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For a spin system interacting with a phonon system, a procedure is introduced for a transition to a 
new representation via successive canonical transformations the sum of whose generators must 
satisfy the Frohlich condition. It is found that the generators can be so chosen that the transition 
to the new representation can be carried out mathematically exactly and explicitly. Averaging of 
the transformed Hamiltonian over the equilibrium phonon states yields a compact expression for 
the indirect-spin-interaction operator in terms of the phonon field in all approximations in the 
spin-phonon interaction. 

PACS numbers: 63.10. + a 

Ql. INTRODUCTION 

Let us consider subsystems of spins and phonons de- 
scribed by the Hamiltonian Ho = Hos + Hop, : 

and let these subsystems be connected by the interaction 

where wo and w, are the Zeeman frequency and the frequen- 
cy of an acoustical phonon with wave vector q and polariza- 
tion cr: q = (q,a); b ,t and b, are the phonon second-quanti- 
zation operators, S" is thea component of the spin vector Sj ; 
Gz = Ga(lql/~ffv)"2 is the spin-phonon coupling con- 
stant, rj is the radius vector of the spin s,; M is the mass of 
the crystal; v is the velocity of sound waves in the crystal. 

In the description of purely magnetic properties of a 
spin system, it is desirable to have a Hamiltonian that does 
not depend on the vibrational degrees of freedom. This Ha- 
miltonian can be obtained with the help of a molecular-field- 
type approximation, which in our case will consist of averag- 
ing over the vibrational degrees of freedom with an 
equilibrium density matrix. 

However, in the case of direct averaging of the total 
Hamiltonian of the system H = Ho + H,,, , which leaves 
only the operator of the Zeeman spin energy H, , the spin- 
system properties due to coupling with the phonons are com- 
pletely lost. 

A way out of this difficulty is to change to a new repre- 
sentation in which the molecular-field approximation pro- 
vides additional spin-Hamiltonian terms that depend on the 
constant G, . These terms will be proportional to the powers 
of the constant G, , beginning with the second, since averag- 
ing with the equilibrium density matrix causes the terms that 
are linear in G, to vanish. To prevent loss of the principal 
contribution from the operator Hsph , which is proportional 
to G,, we must carry out the transition to a in such a way 
that the terms that are linear in G, contained in it are math- 
ematically exact. Thus, we arrive at the procedure suggested 

by Frohlich' in the problem of the interaction of electrons 
via a phonon field. 

According to Ref. 1, the transition to the new represen- 
tation is effected with the help of the canonical transforma- 
tion k = e - iL HeiL, where the Hermitian generator of the 
representation L is determined from the condition 

H , , h + i  [Ho,  Ll=O, (3) 

because of which terms that are linear in the coupling con- 
stant G, are absent from k. 

In the realization of this procedure, great difficulties 
arise with the calculation of the operator k, because of 
which one usually confines oneself to terms of order G 2, 
only, which bear information on the indirect interaction of 
the spins via the phonon field.2*3 In the next section, we shall 
change to a new representation, which is different from the 
Frohlich representation and which, satisfying the condition 
p), nevertheless leads to an exact expression for the operator 
H. 

The calculation of all the approximations in the spin- 
phonon interaction is not only desirable but also necessary. 
The reason is that the potentials of indirect interaction in all 
orders, beginning with the second, contain divergent de- 
nominators of the type w2, - w2, and perturbation theory is 
not applicable to resonant phonons located near w,. 

52. CHOICE OF THE NEW REPRESENTATION 

To simplify the following exposition, we limit ourselves 
here to the special case of the interaction (2) with Gqz = 0.'' 
Then by rotation of the coordinate system about the z axis 
(the constant magnetic field) we can, without further loss in 
generality, reduce the operator (2) to 

N 

,=1 q 

We now subject the total Hamiltonian of the system H 
to two successive canonical transformations with generators 
L, and L,: 
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and require that terms that are linear in the coupling con- 
stant G ,, be absent from the operatorj%~his imposes on the 
generators L, and L, the condition: H,, + i[Ho,L ] = 0, 
L = L, + L,, which is identical with (3). Solving Eq. (3) in 
the interaction representation, we can find an explicit 
expression for the operator L: 

where z; ' = u2, - u2, . Equation (6) leaves the leeway in 
the choice of the operators L,  and L,, and this turns out to be 
enough for us to effect the transition to the operator B in 
explicit form and exactly. This procedure will be accom- 
plished below by choosing 

It is easy to show that a canonical transformation with such 
generators as L ,  and L, of the total Hamiltonian of the sys- 
tem H can be carried out mathematically exactly. For exam- 
ple, if we transform the operators b, and b :, the series (5) 
will contain only two terms: 

The series (5), in the case of the transformation of the spin 
operators, can be convoluted into the compact, exact expres- 
sions 

e-iL'SjleiL~=Sj' cos qj+Sr sin qj, 

Substituting these expressions in (S), we obtain the exact 
form of the Hamiltonian H in the new remesentation'' fi 

8,. = * 2 { (s; cos qj+s;  sin q,)  
2 

+e-'lj fi (COS aIk-2iSku sin a,.) 1 
+iSjV eiEj (COS aj,+2iSku sin ajk)  [ n 
+ e - i l j f i  (cos ajk-2iskU sifi ajk)  11 , 

