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The localization of electrons in one-dimensional conductors, due to scattering by nondispersing 
phonons at low temperatures, when the phonon occupation numbers are low (N( I), is investigat- 
ed by the Berezinskii diagram technique. It is shown that the localization length I,, in this case is 
large compared with the mean free path I, -I,/N with respect to the parameter 1, which is 
determined by the characteristic electron momentump. The asymptotic value of the low-frequen- 
cy conductivity, Re+) cc w211n3wl, deviates noticeably from Mott's law. 

PACS numbers: 7 1.50. + t, 7 1.38. + i, 72.10.Di 

1. INTRODUCTION 

The great theoretical and practical interest recently 
aroused by Mott localization in one-dimensional conductors 
(see the reviews 1-4) raises the question of the region of exis- 
tence of this effect and the feasibility of its experimental ob- 
servation in real quasi-one-dimensional conductors. Since 
most presently known quasi-one-dimensional organic con- 
ductors do not have a strong structural disorder (see Refs. 5 
and 6), the question is whether localization effects exist in 
such systems. This question is closely related to the problem 
of electron localization via various elastic-scattering mecha- 
nisms not due to the presence of impurities and defects that 
are randomly located in a one-dimensional conductor. 

The present paper deals with the elastic-scattering 
mechanism connected with the nondispersing intramolecu- 
lar phonons. It is shown that this mechanism leads to elec- 
tron-state localization but of a type that differs substantially 
from that in the usual impurity problem. I s 7  The localization 
length I,, , in particular, turns out to be larger than the mean 
free path I, for phonon absorption. 

We consider low temperatures T4wo, where w, is the 
frequency of the intramolecular phonon. In this case the 
phonon occupation numbers are extremely small, so that the 
mean free path I, for phonon absorption is long enough: 
1,-I,/N>I,, where I, is the mean free path for phonon emis- 
sion. The absorption of the phonons is therefore relatively 
infrequent and is accompanied by their rapid emission. We 
get thus an effective electron scattering similar to the usual 
impurity scattering. This analogy, however, is complete only 
in the three-dimensional case, first considered by Frohlich 
and Mott,' when the electron motion is described by the 
usual kinetic equation. 

It is known that a very important problem for one-di- 
mensional systems is that of the phase structure of the scat- 
tered wave, and is directly connected with the localization 
pr~blem. '~, '  In this sense, successive two-phonon scattering 
differs noticeably from impurity scattering, for in the inter- 
mediate hot state following the phonon absorption there is a 
phase change of the order ofpl, = 2rI,//Z, a change absent in 
scattering by impurities. As shown in a preceding paper,9 at 
large values pl,) 1 the contribution of the elastic scattering 
by nondispersing phonons does not lead, in the lowest zeroth 

order in the parameter (PI,)- ', to localization of the electron 
states and differs thereby substantially from ordinary impu- 
rity scattering. This result, however, was due to neglect of 
the higher orders of the expansion in (PI,)-'(1, which will 
be shown in the present paper to lead to localization of the 
electron states with large value I,, -@1,)212>12. We note 
that in the present paper we take into account only single- 
particle effect, so that we are considering a nondegenerate 
electron gas of very low density (semiconducting situation), 
in which the effects of electron-electron interaction do not 
play a significant role. In real situations such an electron 
system can be realized in quasi-one-dimensional organic se- 
miconductors, which include at sufficiently low temperature 
most TCNQ 

2. ANALYSIS OF THE DIAGRAM SERIES 

We consider a one-dimensional system of noninteract- 
ing electrons with low density n and with a quadratic disper- 
sion law E( p) = p2/2m* = m*v2/2. We assume that the elec- 
trons interact with one branch of the nondispersing phonons 
with frequency 0,. The Hamiltonian of the interaction is of 
standard form1 and is linear in the phonon operators. To 
investigate the character of the localization, of the electric 
conductivity, and of the dielectric constant it is necessary to 
calculate the correlation functions of the current and density 
operators. A convenient diagram technique for these pur- 
poses is described in the preceding  paper^.','.^.'^ 

