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A study is made of the problem of a one-dimensional Peierls insulator with a doubled lattice 
period [of the trans-(CH), type] in an alternating electric field. It is shown that in the frequency 
region A -i5 (G is the activation frequency for collective oscillations of the order parameter A of 
the Peierls insulator) there is parametric excitation of "optical phonons." At optical frequencies 
in the region A -A the field propagates freely in the chain forA < 24, while for A > 24 the optical 
phonons become weakly damped on account of the decay of the ground state and the excitation of 
dissipative current in the system. 

PACS numbers: 77.90. + k, 78.20.Jq, 63.20.Dj 

INTRODUCTION 

There has of late been a considerable growth of interest 
in quasi-one-dimensional conducting systems which un- 
dergo a Peierls transition to an insulator phase as the tem- 
perature is lowered. The clearest example of such a material 
is probably the conducting polymer polyacetylene (CH), . 
According to the current understanding, polyacetylene is a 
Peierls insulator with a doubled period of the lattice of car- 
bon atoms. The width of the conduction band of (CH), is - 10 eV, and the Peierls gap in the one-electron spectrum of 
(CH), is 24 -- 1.5 eV (Ref. 1). There are two modifications of 
polyacetylene: trans-(CH), and cis-(CH), . In the trans phase 
the gap in the spectrum is of a purely Peierls origin, while in 
the cis phase the gap has a "hard" component2 due to the 
overlap of the wave functions of the electrons of the filled 
orbitals. At the present time the trans modification is the 
more thoroughly studied from the experimental standpoint, 
and for this modification there are theoretical models which 
give a good description of the known facts.'s4 For the cis 
phase the physical picture is not as clear, although certain 
theoretical conclusions [the luminescence of cis-(CH), un- 
der optical excitation as opposed to the photoconductivity of 
t ran~-(CH),]~.~ can be regarded as experimentally con- 
firmed.6 For these reasons we shall concentrate on the trans- 
polyacetylene type of Peierls dielectric. 

There have been many experimental studies of the be- 
havior of trans-(CH), in an alternating electric field. These 
studies can be divided into two groups--optical measure- 
ments and low-frequency measurements. The latter term is 
somewhat arbitrary, as this group also includes studies in the 
infrared region. Each of these groups can in turn be divided 
into two main areas: effects due to the presence of topologi- 
cal defects (solitons and polar on^)'^ in (CH), , and phenom- 
ena present in homogeneous samples. We shall not touch 
upon the interaction of defects with the alternating field but 

into the calculation an explicit expression, extraneous to the 
model, for the matrix element of the interband transition. In 
the present paper the same result is obtained systematically 
in the framework of a continuum model for the Peierls insu- 
lator. 

A more interesting and hitherto unstudied question is 
that of the role of collective oscillations of the Peierls insula- 
tor in the absorption of an alternating signal. It is known8 
that for a Peierls insulator with a double lattice period the 
order parameter is real and that there exists only one branch 
of collective oscillations (aside from the usual acoustic phon- 
ons, which are not coupled to oscillations in the alternated 
chain)-"optical phonons" with a frequency G<A.  In a one- 
dimensional chain this mode is not optically and infrared 
active; it has been observed in (CH), samples by Raman scat- 
t e r i ~ ~ g . ~  

On the other hand, because the "optical phonons" are 
collective oscillations in the coupled electron-ion system, an 
external electromagnetic field should excite optical phonons 
by altering the spectrum of the conduction electrons of the 
Peierls insulator. In this paper we give a detailed analysis of 
the mechanism for this process. It is shown that for frequen- 
cies A -o the collective mode is excited by means of a para- 
metric resonance and that the width of the excitation region 
depends on the amplitude of the field. The optical phonons 
of the Peierls insulator can therefore be detected directly by 
two-beam measurements in which a strong laser signal ex- 
cites the phonons and a weak signal serves as the indicator. 

At optical frequencies the field propagates freely in the 
sample for A < 24, without exciting the collective mode. 
When A > 24, the phonons of the Peierls insulator become 
damped on account of the decay of the ground state and the 
production of electron-hole pairs. A weak field at low fre- 
quencies A<Z does not have any noticeable effects in a 
Peierls dielectric. 

