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A study is made of a new type of phase transition due to the onset of the magnetoelectric effect in 
crystals. A general phenomenological model is used to explore the anomalies which occur in the 
nonlinear conductivity and in several other kinetic characteristics of the system. A connection is 
established between the general theory of the magnetoelectric state and the microscopic model of 
the current state in crystals [B. A. Volkov, A. A. Gorbatsevich, Yu' V. Kopaev, and V. V. 
Tugushev, Sov. Phys. JETP 54,391 (1981)l. The kinetic Green function method is used to investi- 
gate the nonlinear effects which arise in this model under the action of external electric and 
magnetic fields. 

PACS numbers: 77.80.Bh, 75.80. + q 

1. INTRODUCTION 

Structural and electronic phase transitions can be ac- 
companied by various anomalies in the responses to external 
influences and in the kinetic characteristics of the system. In 
the case of a proper ferroelectric the linear dielectric suscep- 
tibility diverges at a second-order phase-transition point, 
and the magnetic susceptibility diverges at the transition to a 
ferromagnetic state. The electrical conductivity a has a kink 
(at a second-order transition) or a discontinuity (at a first- 
order transition), and so forth. 

Similar anomalies occur in the case of transitions to 
states with charge-density waves. The state with a charge- 
density wave describes a structural transition, and the state 
with a spin-density wave describes an antiferromagnetic 
transition. It is usual to consider only effects of first order in 
the external field (i.e., linear responses and linear kinetic 
characteristics). In the present paper it is shown for the illus- 
trative case of the two-band model,' which describes, in par- 
ticular, the transition to the ferroelectric (FE) and magnetoe- 
lectric (ME) states, that the study of the nonlinear responses 
and kinetic characteristics yields most important informa- 
tion on the nature of the phase transition, especially in cases 
where the linear effects are not anomalous. The meaning of 
the term "magnetoelectric state" will be revealed in Sec. 2, 
where we examine the phenomenological model of this state 
and establish its connection to the "current" state intro- 
duced previously in Ref. 1. It is shown in Sec. 2 that the 
transition to the ME state is accompanied by anomalies in 
such physical quantities as the magnetoelectric tensor, the 
nonliear conductivity, and the photovoltaic tensor. These 
anomalies should occur in ferroelectric semiconductors un- 
der the action of electric and magnetic fields. We show that 
the ME state and the FE state in conducting systems are 
intimately interrelated, and in this sense the ME state is by 
no means exotic. In Secs. 3-5 we construct a microscopic 
model which confirms the general phenomenological deduc- 
tions of Sec. 2. Using the model of Ref. 1 and the mathemat- 
ical apparatus of the kinetic Green functions,' we derive ex- 
pressions for a number of the nonlinear kinetic 
characteristics. 

2. PHENOMENOLOGICAL THEORY OF THE 
MAGNETOELECTRIC STATE 

It was demonstrated previously' in the framework of 
the two-band model with hybridization that a new type of 
state with an imaginary order parameter A ,, can arise in 
systems which are unstable with respect to electron-hole 
pairing. It is known that a state with a real order parameter 
A ,, corresponds to the FE phase. In the case of the FE state 
with A ,, #O, A ,, = 0 the electric spectrum of the system 
remains an even function of the momentum, ~ ( k )  = E(  - k), 
whereas in the case of a state with A ,, #O the spectrum 
E ( ~ ) # E (  - k), i.e., the time-inversion symmetry is lost. On 
the other hand, in the case of a homogeneous imaginary or- 
der parameter a spontaneous current does not arise' in spite 
of the lack of time inversion, symmetry and in this sense the 
term "current state" introduced in Ref. 1 does not reflect the 
essence of the symmetry change which has occurred. In the 
case of an incommensurate inhomogeneous structure a 
spontaneous current does arise, but it is related to the imagi- 
nary order parameter in a nonlocal way, and to describe the 
system using the current as the order parameter one would 
have to consider a nonlocal free-energy functional. 