In view of the absence of phonon dispersion, the elec- 
tron energy returns to its exact initial value after absorption 
and emission of an equal number of phonons, meaning that 
the scattering is effectively elastic so that it is necessary to 
take into account the interference effects connected with 
scattering by phonons. In diagram language9 this leads to 
the need for summing graphs with intersections of the 
phonon lines, graphs that were found to be insignificant in 
the case of sufficiently large phonon disper~ion.'.'~ 

At low temperatures T(w, the electron is scattered by 
phonons via infrequent absorption followed by rapid emis- 
sion of phonons. The lifetime of the hot electrons with ener- 
gy E + w, is then much shorter (relative to the parameter 
Nzexp( - w,JT)( I), than that of the cold states with ener- 
gy E- T. As a result the damping of a Green's function with 
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energy E is small compared with the damping of a Green's 
function with energy E + oo (relative to the parameter N g  1). 
The electron mean free paths I +(E) and I -(E) for forward and 
backward scattering, which describe the spatial damping of 
the Green's functions G (E, X, x') (Ref. I), are given by 

[I* (8) ] -'= [Il* (E) ] -'+ [12* (e ) ]  -', 
111 

T~(&-oo) ), E>oo, (3)  
where c,  is the matrix element of the electron-phonon inter- 
action. 

At E < E~ and E > E~ we have respectively I * (E) = 1, * (E) 

and I * (E) =: l1 * (E), with I, * (&)#I2 * (E )  to the extent that N 
is small. We shall assume hereafter for simplicity that li- 
+(E) = li -(E) = li (E), i = 1; 2. This assumption that the scat- 

tering is isotropic is certainly satisfied in the case c,  = const, 
to which correspond the basic mechanisms of interaction of 
electrons with intramolecular vibrations of large organic 
molecules. '' 

Examples of diagrams corresponding to successive ab- 
sorption and emission of phonons by cold electrons and con- 
taining no rapidly oscillating factors are shown in Fig. 1. The 
rapid damping of the Green's functions with energy E + wo 
causes the integral over the distance between the phonon 
lines to converge on a length-I, and the integral with re- 
spect to the position of pair of phonon lines to converge on a 
length -12. Therefore, integrating first over the lengths of 
the hot lines and taking the elasticity of successive two- 
phonon scattering into account, we obtain for the vertices 
effective expressions analogous to the usual impurity corre- 
la tor^.'.'.^.'^ It must be emphasized here that rapid damping 
of the hot lines is ensured by the self-energy insets that con- 
tain cold electron lines. These lines can be "drawn out" of 
the effective two-phonon vertex in the form of long "ton- 
gues" connected to other two-phonon vertices. The skeleton 
diagram of Fig. 2a is therefore transformed into the effective 
many-point diagram shown in Fig. 2. An effective expres- 
sion for this vertex can be easily calculated. Indeed, integrat- 
ing over the positions of the inner phonon lines xi and yi and 
then over the difference z' - z we easily obtain for a diagram 
with r internal phonon lines in the upper part and s lines in 
the lower part of the diagram: 

FIG. 1. Skeleton two-phonon vertices containing no rapidly osci- 
lating factors. The hatches mark the hot lines. 

I ,,,,,#,,,,,, - 
I x2 11' 
I 

? v 
I 

z fi 
FIG. 2. Elaboration of the skeleton diagram because of drawing 
out of cold lines. 