- 
shall not consider the behavior of a homogeneous Peierls 

OF THE AND EXPOSITION OF THE 
insulator under nonsteady conditions. FORMALISM 

The optical absorption of homogeneous trans-(CH), 
has been analyzed in a number of theoretical papers,' where 1 The microscopic treatment is based on the Lagrangian 

continuum model of a Peierls insulator with a doubled peri- it was shown that the absorption coefficient y has a square- 
~ d ~ , ~ ~  (fi = + = 1): root anomaly, y,, - (A - 24 ) - ' I 2 ,  at frequencies A 2 24. To 

obtain this result, the authors of those papers7 introduced ~ = ~ T , ~ , D , Y , - A T , Y ~ - A ~ / ~ ~ + A  2/g2w,2. (1) 
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Here Yv are the spin wave functions of the electrons (holes), 
Y is the spin index, y, = (ai ,ia,), ai are the Pauli matrices, 
D, = a, - ieA, , A ,  = (0,a c o d t  ), a is the amplitude of the 
alternating field, A is its frequency, A is the order parameter 
of the Peierls insulator, g is the electron-phonon coupling 
constant, and w, is the frequency of bare phonons with mo- 
mentum 2kF. The first two terms describe the electron sub- 
system in the field of the lattice displacements A and in the 
external electric fieldd. The third term is the strain energy of 
the lattice in the harmonic approximation, and the last term 
in (1) is the kinetic energy of the Peierls lattice. The depen- 
dence of the vector potential A on the coordinate x can be 
neglected, since over the entire range of frequencies of inter- 
est here the wavelength k -' of the field is large in compari- 
son with the characteristic scaled -' of the Peierls insulator 
(kA - 'g 1). Since the existence temperatures of trans-(CH), 
satisfy the conditions BA & 1 and pw) 1, we shall study the 
behavior of the Peierls insulator by methods which corre- 
spond formally to T = 0. 

The effective Lagrangian 9, (see, e.g., Ref. 10) of 
model (1) is written in the standard form of a continuous 
integral over the fluctuating fields: 

The imaginary and real parts of the effective Lagrangian 
determine the intensity of pair production by the field and 
the polarization of the ground state of the Peierls insulator, 
respectively. 

The functional integral over the fermion fields @,, and 
Yv can be evaluated exactly on account of the Gaussian 
structure of the functional 2' in (1). We shall evaluate the 
integral over the field A with the aid of perturbation theory, 
assuming 

A ( x ,  t )  =A+G ( x ,  t )  , (3) 
&A, where A is the equilibrium value of the order param- 
eter and S is its fluctuating part. In this case 

Here 
6 2  6' A6 

1 = ------ - - - 2 -  
(goo)2  g2 g2 

The functional determinants in (4) are conveniently evlauat- 
ed in Euclidean space: t- - ir(O<r<p ).lo.'' Here the substi- 
tution il--tiA transforms the vacuum-vacuum amplitude Z 
into the partition function of a two-dimensional model with 
a potential periodic along the T axis. After evaluating the 
partition function, we shall perform an analytical continu- 
ation to the real-time axis A+ - iil to obtain the final re- 
sults. 

In the Euclidean space ( x , ~ )  the spur of the logarithm of 
the elliptic operator Me is conveniently evaluated by the 

generalized-6-function method": 

where 

a 

A, are the eigenvalues of the operator &, and CR is a nor- 
malization constant proportional to the cutoff energy k,. 
We shall calculate (s) for the eigenvalues of the squared 
operator 

a,=- (iy,8,-A) .(iy,a,+A) e. (8) 

Then, if fluctuations of the order parameter are not taken 
into account, 

The eigenvalues of the operator KO are 

where w, is the Matsubara Fermi frequency, and the value 
of the equilibrium order parameter A, is determined from 
the self-consistency equations for a Peierls dielectric," 

% 1 A-& -0. 
(12) 

It is easily verified that evaluation of (9) with the aid of the 
formulas given above yields the standard result of the theory 
of the Peierls insulator for T = 0: 

where A, = CR exp( - r/g2). Comparison of (13) with the 
calculations of Ref. 4 shows that CR = 2kF. 