Let us consider systems which suffer a loss of time in- 
version symmetry from a general phenomenological stand- 
point. Let us suppose that the spontaneous symmetry break- 
ing in these systems is characterized by a vector order 
parameter. With respect to spatial transformations of the 
point group, vectors can be separated into polar and axial 
vectors (the first change sign under space inversion, while 
the second do not). With respect to the operation of time 
inversion, vectors can be either odd or even (do or do not 
change sign, respectively). There are thus four possible types 
of vector order parameters. Two of them are familiar. The 
polar vector P, which is even with respect to time inversion, 
is identical with the polarization vector in the theory of 
proper ferroelectricity; this vector thus transforms under all 
symmetry operations of a given crystallographic group ac- 
cording to one of the irreducible representations of the com- 
ponents of the polar vector. The axial vector M, which 
changes sign under time inversion, is identical with the mag- 
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netization vector (the magnetic moment), which transforms 
according to an irreducible representation of the compo- 
nents of the axial vector of one of the magnetic symmetry 
groups. The other two vector order parameters in the theory 
of phase transitions remain practically uninvestigated. One 
of them-the polar vector a--changes sign under the oper- 
ation of time inversion; the other-the axial vector p-does 
not. A formal symmetry classification of the four vector or- 
der parameters is given by A ~ c h e r . ~  The vector a transforms 
like the current density j, while the vector p transforms like 
the moment current +/at. In the microscopic model of Ref. 
1 the state with the vector P is associated with the quantity 
IP121A ,, (hered Re is the real order parameter and P,, is the 
interband hybridization vector, i.e., the interband matrix 
element of the momentum operator). The state with vector a 
is associated with the quantity IP,,lA ,, , where A ,, is the 
imaginary order parameter. The state with vector M (ferro- 
magnetism) is associated with the quantity IL,,lA ,, [here 
L,, is the interband matrix element of the orbital angular 
momentum ~pe ra to r ) .~  Finally, the state with vector p is 
associated with the quantity IL,,lA ,, . Thus, depending on 
the symmetry of the crystal (whether P,, or L,, is nonzero), 
all four types of vector order parameters are possible in the 
model of Ref. 1. The phase of the order parameter in this 
model' determines the properties of the system with respect 
to the operation of time inversion. 

Structures with the vector p are no doubt very interest- 
ing objects of study in their own right, but in the present 
paper we shall deal with structures with the vector a ;  for the 
reasons indicated just below, we shall call these "magnetoe- 
lectric" (ME) structures. For simplicity we restrict discus- 
sion to the case in which the period of the ME structure (and 
also of the FE structure, which we shall also consider) coin- 
cides with the initial period of the crystal lattice in the high- 
symmetry phase. Such a restriction enables one to work with 
the magnetic and crystal classes instead of the symmetry 
space groups. We note straightaway that the ME structures 
appear in the familiar symmetry classification of magnetic 
structures5 (as, by the way, do structures with the vector p), 
so that the vector a (and, analogously, p) transforms accord- 
ing to one of the irreducible representations of the corre- 
sponding magnetic (crystallographic) symmetry groups. The 
study of ME structures whose periods do not coincide (or are 
entirely incommensurate) with the original period of the 
crystal lattice is of significant interest in its own right. This 
question will not be taken up here except for a single remark 
concerning the appearance of current in incommensurate 
(inhomogeneous) ME structures. 

Let us consider the case in which the components of the 
vector a transform according to one of the one-dimensional 
irreducible representations3 (for example, the case of uniax- 
ial crystals, where the vector a is directed along the principal 
axis of symmetry). In this case the order parameter is the 
projection r, of the vector a onto the corresponding axis. In 
principle, situations are possible in which the components of 
the vector a transform according to a two-dimensional irre- 
ducible representation (for example, if the vector a lies in the 
plane perpendicular to the principal symmetry axis of a un- 
iaxial crystal) or three-dimensional irreducible representa- 

tion (in crystals with cubic symmetry). Let us suppose that, 
in addition to the polar vector a ,  a polar vector P can also 
spontaneously arise, i.e., there is competition between the 
FE and ME states ljust such a situation is possible in the 
microscopic two-band model1). Let us also assume that the 
high-symmetry phase does not have either magentic or fer- 
roelectric ordering, and that the system belongs to one of the 
nonpyroelectric classes (in uniaxial systems with tetragonal, 
rhombohedral, and hexagonal symmetry we exclude the 
classes C, and C,,, n = 3, 4, 6). The effective equilibrium 
Hamiltonian U (free-energy functional) in the presence of an 
external electric field E and magnetic field His  of the follow- 
ing form in the first nonvanishing approximations: 

li=alP,Z+a,n,2-hlP,E~-h2nz (E,fl,-H,E,) 

+ p 1 P , 4 + ~ z n , 4 + ~ I P , 2 n ~ .  (1) 

We note that the magnetic field H is not of itself a source of 
the order parameter q ,  unlike the electric field E, which is a 
source of P, . From expression (1) the physical meaning of the 
order parameter ?r, is perfectly clear: With accuracy up to 
the constant A,, it is the antisymmetric component of the 
magnetoelectric tensor; this component becomes nonzero 
below the second-order phase-transition point (a, = 0). In 
the general case the three components of the vector a are 
proportional to the three components of the antisymmetric 
magnetoelectric tensor, while the source for the vector a is 
the vector S with components Si -(EX H), . 

