) =aZ(p)/cs,(p) -1, 

where a, ( p )  is the specific conductivity of the entire lat- 
tice along the x direction, and a,, (p )  is the specific con- 
ductivity in the y direction. Near the percolation threshold 
the behavior of both the conductivity and of the degree of 
anisotropy of the entire system is determined by the to- 
pology of the ICS. It can be shownz3 that in the site and 
bond model the behavior of a ( p )  near the percolation 
threshold is described by the power-law 

Experiment 

1.17k0.11 [28] 

0.35*0.06 [17] 

0.1*0.02 [ I71 

- 
- 

Exponent I Computer calculations 

In the three-dimensional case v = 0.8-0.9, hence 
R = 0.1-0.2. In the two-dimensional case v = 1.333 and 
relation (13) no longer holds, since the exponent R turns 
out to be negative. At any rate, by starting from model 
premises2.23 one might expect the degree of anisotropy 
to decrease more slowly at d = 2 than at d = 3. The con- 
ductivity of anisotropic systems was first investigated nu- 
merically in Ref. 6. The exponent found for d = 3 is 

t/v 

B'lv 
c / v  
Blv 
hlv 

N 

R = 0.3 + 0.1 and agrees with (12). In the case d = 2 it 
was found that the degree of anisotropy decreases rapid- 
ly as the percolation threshold is approached, but the 
small size 50x50 of the investigated systems could not 
lead to any conclusion concerning the value of the expo- 
nent R at d = 2. 

In Ref. 24 the value of R /v was obtained by numeri- 
cally solving the renormalization-group equations for 
large cells. It was found that the exponent R depends 
significantly on the form of the renormalization-group 
equations. For the simplest transformation2' we have R / 
v = 0.18 and as the form of the transformation becomes 
more complicated R /v increases to 0.69. We note that 
the accuracy of the transformations in Ref. 24 is still a 
moot point. The very value R /v = 0.69 of the critical ex- 
ponent cannot be explained within the framework of the 
simple model of an ICS in the form of sites and bonds. 

We examine now how the degree of anisotropy 
(d = 2) changes near the percolation threshold in the 
drop model of the ICS. On scales b <( the percolation 
channel consists mainly of segments of a percolation 
channel that pass over drops, since the length of the ma- 
crobonds between the drops is L? -b "' (b. On the aver- 
age one percolation channel passes through a drop, and 

1*0.01 [I51 
0.98*0.02 [22] 

1).4*0.05 181 
1.1250.02 1161 

0.104*0.005 I291 
0.75~t0.15 * 
0.65*0.1 [24] 
1.1*0.1 [301 

depending on its direction the drops can be grouped into 
z-drops (Fig. lb, drops I and 111) and y-drops (Fig. lb, 
drops I1 and IV). In an anisotropic system this separation 
is significant, since the conductivities of the x- and y- 
drops are different. Each x- or y-drop of scale 2b consists 
of x- as well as y-drops of scale b. We denote the conduc- 
tivity along the x drop by a, and across it by a,,, and 
analogously for the y-drop. The degree of anisotropy of 
an ICS fragment of size b is then 

In analogy with the procedure used in the isotropic case 
(9), we can determine how the conductivity and the de- 
gree of anisotropy are transformed on going from the 
scale b to the scale 2b. These transformations have a 
stable fixed point at which a *  = 0, a* = 0, k * = 0.7. Lin- 
earizing the transformations in the vicinity of this point, 
we obtain the asymptotic behavior of the quantities at 
large scales, and then also the dependence on the con- 
centration 

a(p) - (p-p.)" ,/v=1.27. 

We note that in the three-dimensional case the ICS con- 
ductivity, as indicated earlier, is apparently determined by 
the conductivity of the macrobonds, and then the conclu- 
sions of Ref. 23 are valid. 