Summation over all the arrangements of the internal phonon 
lines leads to the following effective expression for the vertex 
r,,, with k and n tongues in the upper and lower parts of the 
diagram of Fig. 2: 

This expression can be easily simplified with the aid of the 
known integral representation for the binomial coefficients 
c r + s r :  

where the integration is along a small circle around z = 0. 
Substituting (6) in (5) we obtain after simple transformations 

As shown in a preceding paper,9 expressions (5) and (7) 
correspond to all the skeleton diagrams shown in Fig. 1, with 
diagrams c and d corresponding also to a phase factor eZid", 
while e and f to a factor e-2'"'/", where w is the external 
frequency. As a result we have for the right-hand and central 
parts R ,  (x) and Z,., (xl,x) of the polarization loop that de- 
scribes the correlation functions of the density &W(w,k) 
(a = 0) and of the current (a = 1) (Ref. 9) 
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where 

rm= (m-k) (m-n) L,,,=m 
k.n=O 

is determined by the number of methods of connecting the 
many-point vertex. The coordinate dependence of the quan- 
tities R,(x) is trivial, R, (x) = Rme2'"""'", and can be easily 
separated. The equations for Rm therefore take the form 

iVmRm+m(Rm+,+Rm-,-2Rm) =0, R,=l, ~=2a.c~=2a1,/v. 

(1 1) 
The correlation functions &Pa(w,k ) are expressed in terms of 
the quantities P and Q defined by the formulas 

Qma (09 k) 

= '2 j &eik,x'-d,-ziam'd,v zmrm ( X I ,  x) eziomr~vpm~a 
E2 

m'-0 2' 

(13) 

in the following manner1~7~9.10: 

where n ( ~ )  is the Boltzmann distribution function. 
The equations for Qma(w,k ) take then the form 

Equations (1 1) and (16) are easily solved by an exponential 
sub~titution,~ and as a result we obtain for the conductivity 
u(w) the usual Drude formula with a finite value 
u(0) = u,, = 2e2I2/1~S, where S is the cross section area of one 
conducting filament. This result can be seen directly from 
the structure of Eqs. (1 1) and (16) as w 4 .  To this end we 
compare them with Berezinskiys eq~at ions ,~  which take in 
the same notation the form 

-tkQma+Pma=O. (18) 

It can be easily seen that in (1 I), (16) and in (17), (1 8), large 
n) 1 are significant at small 9 4  1. However, the structure of 
the difference operators in (1 1), (16), and (17), (1 8) is such that 

in the limit m> 1 the former contain only terms of the type 
mn - 1 (d /dm)", n = 1; 2, and the latter only terms of the type 
mn(d /dm)", n = 1; 2. Therefore to make (1 1) and (16) com- 
pletely nondimensional they must be multiplied by m, as a 
result of which the continuous parameter becomes m(4)'12 
[and not m9 as in ( 17) and (18)], and the inhomogeneous term 
in (16) at a = 1 (the current correlator) takes the form 
mdR,/dm-R,, in contrast to dRm/dm-R, /m<R, in 
(1 8). The presence of an extra power of m in the denominator 
for this term in (1 8) leads to vanishing of the correlator of the 
currents and of the conductivity as 9 4 :  4 9 )  a ( - iG) (Refs. 
1 and 7). In Eq. (16), however, cancellation of the smallness 
-m-'(1 leads to the onset of finite conductivity u(0) = ow9 

It should be noted that in the presence of both phonons 
and impurities in the system the resultant equations9 will 
include additively the difference operators (1 I), (1 5) and (17), 
(18). Therefore as w 4 ,  owing to the faster decrease at large 
m, the phonon terms, starting with a certain sufficiently 
small 641, become inessential even at low impurity densi- 
ties, and the static characteristics are again determined by 
Eqs. (16) and (18) and correpond to complete localization 
due to scattering by impurities. In this case the phonons can 
determine only the rate of approach to stationary asymptotic 
forms and make no contribution to the static characteristics 
of the localized electron states. 

It was concluded on this basis in the preceding paper9 
that scattering by nondispersing phonons makes no contri- 
bution to the localization of electron states. In the present 
paper is shown that this conclusion has restricted applicabi- 
lity and is due to neglect of the higher order terms of the 
expansion in the small parameter (PI,)- ' 4  1. 