The onset of the magnetoelectric effect below the phase- 
transition point thus defines the meaning of the term "mag- 
netoelectric state." The symmetry properties of this state 
place it in the magnetic classes which admit the magnetoe- 
lectric e f f e ~ t . ~ . ~  In our case, because of the vector character 
of the order parameter a only the antisymmetric compo- 
nents of the ME tensor are nonzero. A similar situation also 
obtains in certain ferroelectric magnets (see Ref. 7). It is easi- 
ly seen, however, that the symmetry classifications of the 
magnetoelectric and ferroelectromagnetic states do not cor- 
respond (see Ref. 7; see also Ref. 3). 

Let us dwell briefly on the connection between the ME 
state and the appearance of spontaneous current. In the case 
of a homogeneous order parameter a, the symmetry gener- 
ally admits the appearance of a homogeneous spontaneous 
current j,-a,. However, energy considerations (Bloch's 
theorem) prohibit the appearance of a homogeneous sponta- 
neous current (this is also confirmed by direct calculation in 
the microscopic model1). In other words, the coefficient of 
proportionality between j, and a, in the homogeneous case 
is identically equal to zero. Upon the transition to an incom- 
mensurate structure [to a state with a small wave vector q 
characterizing the spatial dependence of a(r)] one must take 
into account in the Ginzburg-Landau functional the invar- 
iants containing the derivatives of the vector a .  The depen- 
dence of the current j, on a, in this case (with accuracy up to 
the first nonvanishing terms in q) should be as follows: 

where 17 #O is the coefficient of proportionality. The current 
determined in accordance with (2) satisfies the transversality 
condition q-j, = 0 and transforms as a polar vector, chang- 
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ing sign upon inversion of the time. In coordinate form 

j (r) =-q rot rot n (r) . 
The incommensurate ME state can therefore also be called a 
current state, although, as we mentioned earlier in this pa- 
per, the current cannot be the order parameter if the local 
form of the Ginzburg-Landau functional is to be preserved. 
We stress that we are discussing macroscopic currents which 
vary slowly on the scale of the dimensions of the unit cell 
(intracel currents are, of course, always present, but they 
cannot be described in the framework of the Ginzburg-Lan- 
dau expansion). Let us discuss the role of dissipative pro- 
cesses in systems which undergo transitions to the FE and 
ME states. Although the present paper does not include a 
detailed study of dynamical effects, for the sake of generality 
let us write the Lagrangian of the model containing the pa- 
rameters P, and .rr, in the first nonvanishing approxima- 
tions. 

where Tis the "kinetic" energy. We note that the nontrivial 
temporal "Lifshitz invariant" provides a linear dynamic 
coupling of P, and .R,, intermixing the corresponding modes 
of oscillation. The role of this invariant in the microscopic 
model was mentioned in Ref. 8. We shall ignore the spatial 
dependence of P, and P, in (3). The equations of motion of 
the "generalized invariants" P, and .rr, are obtained by vari- 
ation of Lagrangian (3): 

We retain in Uonly the terms quadratic and linear in P, and 
n; (assuming that all of the analysis is carried out above the 
transition point, a , ,  a, > 0). Then the quantities - dU/dP, 
and - d U / a ~ ~  play the role of generalized forces in the 
equations of motion (4) (the term proportional to A, could 
also be attributed to generalized forces, in which case it 
should be included in the "potential" energy U, but we pre- 
fer to regard this term as part of the kinetic energy). In the 
presence of dissipative processes the "generalized forces" in 
(4) should be supplemented with "thermodynamic forces" F 
containing the Onsager  coefficient^.^ Denoting these as F, 
and F, [for the first and second equations in (4), respective- 
ly], we have 

Formulas (5) follow from the properties of the coefficients 
a,,, and which are proportional to the dissipative con- 
stants and change sign upon inversion of the time. Thus, in 
the presence of dissipation the polar vector S serves as a 
source for the vector P and the vector E serves as a source for 
P. Dissipative processes intermix the sources of P and T, and 
so the field E can now simultaneously induce the FE and ME 

order parameters, but the latter only insofar as the distribu- 
tion function changes in the electric field. Similarly, S in- 
duces both order parameters, but the FE order parameter 
only in the case of a nonequilibrium distribution function. 
The terms in (5) containing a, and a, are the ordinary frici- 
tional forces. 

In the static case the equations of motion (4) with 
allowance for (5) give the self-consistency equations for the 
order parameters P, and  IT^. Above the phase-transition 
point these equations are of the form 

The electric current arising in the system in the presence of 
dissipative processes, with accuracy to terms of higher order 
in E and H, is of the form 

Here rl('), q(2), and q(3' are axial vectors having the compo- 
nents 

and a''), y('), and &) are the nonzero components of the ten- 
sors. The nonlinear (in the external field) components of the 
conductivity tensor and Hall coefficient are anomalous near 
phase transitions to the FE and ME states. The terms qua- 
dratic in P, and ~r, diverge as a; ' and a; ,, respectively, the 
terms linear in P, and .rr, diverge as a; ' and a; I, and the 
terms bilinear in P, and ?.r, diverge as (a,a,)-'. We shall not 
write out here the awkward expressions for the conductivity 
and Hall-conductivity tensors. 