We have also performed a direct numerical experi- 
ment. We considered a quadratic lattice in which the con- 
centration of the conducting bonds corresponded to the 
percolation threshold p, . In the actual realization the po- 
tential was first applied along the x direction, while peri- 
odic boundary conditions were imposed along y and the 
conductivity ax (L ) of the entire system was determined. 
In the second step of the same realization of the system, 
the potential was applied along they direction, while peri- 
odic boundary conditions were applied along x. The con- 
ductivity u,, (L ) was determined, followed by the degree of 
anisotropy a (L  ). For each dimension L, the value of a (L  ) 
was averaged not less than over 100 different realiza- 
tions of the system. 

The algorithm used to calculate the conductivity was 
an elaboration of the algorithms proposed in Refs. 15 and 
22. It was based on the fact that the ICS has a drop struc- 
ture. Before solving the Kirchhoff equations the investi- 
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gated equation was subjected to an identity transforma- 
tion: individual sites were eliminated, and the 
conductivities of their nearest neighbors were renormal- 
ized in accord with the formulas 

where the summation is over the sites closest to I, where 
I is the number of the eliminated site, and i and k are sites 
to which the site I was directly bound. The real distance 
between the nearest neighbors increases in this case. 
Generally speaking the sites i and k need not be pre- 
viously bound, i.e., aik = 0, and then the number of 
bonds at the sites i and k increases in the course of elimi- 
nation of the site I, and in final analysis this does not 
make the numerical calculations easier. But on scales 
smaller than the correlation length the algorithm is more 
effective. In a 400 x 400 system at p  = p, there are left 
after the described procedure about 150 sites with not 
more than seven bonds per site. In the initial lattice the 
maximum number of bonds per site was four. Provision 
was made in the algorithm for increasing the number of 
the bonds at the site to seven, thereby increasing the 
efficiency of the algorithm of Refs. 15 and 22 by one or- 
der. The remaining sites cannot be eliminated because of 
the presence of a limit to which the indicated procedure 
cannot be extended. This nontrivial behavior of the algo- 
rithm can be understood within the framework of the ICS 
drop model. Indeed, the gist of the described algorithm 
can be thought of as the following: the first to be eliminat- 
ed are only the sites inside the drop of scale b /2. This 
transforms the drop simply into one site, and the drop of 
scale b consists no longer of drops of scale b /2, but sim- 
ply of sites connected by macrobonds. The site elimina- 
tion procedure can now be carried out in a drop of scale b, 
by replacing it thus by a site, etc. Consequently, the fact 
that the algorithm permits the exclusion of almost all the 
sites at the percolation threshold is connected with the 
drop structure of the ICS. 

The value obtained for the critical exponent A /Y in 
the numerical experiment, A /Y = 0.7 + 0.15, is less than 
that predicted by the drop model, but one can neverthe- 
less speak of approximate agreement. 

CONCLUSION 

We have discussed above questions connected with 
the conductivity of composite materials. But everything 
said concerning the structure of an infinite cluster is valid 
for any system close to the percolation threshold, for ex- 
ample for dilute ferro- and antiferromagnets. As the per- 
colation threshold is approached from above, the Curie 
temperature in such systems is lowered and becomes 
equal to zero at the percolation threshold. At concentra- 
tions below critical the system does not go over at any 

perature T ,  a ( p  - p ~ ) ~  (Refs. 25, 26). It was shown in 
Ref. 27 that in the two-dimensional case the exponent g, 
coincides with the exponent t for the conductivity. The 
exponent g, was determined experimentally in Ref. 28 for 
a planar Rb,Mn,Mg, -,F, system and the ratio g,/ 
Y = 1.17 f 0.11 was obtained, in satisfactory agreement 
with the results of the drop model (see Table I). 

In our opinion, it would be of interest to investigate, 
near the percolation threshold, a dilute ferromagnet with 
an essentially anisotropic interaction. In all likelihood, the 
susceptibility of such a system should become rapidly 
isotropic in the two-dimensional case as the percolation 
threshold is approached. 

In conclusion, we are deeply grateful to B. I. 
Shklovskii and S. P. Obukhov for helpful discussions of 
the work. 
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