In fact, as will be shown in the next section, allowance 
for these corrections introduces into Eqs. ( 1 1) an 1 ( 16) terms 
having a structure of the type (17) and (18), and these terms, 
notwithstanding the smallness of the parameter (PI,)-', will 
predominate as a 4  because of the higher power of m in 
their expansion at large m s l .  This relative smallness of 
these terms - only increases the localization length 
11'x12( ~ 1 1 ) ~ .  

3. DERIVATION OF THE BASIC EQUATIONS OF 
LOCALIZATION THEORY 

All the rapidly oscillating phase factors of the type exp 
(ipx) are completely cancelled out in the skeleton diagrams of 
type of Fig. 2 with insets of type 3a, a', b, and b'. These 
diagrams determine therefore the term of zeroth order in the 
expansion in terms of the parameter @ I , ) - ' <  1. 

To calculate the first corrections in terms of the param- 
eter @I,)-', it is necessary to take into account, besides skele- 
ton diagrams such as in Fig. 1, also skeleton diagrams such 
as in Fig. 4, in which there is no total cancellation of the 
rapidly oscillating factors of the type exp(ipx), as well as the 
corresponding insets such as 3c, c', d, d', which have a simi- 
lar property. 

We note that by taking the corrections of order @I,)-' 
into account we neglect the corrections of order 
@12)-'-N@ll)-1(@ll)-1, owing to the smallness of the 
phonon occupation numbers N( 1. Therefore the skeleton 
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diagrams b, b', c, c', d, d', e, e', f and f of Fig. 4 should 
contain appropriate numbers of internal insets such as in 
Figs. 3c, c', d, and d', which cancel out the asymmetry in the 
change of the number of single and double lines in section of 
the diagram, as asymmetry that can arise only if account is 
taken of corrections for the parameter @I2)-'( 1 are taken 
into a c c o ~ n t . ' ~  This means that the rapidly oscillating fac- 
tors such as exp(@x) can appear only in the internal integrals 
of type (4) with characteristic scale x-I,, and are absent 
from the coordinate dependence of the total vertices inte- 
grated with respect to the internal variables of Ref. 9. Thus, 
the numbers of single and double lines in each section of the 
diagram are equal. In addition we assume that to the extent 
that T(wO is small we have P(E + wO)>p(&) at E- T, and 
therefore we disregard the corrections for the parameter 
[P(E + oo)ll]- '([p(~)l,]- '. Consequently the phase factors 
of type exp (@(& + wo)x), always cancel out in the diagrams of 
type 1 4  considered by us, and oscillations set in only on 
account of factors of the type exp (@(E)x). 

By way of example we consider first the elaboration of 
the skeleton diagrams of Fig. 1 by additional insets such as in 
Figs. 3c, c', d, and d'. Two situations are possible here: the 
numbers of vertices of type 2c, c' and 3d, d' inserted in the 
diagram are either equal or not. In the former case the 
change of the number of lines in the section of the diagram is 
due to external lines of the skeleton diagram of Fig. 1 and can 
therefore not exceed unity. In the latter case, as will be 
shown below, no asymmetry of the numbers of the single and 
double lines in the section of the diagram should arise, so 
that the vertices of the type 3c, 3c' and 3d, 3d' should be 
simultaneously inserted in the upper and lower parts of the 
effective diagram of the type of Fig. 2. In the lowest nonvan- 
ishing order in the parameter @I,)-' only one such vertex 
can be inserted in each (upper and lower) part of the diagram, 
so that when account is taken of the external lines the num- 
ber m in the section of the diagram cannot change by more 
than 2. 