Now Z is represented in the form 

where K = K, + k , ,  with (14) 

~ , = o , ~ + o ~ 6 ' + 2 ~ ~ 6 +  G 2 + 2 i e ~  ( z )  a,+e2A2 ( z )  +eo,A (t) , (15) 

and I ,  is obtained from (5) by the substitution t-t - i ~ .  
Let us study the reaction of the Peierls insulator to an 

external field in the linear-response approximation. To do 
this we expand the "electronic" terms in the argument of the 
exponential (14) out to second order in A, assuming that eA / 
A,g 1. For (CH), the linear-response approximation is actu- 
ally good for rather strong fields-all the way up to E-  lo5 
V/cm. To detertmine the spectrum of small oscillations in 
the Peierls insulator we retain in expansion (14) the terms 
quadratic in S (x,r). We find 

Sp In (KO+ K , )  -'I2 Sp ln KO 

m i / ,  Sp ~ , - ' K , - ' / ,  Sp K ~ - ' K , K O - ' K ~  (I6) 

'/B SP KO-'& KO-' Ki  KO-'Kt 

-'/, s p  ~ o - i ~ , ~ , - ' ~ l ~ o - l ~ I K o o l ~ i .  
The operation of taking the spur is written explicitly as 
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where Tr denotes the taking of the trace over the matrix 
indices of the op~rator M. We introduce the Green function 
of the operator KO: 

G , ( X T ~  x/T/) =(521 a0-~ ~ X ~ Z ~ ) = J ( X ~ ~ X ~ ~ ~ )  I. (18) 

Here i is the unit 2 x 2 matrix, and 

J d k C  
exp[ik (x-x') -ion (r-T') ] 

J(5rIx'r') = - 
2 4  k2+on2+A2 

(19\ , -- ,  
Explicit expressions for the terms in (16) to quadratic order 
in S and A are given in the Appendix. 

Formulas (A1)-(A4) in the Appendix contain terms 
which do not depend on the order-parameter fluctuations 6. 
These terms introduce in the effective Lagrangian a field- 
dependent correction due to the polarization of the Peierls 
insulator by the external source: 

One is easily convinced that after the analytical continuation 
A+ - iA the correction S Y , ,  at frequencies A < 24, is a 
real quantity: 

If the frequency of the field exceeds the threshold, 
A > 2Ao, then ST, ,  acquires an imaginary part which is 
proportional to the absorbed power: 

Ao2e2a2 h2 -- -- -'h h/2+ (h2/4-At) 'I' 

nh ( 4 A )  In A o - (22) 
It follows from (22) that the absorption coefficient has the 
behavior y, -(A - 4A02)-"2. It is easily verified that the 
coefficients of the response in (22) satisfy the Kramers- 
Kronig relations. The function y(A ) agrees with that ob- 
tained in Ref. 7, but in contrast to those papers here we have 
not found it necessary to introduce an interband-absorption 
matrix element from outside the theory. 

The remaining terms in (14)-(16) and (A 1)-(A4) are due 
to fluctuations of the order parameter and give the quantum 
correction to the effective Lagrangian. Rather than proceed- 
ing to evaluate this correction, let us find the spectrum of 
small oscillations of the order parameter of the Peierls insu- 
lator in the presence of a field. 

COLLECTIVE-MODE SPECTRUM OF A PEIERLS INSULATOR 
IN A FIELD 

Let us first show how the spectrum8 is obtained with 
our formalism for the case A = 0. The quadratic [in S ( x , ~ ) ]  
form in the argument of the exponential in (14) is 

P(a)=l,+ (2A06 (x, T) +6'(x, T) )J(xtlxr) 

Recall that the validity of mean field theory for Peierls insu- 
lators guarantees the condition a2 = (goo)2/?rAo( 1. The 
physical meaning of this inequality is simple: The electronic 
spectrum of the Peierls insulator forms over a time -Ao-' at 
a fixed configuration of the lattice, and over times -(go,)-' 
the lattice fluctuates about the mean value of the displace- 
ment A,. The condition a( 1 (for polyacetylene a -0.1) per- 
mits one to make the last term in (23) local in T. In fact, the 
characteristic value of T-(goO)-', while in the kernel 