From expression (7) one can also obtain an expression 
for the components of the photovoltaic tensor. Placing the 
system in an alternating electric field of frequency L! can give 
rise to a homogeneous current1' 

Let us consider the case of a linearly polarized E field. The 
tensorpV, (L! ) in our model is purely antisymmetric and real: 

+n,[fj12' (Q)  6ik6j,+fj?) (52) 6 j k 6 i z l .  

The photovoltaic effect can thus arise at the transition to the 
FE or ME state. Substituting the expression for P, and ?r, 

from (6) into (lo), we immediately find that the photocon- 
ductivity diverges as a; ' or a; ' at the transition point. Be- 
low we carry out a concrete analysis of the anomalies in the 
kinetic characteristics in terms of the model of Ref. 1. 
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3. KINETIC GREEN FUNCTIONS IN THE TWO-BAND MODEL 
WITH HYBRIDIZATION 

Let us consider the Hamiltonian of the two-band model 
with coincident band extreme in momentum space: 

Here H, is the Hamiltonian of the ideal crystal, which was 
investigated previously,1 and is the interaction Hamilton- 
ian of the electrons with the impurity; we assume that this is 
the leading interaction for momentum-relaxation processes. 
The Hamiltonian H, is of the form 

where A and @are the vector and scalar potentials, E,  and E,  

are the energies of bands 1 and 2, and y,, is the interband 
hybridization operator, which describes single-particle elec- 
tronic transitions between bands 1 and 2. Assuming that the 
momentum region of interest is near the extrema of the 
bands, one can use the k-P approximation, and then the op- 
erator y,, is of the form 

where P,, is the interband momentum matrix element at the 
extremum. If the wave functions of bands 1 and 2 are real, 
then P,, = - P,, is a purely imaginary vector. In principle, 
one can also consider more complicated functions y,,($) is 
the symmetry of the crystal is such that P,, = 0. 

We note that by introducing the operator y,,($) we can 
also take into account effects due to single-particle interband 
transitions and impurity scattering involving an interband 
transition. The symmetry structure of the "Coulomb" and 
"impurity" contributions to y,, are the same as that of the 
single-particle contribution. Upon averaging over angles we 
find (y,,(@)) = 0, i.e., hybridization is not a source of the 
homogeneous (in momentum space) order paramater A,, 
which arises below the temperature Tc on account of the 
phase transition. 

The electron-impurity interaction Hamiltonian is 

where R, are the coordinates of the impurity atom. We as- 
sume for simplicity that V(r - R,) are point potentials, i.e., 
we neglect the difference between the transport and momen- 
tum relaxation times. The matrix elements of the potentials 
V (r - R, ) are 

v,, - cp,k* (r) V(r-Ri) cpnr, (r)dr, 
"'- 5 (15) 

where m and n are the band indices, and k and k' are the 
quasimomenta. Clearly, the momentum region of the elec- 
trons involved in the scattering is much greater than that of 
the electrons involved in the formation of the order param- 
eter A,,. We assume that the congruent regions represent 
only a small fraction of the Fermi surface, so that the total 
density of states Np(0) is much larger than the density of 
states N (0) of the congruent regions. In this case it can be 

shown that in calculating the impurity-scattering amplitude 
one may neglect the corrections due to the onset of the order 
parameter A,, [these corrections are proportionally smaller 
by the ratio N (0)/Np (0)]. Such a simplification of the prob- 
lem does not qualitatively alter the results even in the case 
when N(0)-Np (O), but in view of the awkwardness of the 
calculations involved in "dressing" with impurity lines the 
vertices containing A,,, y,,, and the external fields, let us 
restrict discussion to the case N (0)4Np (0). For three-dimen- 
sional systems this restriction is not excessively stringent [in 
contrast to the case of the one-dimensional systems which 
support charge-density waves and undergo dielectric transi- 
tions of the Peierls type, where the role of impurity renor- 
malization is rather important, since N (0)/Np (0) = I]. 