We consider initially the first case. In the lowest order 
in @I,)-' one can insert in a diagram such as in Fig. 1 only 
one vertex of type 3c, c' and one of type 3d, d'. It is easily seen 
that the contribution of lowest order in @ I , ) - '  can stem from 
such diagrams as in Fig. 2 in which these vertices are located 
either on neighboring steps of the hatched ladder, or on ev- 
ery other step. The terms -(@I,)-' resulting in the first of 
these methods are pure imaginary and cancel one another in 
the final equations after summation of the contributions of 
the single and double lines, in analogy with the cancellation 

c(c') d(d') 
FIG. 3. Method of including cold lines in skeleton diagrams. The 
hatches correspond to replacement of single lines by double ones. 

FIG. 4. Additional skeleton vertices containing rapidly oscillat- 
ing factors. The hatches correspond to replacement of single lines 
by double ones and vice versa. 

in the preceding ~ o r k . ' , ~ * ' ~ . ' ~ , ' ~  The first nonvanishing 
terms are therefore of order (pl,)-2.  

Calculating the corresponding integrals with respect to 
the internal variables of the type (4) with allowance for two 
rapidly oscillating factors of the type exp(2@xi) and ex- 
p( - 2@xi -. ), n = 1; 2 in the neighboring integrations, and 
summing over all the possible arrangements of the hatched 
lines and "cold tongues," we obtain for the total contribu- 
tion of the skeleton diagrams of the type of Fig. 1 in an equa- 
tion of the type (1 l )  the following expression: 

In the simplification of (19) we have used the integral repre- 
sentation (6) for C :; ,'- , . 

In perfectly analogous fashion we obtain in the second 
case the expression 

2 
12 (Rm+Rm+t+Rm-1) +Rm+z+Rm-z17 

(PU 
x (6.,k-6n,k+1) (m-k)  (m-n). 

k , n  

Similar expressions correspond also to the contribu- 
tions of the remaining skeleton diagrams of the type of Fig. 4. 
Simple calculations, however, show that they cancel one an- 
other in the summation. Thus, adding (19) and (20) and sum- 
ming over k from k = 1 to m we easily obtain the following 
equations for the right-hand sides of R, , accurate to terms 
of second order in @I,)-I: 
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In perfectly similar fashion we obtain also equations for 
Q.,: 

It can be easily seen that the terms in Eqs. (21) 
and (22) have the same structure as Berezinskii's equations 
(17) and (18), and therefore predominate at low frequencies 
w-4 in analogy with the corresponding impurity terms.9 
The parameter 1 has here the meaning of a low effec- 
tive impurity density. It must be emphasized that an analysis 
of the succeeding terms of the expansion in the parameter 
@Il)-' shows that they have a similar structure of the type 
@Il) - 2k(m)"(d /dm)" and add only small corrections 
-@Il) - 2 k  to all the numerical coefficients. In this sense they 
are similar to the corresponding terms in the impurity prob- 
iem.12,13 

4. DIELECTRIC CONSTANT, CONDUCTIVITY, AND 
LOCALIZATION LENGTH 

It is known24 that localization effects manifest them- 
selves primarily in low-frequency asymptotic correlators of 
the density and of the current. We therefore investigate first 
of all the limiting case w 4 .  In this limit, the major role in 
Eqs. (2 1) and (22) and in the sums (1 5) over m is assumed by 
large m) 1 (Refs. 1, 7,9). Therefore, expanding (2 1) and (22) 
in powers of small m - '( 1, introducing the continuous vari- 
able 

and neglecting the small corrections -@I,)-' to all the nu- 
merical coefficients, we obtain the following differential 
equations: 

d2R 
-qR+ q (q-ivu) - = 0, 

dq2 

where 

The expression for the correlators xu(&, o ,  k ) takes in this 
case the form 

It follows from (26) and (27) that the correlators of the 
densities (a = 0) and of the currents (a = 1) take as 0 4  the 
asymptotic form 