I J (xT~x 'T ' )~~  the scale of the difference T - 7'-A,-'. Inside 
the curly brackets one can therefore make the replacement 
S (x ' ,T ' )~(x ' ,T) .  Let us turn now to the spatial dependence of 
the kernel. It is easy to see that IJ(xT~x'T') l 2  diverges when 
the arguments come into coincidence. This means that the 
characteristic values of the wave numbers k in the kernel are 
k-kF(lx - x'l -kF-'(A,-'). At the same time, the spatial 
scale of the fluctuations 6 (x,T) is A,-'. Consequently, one 
can write 

6 (x', T) ~6 (x, T) + (XI-x) 6' (2, 7) (x-xf) '6'' (x ,  r) . (24) 

Going over to the variables y = x' - x, 8 = T' - T, we have 
for PA,) 1, 

+4A0262 (x, r) +2A026 (x, r) 6" (xI r) y2) 

We now invoke in (23) the easily verified self-consistency 
condition 

21 (27 1 xr) =llgZ (26) 
and obtain the final expression for the quadratic [in S (x ,~ ) ]  
form in (14): 

Analytical continuation of the spectrum of the differential 
operator in (27) to the real-frequency axis yields the spec- 
trum of Ref. 8. Let us now consider how the spectrum (27) 
changes when the field A (7) is taken into account. 

1. Low frequencies /Z(Ao 

In the low-frequency region the fields A (7) in (A 1)-(A4) 
vary smoothly on the scale of changes in the kernels 
T - T' -Ao-'. Therefore, all the expressions become local in 
T, and locality in x is attained in the long-wavelength ap- 
proximation (24) kgA,. Following the scheme given above, 
we obtain 

5 6'' iS2 ti2 eZA2(r) 
9 ' 8 )  (A) = -/- -- 

(go,)' 12nAo2 n 3n Ao2 , (28) 
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In arriving at (28) we have dropped terms containing A ', 
since they are small [having a factor (A /A,)'( 11 in compari- 
son to the terms proportional to A '(7). We have also neglect- 
ed corrections -A 2a2/ax2, since k(A,. Therefore, the last 
term in (28), which, as we shall show, leads to parametric 
excitation of optical phonons in the Peierls insulator, has its 
origins in diamagnetic effects. In real time ( w i t ,  R+ - iR ) 
the equation of motion for the collective mode is of the form 

where k ' = 12A02 and h = e2a2/6A02< 1. Equation (29) de- 
scribes a parametric resonance of in the system of "optical 
phonons." Since k<k,, it is actually meaningful to consider a 
homogeneous parametric resonance. It is well known (see, 
e.g., Refs. 12 and 13) that in the vicinity of a parametric 
resonance 

all the solutions of (29) are unstable and require for stability 
that terms of higher order in S be added to (29). In our case, 
as a calculation shows, the additional terms are 

With the nonlinear terms taken into account, the ampli- 
tude So in the vicinity of the first demultiplication resonance 
R = G behaves as 

The constant term S, is considerably smaller than 6, 
and will be unimportant in what follows. The maximum val- 
ue of the amplitude of S is much smaller than A,, and solu- 
tion (30) satisfies the small-fluctuation condition used in ob- 
taining Eq. (29) and the nonlinear corrections to it. 

Formulas (30) describe the parametric excitation of op- 
tical phonons in a Peierls insulator by a weak alternating 
electric field. As we know, an important feature of a parame- 
tric resonance is that the excitation region depends on the 
amplitude of the field: 5 (1  - h /4) <R < (Z(1 + h /4). It fol- 
lows from (30) that on the right-hand edge of the parametric- 
resonance frequency interval, R = Z(1 + h /4), the ampli- 
tude So increases discontinuously by an amount So - ea (A,. 
In the low-temperature region B6, > 1, this effect could be 
manifested, for example, in a dependence of the Debye- 
Waller factor on the field amplitude. 