In the present paper the relationships of the parameters 
are assumed to be as follows. First, rTC % 1 (T is the momen- 
tum relaxation time), corresponding to low impurity concen- 
trations. The temperature region of study is T 2  Tc . Second, 
the hybridization parameter is assumed to be small in the 
sense that 

I ylz ( p p )  I KT,, T-~. 
This condition allows us to keep only the first nonvanishing 
terms containing y,,. The electric field E is assumed small in 
the sense that erEu, (Tc 7- I .  There is one additional specif- 
ic parameter in our problem, stemming from the presence of 
band hybridization: e T  I y,, 1 u,Eg~, Tc . As Tc is approached 
from the high-temperature side, the parameter A ,, induced 
by the external field also changes. It turns out that the exter- 
nal field induces a real A ,, and an imaginary A ,, part of the 
order parameter, so that for (A I T (  1 we have A -elP,,I(E / 
T )  In(T/Tc ), where Tc is different for the real and imaginary 
parts (TR, and TI,, respectively). As T-+Tc thequantity A ,, 
grows, so that at some point the relationr- '4 lA I <Tc begins 
to be satisfied, and, finally, lA J%Tc. This last situation will 
not be considered in the present paper, since it can occur 
only in an extremely narrow region near Tc. Calculations 
have been done for the other two situations (lA 1 ~ 4 1  and 
r-'<lA 

Following Keldysh,' we introduce the matrix of Green 
functions: 

The self-energy part, describing the electron-impurity inter- 
action, in matrix form is 

and the averaging over the positions of the impurities is done 
by the usual "crossover"~echnique. The system of equations 
for the Green function GU(x,xl), where x = (r,t ), is of the 
standard form." Since we shall be interested only in the stat- 
ic homogeneous fields, it is convenient to choose the gauge of 
the potentials A and @ in the form 

A (r) ='/,[HX r] , 0 (r) =-Er. (18) 
.2 

Accordingly, we seek the Green functions GU in the form 
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The functions G,. (x - x') depend only on the differences of 
the coordinates and times, ~d one can therefore transform 
to the Fourier components G,. (w,p), which obey the follow- 
ing system of equations: 

ie d  -- E -)I G , ~  ( 0 ,  p) = o ~ + o . ~ ~ c , ~  (w.  P I .  
2 d o  

+ [ 9 1 - z i (  A-  y p-i- [ H X -  :I 

Here a, is theJauli m~t r ix  in the indices of matrix (16). The 
equations for G,, and GI, are obtained by interchanging the 
indices 1-2. In Eqs. (20) we have neglected the energy and 
momentum dependence of the self-energy parts 2,. . The off- 
diagonal (in the band indices) matrix elements can be 
regarded as being already included in the hybridization term 
(this was discussed above). By virtue of the assumptions indi- 
cated above, the nonlocal field corrections to the collision 
integral in the remaining intraband matrix elements can be 
ignored, and the matrix elements Z,, and Z,, themselves can 
be regarded as independent of A ,,. Further, it is convenient 
to include all the terms diagonal in the band index in the 
"zeroth-order" Green functions on which the perturbation 
theory is based. We assume that E~ = p2/2mi, where mi is 
the effective mass of the electrons. The zeroth-order Green 
functions for PI, = 0, A ,, = 0 are of the form 

and the function Si (w,p) is the solution of the kinetic equa- 
tion 

Only the first nonvanishing terms in powers of the magnetic 
field H are retained everywhere, but it is necessary to retain 
also nonlinear terms inhpowers of E. Perturbation theory 
based on the functions G of (2 1) works for /A ( rg  I .  If, on 
the other hand, (A ( r  2 1, then it is necessary to use as zeroth- 
order functions the solutions of Eqs. (20) with nonzero A ,, 
(recall that ( y,, (3-9 1): 

Returning to the case (A IT( 1, which obtains when Tis suffi- 
ciently far from T, (but with T - T, g T, ), we note that one 
should take into account in (22) the terms linear and quadrat- 
ic in E. It will become clear from what follows that for find- 
ing the order parameter A,,  it is sufficient to include the 
terms linear in E, while for evaluating the current one should 
also take the quadratic terms into account. 

We shall henceforth be interested only in the kinetic 
Green functions, since it is in terms of these functions that 
the physical quantities A ,, and current j are expressed. The 
procedure for applying the perturbation theory is given in 
Ref. 12. To the desired degree of accuracy we have 

Kz=GiioRHizFz,0+Fzz0H+?G220A1 Fzi=Fizl, 

+Fii0H1zG,,OAHziGiioA- (26) 

The expression for F,, is obtained by interchanging 1-2: 

- i e ~ G & i e ~ &  
In (27) the k.P approximation was used for the hybridization 

=-i erp ( ) [ {Si, Gi,YA)-{GiioR, Si) I ,  (22) y,,. Theorder parameter isA ,, = A  .. + iA I , ,  ,,I = 1. 2 