This means that the density correlator has in the time repre- 
sentation a stationary asymptotic formp, ( x )  as t-03. This 
asymptotic form can be easily obtained from Eqs. (24) and 
(25), which go over as v 4  into the corresponding equations 
of the impurity p r ~ b l e m ' . ~ . ~ * ' ~  with the impurity mean free 
path l i  replaced by I = al,. Using the known s o l ~ t i o n ' * ~ ~ . ~ ~  
of these equations we obtain for P, (x) the expression 

The asymptotic form of p ,  (x) at Ixl>l, which deter- 
mines the localization length I,, 

Lo,= lim Iln p ,  (z)/xI, 
IXI-- 

is of the form 

It follows therefore that the localization length I,, is given 
by 

It is thus found that in contrast to the impurity prob- 
leml.7.9.19.'2-'4 the localization length I,, is much longer 
than the mean free path I,. In this sense the electron localiza- 
tion is weak, i.e., it has a large characteristic dimension. This 
fact has a very simple qualitative explanation. 

Indeed, the main difference between elastic two- 
phonon successive scattering and impurity scattering lies in 
the phase shift Aq, -PI,, which takes place in the intermedi- 
ate state between successive phonon absorption and emis- 
sion acts. Since, however, the phonon emission probability is 
uniformly distributed over the entire mean free path I,, there 
exists a finite small probability -A /Il that the phonon may 
be emitted immediately after absorption, i.e., over a distance 
of the order of the wavelengthR. Therefore the amplitude of 
successive two-phonon scattering always contains a small 
admixture (of order /Z /I1) of the amplitude of pure elastic 
scattering with small phase shift in the intermediate state. 
This small impurity adds terms -(A /I,), to the scattering 
probability and plays in fact the role of impurities with small 
relative density -(A /I,)'. 

The first term of the low-frequency expansion of the 
current correlator X ' (E ,  o ,  k ) a - iw determines in accord 
with the Kubo formula the low-frequency asymptotic com- 
plex conductivity a ( ~ )  a - iw, and consequently determines 
the static dielectric constant 

e'(0) = lim [4na/ (-io) 1. 
O*O 

The value of ~ ' ( 0 )  can be easily obtained from Eqs. (24) and 
(25), which coincide as v-0 with the equations of the impu- 
rity problem (Refs. 1, 7, 9, and 10). Using the kn~wn '~ '* '~  
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solution of these equations we obtain 

where E'(E, 0) is the contribution of electrons of energy E to 
the static dielectric constant, while{ (3) = 1.308 ... is the Rie- 
mann zeta function. To obtain the total dielectric constant it 
is necessary to integrate (33) with respect to E with weight 
( - dn/d~) .  The quantity E, in (33) is the absolute value of the 
usual static dielectric constant determined by the Drude for- 
mula. 

To calculate the next term of the expansion in w, which 
determines the low-frequency asymptotic value of Re a(w), 
we can use the continuous equations (24) and (25). This cir- 
cumstance distinguishes our problem from the genuine im- 
purity problem 1.7.9. 10.12-14 and is due to the presence of terms 

-va with a> 1 in Eqs. (24) and (25). Using the known solu- 
tion of these equations, obtained9 by expanding them in the 
small parameter lva 14 1, we get the contribution made to the 
conductivity by electrons of energy E: 

0 ( E ,  61) =oo (-iva) 2b (3) + (va) [ 

Here C = 0.577 ... is the Euler constant. We note that the 
low-frequency expansion is now in powers of va = 2wr2@Il/ 
2)4, and the characteristic localization time r,, is now of the 
order of T,@I,)~ - I :, /v2r2 and corresponds to the diffusion 
mechanism of electron motion over distances - I , ,  with the 
usual diffusion coefficient D-v2r2. It must be emphasized, 
however, that this diffusion is of purely quantum type and 
does not influence the static characteristics of the localized 
electron states, but changes only the characteristic time to 
reach the stationary asymptotic values. It is interesting to 
note that the low-frequency absorption for the phonon 
mechanism of localization takes the form Re a(o) a w2 lln30 1 
as against 021n2w in the impurity case.',' This indicates that 
the Mott law for low-frequency absorption is not universal 
and is subject to noticeable deviations in the logarithmic fac- 
tor. 