2. High frequencies A-A,  

In this case the characteristic scale of changes in the 
field A (7) is of the same order as in the electron kernels. 
Therefore, although the locality of S ( x , ~ )  with respect to r 
remains, the kernels are renormalized on account of the 
field. As a result 

d -- I 
2 

e2a2A:6' J d k  (h2+4k2) 
( 2 n )  

As in the analysis of the classical contribution to the absorp- 
tion (22), one must consider two regions: R <2Ao and 
R > 24,. If 24, - R -A,, after analytical continuation the 
last two terms in (3 1) are real and can be dropped, and the 
equation of motion assumes the simple form 

This equation describes the free propagation of light through 
a Peierls insulator because the driving term in (32) is not at 
resonance with the natural frequency Z. If R - 24,-A,, 
then the last two terms in (32) acquire an imaginary part 
which dictates a damping of the collective mode Tl : 

This damping is due to the appearance of dissipative current 
in the system. 

We wish to thank S. A. Brazovskii', L. N. Bulaevskii', 
and I. 0. Kulik for helpful discussions of this study. 

APPENDIX 

Here we give the explicit form of the terms in expansion 
(16): 

1 /2Sp  Ko-lKi 

=Tr Jdx  d r  lo ( x r  l x r )  (26.6 (2 ,  r )  f s 2 ( x ,  7 )  ' k 2 a 2 } ;  

' / S p  Ko-'KtXo-'ts 
e" 

= - Tr J d x  dxl d r  d r l  { A  ( r )  A ( r ' )  o2GO ( x r  l x ' i )  
2 

aa, ( X T I X T ' )  aa0 ( ~ ' t ' l z r )  
m2G0 (x ' r ' lxr )  -4.4 ( r )  A(%')  

dx' dx  

1 + - Tr 5 dx  dx' d r  dr' (8' ( x ,  r )  6' (x',  r') 
2 

+4AO26 ( x ,  r )  6 (x',  z') } ('41) 

+2A06 (x',  r ' ) )  lGo ( x r l x ' r l )  12+A2(r') (6 ' (5 ,7 )  

+2A06 ( x ,  T )  ) 1 Go ( x z  1 x'z') 1 ; (A21 
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1J6Sp K;' K,Z~,-'$ K: = 4~3t?2A02 TI 1 dx . . . dx" dr . . . dr" 

x {6 ( X I ,  r l )  6 (z", z") Az ( T )  GO (xr ] ,zrrr)leO (x'z' 1 x'T") GO (x?" 1 X Z )  + cyclic permutations ) 

+ lh ezTr 1 dx . . . dx" dr . . . dr" { [ P  (x', r l )  + 2& d ( x f ,  r')] 

A (TI ' )  A (%)^Go (5% 1 xlrl) G~ (rlrl 1 x"rn) 02G0 (xNr" X Z )  C T ~  + cyclic permutations ) 
4ea - - Tr 1 dx . . . 'dx" dr . . . dr" [2A06 ( x ,  r )  + d 2  ( x ,  r ) ]  A (r? A (r") 
3 

e2 + - T r  5 b . . . dx" dr . . . dT" (6' ( X I ,  1') 6' (xf',  r") AZ ( r )  3 

j< G, (22 I GO (Xrr' I x"t") GO (xl'r" I x t )  + cyclic permutations 1; 

. . . dx"' dr. . . drV'{6 (x ,  T) 6 (2, r') A (r") A (1") 60 (xr I xlrp) 60 (x'rr) I xnr") 

x 0 2 G 0  ( X ~ T I '  1 x'~'T"~) u ~ G ^ ~  (xN'rm I X T )  + cyclic permutations 

- e2 Tr 5 dr . . . dx"' dr . . . druf (6' (x ,  r )  6' (r', 1') A (rf') A (I"') 

,, . a6, (r#rlf I x ~ ~ ~ T ~ ~ )  aGO (~"7" 1 I T )  x 26 ( X T  12°C') &o (5'2' 1 5 2 ) 
82 

+ cyclic permutations 

ea + TI 5 dr . . . dx"' dr . . . drn' (6' (r, r )  6' ( X I ,  r') A (r") A (rrtr) do (n 1 X'T') 

x 60 (x'T' !I x~T")  0 2 6 0  (x"T" I X"'Z'") 0 2 6 0  (x"'T'" I X Z )  + cyclic permutations). 
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