9 (a ,  p )  = ( - )  E ~ = E ~  ( p )  , 4. THE ORDER PARAMETER IN AN EXTERNAL FIELD NEAR 
THE TRANSITION TEMPERATURE 

where Y = (27)-I = c ( V ,) Np (0), c is the impurity concentra- The complex order parameter A ,, can be found from 
tion, the self-consistency equation 
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The exact expressions for the functions F,, for arbitrary rela- 
tionships of the quantities T, T, and lA I are extremely com- 
plicated, and the integrals in (28) cannot be evaluated. Let us 
study the region of temperatures T close to the transition 
temperatures TRe or TI, (in the absence of external fields). 
The temperatures T ,, and TI, are regarded as given, and we 
shall not write out the explicit expressions for them in this 
paper (see, e.g., Ref. 1). In addition, we shall assume that the 
scattering by impurities is weak (.rT)-'(l. In the "gapless" 
regime (Id I T (  1) the equations ford Re andA ,, separate into 
two independent equations in the approximation linear in 
ARe andd,,: 

T PizE Piz 
(29) 

i~,,ln-=-cpz+- [EXHl'4'z. 
TI, m m 

Before writing out the explicit expressions for p,,, and Y ,,, , 
let us discuss the origin of the terms on the right-hand side of 
(29). The kinetic Green function F,, is expressed, according 
to Sec. 3, in terms of the bare (zeroth-order) functions F: 
(i = 1,2), which contain the electric and magnetic field. In 
the functions F:  one can distinguish two types of terms: 

Fi:=Fi:'+Fiy. (30) 

The first term in (30), 

Fiio'=-iSi[Giiu (a, p) -GiIOR(w, p) 1, (31) 

is due to the change in the distribution function S, in the 
external fields. The second term in (30) describes nonlocal 
field corrections." In the lowest nonvanishing approxima- 
tions in the fields E and H we have 

(32) 
Generally speaking, one should also take into account that 
the mass operators in the functions G ? s R  change with E X  H 
[see formula (22)l. It can be shown, however, that in our case 
this effect is small [containing the parameter ( ~ T ) - l < l ]  in 
comparison with the kinetic contribution (3 1) and "nonlo- 
cal" contribution (32). The distribution function S, (0, p, E, 
H) is written in the form 

dS0 
S ,  (o, p, E,  H)  =S"(o 

33) 
where v, is the velocity and m, the effective mass of the 
electrons in bands i = 1,2. For A Re T( 1 and A ,, T( 1 the 
nonlocal contributions turn out to be smaller than the kinet- 
ic contributions by a factor containing ( T T ) ~ ' .  In the case of 
ideally congruent Fermi surfaces the coefficients p, and p, 
form, = Im21 are 

where from here on 

The coefficients P, and Y2 are strictly zero in the approxi- 
mation of ideally congruent electron and hole Fermi sur- 
faces. We therefore introduce the small quantities 

which describe respectively the difference of the effective 
masses in bands 1 and 2 and the difference of the electron and 
hole densities. Neglecting the corrections proportional to 6 
and p/T in p, and p,, we obtain for !PI and Y, the expres- 
sions 

( ~ T V R ) ~  6 yi= A2, U.' = ------ ( ~ T U * ) ~  - 
3 nT 

As. (37) 
3 (nT)'  

Thus the electric field E simutaneously induces real and 
imaginary order parameters. Here if H = 0 and EIIP,,, then 
A ,, (A Re by a factor containing ( E ~ T ) -  '< 1. However, in 
crossed fields for E lHlP , ,  the situation changes, and A Re 

(A ,, by a factor containing T / E ~  (1 (it is assumed that the 
temperatures TRe and T I ,  are of the same order of magni- 
tude). The induction oforder parametersd Re and A ,, by the 
electric and magnetic fields is essentially a kinetic effect. For 
p l ,  Y,, and Y2 this is clear simply from the proportionality of 
these quantities to the momentum relaxation time T. The 
coefficient p, does not formally contain T, but this is only the 
result of our neglect of corrections of order (TT ) -  ' ( 1 and the 
condition A ,, T< 1, A ., T< 1. Equations (29) are the micro- 
scopic realization of the general phenomenological system of 
equations (6). To see this one need only introduce the nota- 
tionP = IP,,lA ,,, w = IP,,lA ,,. Relationships ofthis sort 
between the phenomenological quantities P and w and the 
order parameters A ,, and A ,, become extremely obvious if 
one considers a system with Hamiltonian (13) under condi- 
tions of thermodynamic equilibrium (v-+O), when there is no 
change in the distribution function. In this case we have 

In other words, under conditions of thermodynamic equilib- 
rium an electric field EIIP,, induces only a real order param- 
eterA Re , while electric and magnetic fields ELHIP,, induce 
only an imaginary order parameter. Equations (29) with co- 
efficients (38) are the microscopic realization of system (6). 