We note that in the continuous limit m> 1 the structure 
of the additional terms in Eqs. (21) and (22) coin- 
cides with the structure of the impurity terms [see (17) and 
(18)], which in the presence of impurities in the crystal 
should be additively included in (21) and (22) with a coeffi- 
cient 12/li, where li is the mean free path for scattering by 
impurities. Therefore if impurities and phonons are present 
in the system all the static characteristics are determined as 
before by Eqs. (28)-(33), but with the effective mean free path 
I = a12 replaced by 

Thus, the presence of nondispersing phonons in the sys- 
tem always leads to the onset of a temperature-dependent 
increment (a&- ' to the reciprocal li- of the impurity mean 

free path. We note that this circumstance expands consider- 
ably the region of applicability of the mechanisms of the 
temperature dependences of E'(T) and o(T),  proposed ear- 
lier'' to explain the experimental data on the electric proper- 
ties of conducting TCNQ salts with asymmetric cations. It 
was shown there that Eq. (35) is valid for non-fully-symmet- 
ric intramolecular phonons, scattering from which is fully 
equivalent to impurity scattering. It follows from our pres- 
ent results that acontribution to the I ' (T) temperaturedepen- 
dence is made by intermolecular phonon. In this case the 
contribution of the fully symmetric oscillations is weakened 
somewhat because of the presence of the factor (2 /~1 , )~ .  As 
shown by various e~tirnates,'.'~*'' however, this parameter is 
of the order of unity in real substances, so that I1(T) has a 
substantial temperature dependence even in the absence of 
non-fully symmetric phonons. 

Relation (35), however, is valid only at low frequencies 
Ival4 1 when large m> 1 need only be considered. At high 
frequencies, lva1> 1, the difference of the terms - ( ~ l , ) - ~  in 
(2 1) and (22) from the corresponding impurity terms (17) and 
(28) becomes essential. In this frequency region Eqs. (21) and 
(22) can be easily solved directly by perturbation theory in 
the parameter @11)-24 1. 

Indeed, in the zeroth order in @Il)-' Eqs. (21) and (22) 
can be easily solved with the aid of the exponential susbstitu- 
tion9 

Taking into acount the first corrections to Qma and R ,  for 
the parameter a - ' 4 1, we obtain at a = 1 after simple calcu- 
lations 

where 

From this we get ultimately for the complex conductivity 

It follows from (42) that Reu and Ima decrease simulta- 
neously at high frequencies 1 va 1 > 1, and the expansion is in 
powers of I va 1 - ' ( 1. The imaginary part of a(&, w), meaning 
also the dielectric constant E'(E, a ) ,  vanishes and reverses 
sign while still in the region of applicability of (42). This takes 
place at or2 = (1 3/48a)213( 1. Therefore the dielectric con- 
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stant acquires the characteristic positive sign while still in 
the frequency region where the conductivity is well de- 
scribed by the Drude formula. Expressions (34) and (42) are 
continuously joined at I va  1 - 1. 

It must be noted that our results were obtained formally 
for the case of isotropic scattering by the phonons and for a 
nondegenerate electron gas. The first of these assumptions 
can be easily dispensed with and all the results are easily 
generalized to the case of different forward and backward 
mean free paths, which leads only to some complication of 
the final results, namely, in Eqs. (2 1) and (22) 1, is replaced by 
(1, + 1, - ) ' I 2  and I, by I (Ref. 9), where the superscripts + and 
- correspond to forward and backward scattering. Cur- 

iously, the localization length I,,, (3 l )  in the phonon problem 
is determined not only by the mean free paths I ; and 1, for 
backward scattering, but depends also significantly on the 
paths I ,+ and I ,+, so that this situation differs strongly from 
the impurity p r ~ b l e m . ' ~ , ~ * ' , ~ ~ - ' ~  

AS for the second assumption, its physical meaning is 
that at high electron density the effects of electron-electron 
interaction via phonons can be excluded only if @I,)-'(1 
(Ref. lo), i.e., they are of the same order of smallness as the 
corrections for @I,)-' in (21) and (22). This, however, does 
not mean that the approximate results do not hold for one- 
dimensional metals, since investigations, say, of their ther- 
modynamic properties with allowance for the interaction 
and localization effects16 point to a dominant role of the lat- 
ter. Therefore all the approximate results can be extended in 
principle to include the case of a degenerate electron gas by 
simply replacing the Boltzmann function n ( ~ )  by the Fermi 
function. 

We note in conclusion that we did not take into account 
here polaron corrections to the electron spectrum, which are 
small in terms of the interaction constantgg 1. The reason is 
that they need not be taken into account in the terms 

while in the terms - 1 they introduce in all coeffi- 
cients corrections that are small relative tog and are inessen- 
tial for electron localization. 

5. CONCLUSION 

We investigated here the localization of electrons in 
one-dimensional conductors on account of elastic scattering 
by nondispersing intramolecular phonons. Our analysis is 
formally valid only at low temperatures Tgo,, when the 
phonon occupation numbers N-exp( - o d T ) ( l  turn out 
to be small. Actually, however, all the approximate results 
are valid at all temperatures, since the only difference 
between the cases TR o, and T(o, is the need for taking into 
account the finite number n of electron states with energies 
E + no,, where no,- T. Allowance for a finite number of 
electron states connected by arbitrary transitions should 
lead only to some change of the effective localization length 
I ;, -nl,,, as indicated, in particular, by the results for n 
coupled one-dimensional chains. '79'8 

Thus, one-dimensional localization of the electrons can 
take place even in ordered systems on account of scattering 
by nondispersing phonons. The resultant localization length 
I,, depends quite strongly on temperature, and differs 

strongly thereby from the usual impurity length. Similar ef- 
fects can result also from other mechanisms of quasi-elastic 
scattering, particularly scattering by low-frequency acoustic 
phonons at high  temperature^.'*'^ All these processes, how- 
ever, always contain a low inelastic-scattering probability, 
which leads to the onset of weak hopping condu~tion.'. '~ 

In the system considered, the degree of inelasticity of 
the scattering is determined by the value of the phonon dis- 
persion A, which is finite in all real cases, although it can be 
very small, especially for large organic  molecule^.'^ An esti- 
mate of the contribution A to the static conductivity can be 
obtained from the following simple considerations. The hop- 
ping-diffusion coefficient D is of the order of 1 :, /rin (Refs. 1 
and lo), where rin is the characteristic inelastic-scattering 
time, which can be estimated at small A to be the reciprocal 
probability of accumulating an energy of the order of the 
reciprocal localization time r ~ '  via diffusion in energy in 
elementary steps -A. This leads at A(r,,' to the estimate 
rin - - 7,- l(ArlOC )' and yields for the conductivity a(T) the 
estimate 

The condition for smallness of o is therefore the relation 
A (7,- 'a-3. In real quasi-one-dimensional organic conduc- 
tors'.'2.15 we have a - 1 and r2-' - 100 K. Therefore the 
aforementioned criterion is well satisfied for the overwhelm- 
ing majority of intramolecular oscillations, '' in which A - 1 
to 10 K. 

We wish to note in conclusion that the existence of 
phonon and other one-dimensional localization mechanisms 
that are not connected with impurities and can take place in 
ordered quasi-one-dimensional conductors explains the 
presence of characteristic maxima in the frequency depen- 
dence of Re o(o) and the abrupt change of the sign of &'(a) 
observed in quasi-one-dimensional TCNQ salts. ' 

The author thanks P. B. Wiegmann, V. I. Mel'nikov, 
and E. I. Rashba for a helpful discussion of the results. 
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