Let us now consider the case (A I T )  1. This case can for- 
mally be realized either very close to the transition point 
[when the field-induced order parameter becomes large 
(compared to T-I) because the logarithm is small] or below 
the transition point, when the order parameter ]A ( is already 
large even without an external field. For this second case one 
must make the following replacements on the left-hand side 
of (29): A Re or A ,, by S ,, or S ,, , respectively, and ln[T/ 
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TRe (TI, )by 2(ln[T/TRe (TI,)( (the "law of two"); hereSRe 
and a,, are the field-induced components of the order pa- 
rameter. On the right-hand side of (29) the coefficients pi 
and !Pi depend on the total order parameters A Re and A ,, . 

To evaluate the coefficients pi and !Pi for lA Jr) 1 one 
must take into account the nonlocal corrections to the func- 
tions Fit,  which become quantities of the same order as the 
kinetic terms. In addition, still another order parameter 
arises, which we shall assume to be small: lA 1 ,r/T< 1. In this 
case we have 

Finally, if (lA I T ) - ' )  [A I/T, all the kinetic corrections be- 
come small and, letting v-+O, we arrive at the purely "ther- 
modynamic" equilibrium coefficients (38). 

Thus, as lA I increases, the coefficients pi and !Pi 
change in an extremely complex way: Substantial simplifica- 
tions can be made in (39) if it is assumed that only one type of 
order parameter is realized (this, in fact, corresponds to the 
case in which one of the temperatures TRe or TI, is much 
larger than the other). Let TRe>TI,. Then, assuming 
A ,, (A Re , we obtain for pi and !Pi : 

2eZvF26 arv A ,  yi=-- , Az. 
 TAR, 

(40) 

Substituting (40) into the self-consistency equation for A Re 

we find, for example, that for EIIP,,, 
E-E?, (41) 

and for the case ELHLP,,, 

In the case of a purely imaginary order parameter 
(TI, ST,,) we have, respectively 

The second formula in (43) may seem strange at first glance, 
since A ,, grows as the external fields become weaker. This 
growth, however, is limited to the region lA ,, I ((T/T) ' /~,  
and when this value is exceeded, A ,, begins to fall off in 
accordance with (38). Result (43) simply means that A ,, can 
behave nonmonotonically with change in field (and, general- 
ly speaking, temperature) in the vicinity of TI,. A more rig- 
orous analysis of (39) is needed to assess the applicability of 
our approximations in the immediate vicinity of the tem- 
peratures TRe and T,, for TRe -TI,. As regards the region 
of temperatures below the point TRe (or TI,), Eq. (39) is 
valid in this region if in the absence of field the equilibrium 
values of A Re and A ,, satisfy the criteria indicated above. 

5. THE CURRENT AND THE ANOMALIES OF THE NONLINEAR 
CONDUCTIVITY NEAR THE TRANSITION TEMPERATURE 

The current operator in our model was investigated in 
detail in Ref. 1. It has the following form: 

Averaging the operator (44) over the basis of the kinetic 
Green functions, we obtain for the average value of the cur- 
rent density the expression 

A 

j=e 

where the spur is taken over the band indices 1,2. 
In the present paper we shall consider only the case 

H = 0 and (A ( ~ ( 1  and concentrate our attention on the ef- 
fects of the nonlinear conductivity [both the linear and qua- 
dratic terms in the electric field are retained in j(E)]. We note 
that the corrections to the inear conductivity of the system in 
the absence of interband transitions (PI, = 0) were found in 
Ref. 13, and the corrections to the linear Hall conductivity 
for P,, = 0 were found in Ref. 14. These corrections are pro- 
portional to lA I2r/T for lA 1741 and to lA I/T for lA 1r)l. 
Of course, one type of nonlinear correction to the conductiv- 
ity arises simply through allowance for the dependence ofA 
on E in the case PI, #O [see (29)l. However, there is another 
specific type of nonlinear correction. It was shown previous- 
ly' that in the absence of electric field the expression for the 
current j reduces to the total derivative with respect to mo- 
mentum of a certain function, and in the case of a distribu- 
tion function depending only on the energy, j = 0. This re- 
sult also obtains in the case in which there is no dissipation 
and the electric field E alters only the energy spectrum of the 
system. This can easily be shown for the local and nonlocal 
terms, since all the changes in this case affect only the func- 
tions GR and GA . 

A contribution to the current will thus arise only to the 
extent that the distribution function is distorted in the elec- 
tric field. Incorporating the field corrections to order E in 
the functions Si (o,p), we obtain the desired result. 

Let us consider the case Id Ir(1. The current j in this 
case is of the form 

j=j i i+j~~+j,2+jzi+j~,  (46) 
where j, is the normal current in the absence of A,,. The 
matrix elements jij are given by 

de ,  I - - Pi2 dk  m 
1 aeZ 

- 1  - 
m dk 

and j,, and j,, are obtained by interchanging 1-2. The oper- 
ator H, ,  was defined earlier [see (27)l. Retaining only the 
terms linear in P,,, we obtain the following expression for 
the current: 
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In obtaining (48) it was assumed that for a momentum-inde- 
pendent distribution function the expression for the current 
reduces to the total derivative 

Formula (52) expresses in the language of the kinetic Green 
functions the condition of "cancellation" of the intraband 
and interband components of the current (this condition was 
derived by another method in Ref. 1). 

The term j,, I describes the ordinary contribution, pro- 
portional to E. The term j,, is specific to systems having an 
imaginary order parameter and is quadratic in the electric 
field E. We see immediately that I j,, 1 < 1 j,, 1 in weak fields, 
but for describing nonlinear effects the term j,, should be 
taken into account because of its specific symmetric struc- 
ture. 

Generally speaking, there exists still another current 
contribution, due to the imaginary order parameter. This 
contribution arises because the function F:. changes on ac- 
count of the interference of the kinetic and nonlocal correc- 
tions in second order in the electric field. To find this contri- 
bution it is necessary to substitute the function Si(o,p) to 
first order in E into the nonlocal correction F&. As a result, 
one obtains a current contribution which is small compared 
to (50) [it contains the small parameter ( T T ) ~ ' ] ,  but differing 
from (50) by the symmetry structure. A calculation shows 
that 

Interestingly, the current corrections quadratic in E contain 
only A ,, , but not A ,, . The contribution (53) becomes im- 
portant in fields EIP,,, when j,, = 0, while for EIIP,, we 
have j;, gj,,. Let us now discuss some of the consequences 
of our results. It is seen that upon the transition to a phase 
with an imaginary order parameter (i.e., to the magnetoelec- 
tric state), a qualitatively new effect appears-the conduc- 
tivity becomes a linear function of the electric field. The 
third-rank tensor describing the current contribution of qua- 
dratic order in the field is of the form 

It is easy to see that expression (54), with allowance for (50) 
and (53), is the microscopic realization of the general pheno- 
menological result for the current upon the transition to the 
magnetoelectric state with vector P = IP,,lA ,,. The ap- 
pearance of an imaginary component of the order parameter 
also leads to the onset of the photovoltaic effect. The photo- 

voltaic-effect tensor Rq, (a ) coincides for 0-+O (in our case 
for LIT< 1) with the tensor auk. We note that it is pointless to 
follow the usual practice'5 of separating the current into the 
parts due to the diagonal and off-diagonal components of the 
density matrix.I5 In the Keldysh technique (20) used here 
both contributions are taken into account automatically. We 
stress that the photovoltaic effect in our case is due to the 
momentum asymmetry of the spectrum and is already de- 
scribed in the relaxation-time approximation. 

If we substitute the expressions for A ,, and A ,, ob- 
tained in Sec. 4 into the expressions (47)-(50) for the current, 
we obtain an anomalous growth of the nonlinear conductiv- 
ity near the transition temperature. We note that the leading 
contribution to the nonlinear conductivity above the transi- 
tion temperature is given by the term j,, I , while the contri- 
bution of the term j,, is smaller by a factor T ln(T /TI, )/E$T 

for TR, - TI,. The specific corrections thus begin to play an 
important role in the nonlinear effects due to the imaginary 
order parameter in the region below the transition point, 
where the third-rank tensor (54) and the photovoltaic-effect 
tensor appear. 

6. CONCLUSION 

The linear magnetoelectric effect in our model is a con- 
sequence of the orbital antiferromagnetic ordering with no 
change in the unit cell of the crystal. Here the onset of the 
vector order parameter gives rise to only an antisymmetric 
component of the magnetoelectric tensor. We note that in 
addition to those examined in this paper, any flux vector So 
(heat, diffusion, etc.) can be a source of the vector order pa- 
rameter P. Unfortunately, in this case we cannot illustrate 
the conclusions of the phenomenological theory in the mi- 
croscopic model, since for nonequilibrium processes of this 
sort we do not as yet have a diagram technique. The corre- 
sponding phenomenological approach requires the use of the 
methods of nonequilibrium thermodynamics and is beyond 
the scope of this paper. A direct check can be made by mea- 
suring the reaction of the system to an external flux; the 
induced flux should experience anomalous growth as 
T-+TI,. 

The onset of the photovoltaic effect can also serve as 
evidence (albeit inconclusive) of a transition to the ME state. 
Actually, the ME state evidently coexists with the FE state, 
and to separate the effects caused by these two types of or- 
dering is rather complicated. In any case it is clear that only a 
comprehensive study of "suspicious" systems will enable 
one to state unequivocally whether the ME state is present or 
not (unlike the case of the FE state, where the very presence 
of a polarization is conclusive). 

We wish to thank B. A. Volkov, V L. Ginzburg, and A. 
A. Sobyanin for valuable comments and hepful discussions 
of the results. 
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