+ih 7, yl Gzqodzqei"(S; cos q j -S t  sin q,)  ( 4 -b - ,+ )  
3 = 1  q 

+h fl 1 Gxq12u~z~e iq r j~ (S ;  cos qj-S;  sin q j )  
d 

) $ = I  q 

X (Skx cos qk-Skz sin qk) , 
., (7) 

R.,,,=ih 7, yl Gxgeiqs ( S t  cos qj-S,' sin qj) (br b-,+) 
3 4 

+2h F:, yl I G ~ l ' o ~ z ~ e ' q " *  ( S t  cos qi-St  sin q,) 

X (Sks cos qk-Skz sin q r ) ,  

The results apply to the case of spin S = 1. 
We note that the sum L = L,  + L, is the generator of 

the well-known Frohlich transformation. The form (6) of the 
operator L is the same in both cases and is determined by the 
condition (3) that the terms in H that are linear in G, vanish. 
However, the fact that the transition to the new representa- 
tion proposed here is effected by successive canonical trans- 
formations with the generators L ,  and L,, simplifies this 
procedure decisively, making possible its exact satisfaction, 
whereas the transformation with the generator L = L,  + L, 
(Ref. 1) leaves perturbation theory as the only possibility. 

The basis of the representation in which the initial 
Hamiltonians (2) and (4) act is the direct product of the spin 
and phonon subspaces of the eigenfunctions: 

where mj = 5 4 and n, are the magnetic quantum number 
of the spin and the number of phonons of type q, respective- 
ly; q, is the wave vector of the Debye phonon. In the new 
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representation, the basis is made up of the functions 

where the phonon operators A ,* and B j* are equal to 

11- & 'llj 8j Aji=cos 2 cos - * i sin - sin-, 
2 2 2 2 

11j Ej j El Bj*=sin - cos - i cos - sin - 
2 2 2 2 

and x f are the eigenfunctions of the operator S2, corre- 
sponding to m, = + 4. 

The Hamiltonian (7) as constructed does not contain 
terms of order G, . This means that under its influence the 
probability W of a transition between the states of the new 
basis can contain a dependence on Gx only starting 
with G:. Yet in the initial representation the transition pro- 
babilities between the states of the spin system under the 
action of the spin-phonon interaction H,, (4) are propor- 
tional to G ;. This is explained by the fact that the basis of the 
new representation consists of functions which are a mixture 
of the initial spin states. The probability of admixture of one 
of the initial states in another new state is a function of Gx , 
the expansion of which begins with G; . 

Actually, the probability of observing the state Y,Tnl in 
the state of the new basis is 

- 
Since lim Y&, q.,n, as Gx -0, the normalized probability of 
mixing of only spin states on going to the new representation 
is 

wherep((n ) ) is the equilibrium density of the phonon states. 
In second order in the spin-phonon coupling constant G,, 
the probability of mixing of the functions X; and x,+ is 
equal to 

where C = 3 IG, 1 2 ~ 2 , / 2 ~ M d ;  d is the density of the crys- 
tal; T is the temperature of the phonon reservoir; A (2 are 
the probabilities of single-phonon emission (absorption) pro- 
cesses for the spin system, and r is the total width of the 
magnetic-resonance line. The parameter 1" enters into the 
expression for WJ, T(2)  thanks to the use of the following 
approximation: 

which is necessary for integration of the contribution from 
the resonant phonons, which we describe by the isotropic 
Debye model.3' Taking it into account that the decisive con- 

tribution to the magnetic resonance line width is made by the 
spin-phonon interaction, for which r = (m,C /2)coth(hd  
2kT), we obtain 

1 hoo 1 hoo 
= - (1*th-) w:*(~) = - ( l ~ t h - )  , 

2 2kT ' 2 2kT 

where Wj* , (,, is the probability that the spinj remain in the 
same state when account is taken of the interaction with the 
phonons. 

We can also obtain an exact expression for the probabil- 
ity (10) without approximations in terms of the constant G, : 

1 wi,1 = [ l-e-%e-" sin 

The probabilities (12) and (13) turn out to be independent of 
the spin-phonon coupling constant. The explanation of this 
fact is that by condition (1 1) we exclude from consideration 
all phonons except the resonant phonons. As is well known, 
the spin is transformed from the states x ,* to the states 
2-L/2(X f f x,+), under the influence of interaction with 
the resonant classical field. This corresponds to the field- 
independent transition probability WJ, = 4. The only in- 
teraction of the spin with the quantized field introduces the 
sole change that as T 4  only the probabilities of spontane- 
ous transitions remain different from zero, so that the upper 
spin levels of the energy are frozen out: 

93. EFFECTIVE SPIN HAMILTONIAN 

In correspondence with what was said in Sec. 1, we 
average the energy operator (7) with the equilibrium 
phonon-density matrix. After this, the effective Hamilton- 
ian of the spin system can be represented in the form 

Hss=Hss(l)+Haa(~)+ -. 
where H,,(,, is an operator describing the effective interac- 
tion of n spins. In this way, we obtain for the single-spin 
Hamiltonian 

N 

~ . , ~ , ) = h o ~  St [D*c*(~)+~A, (T) e -*~(~ ) ] ,  

1 5% 
A (T) = - IGr12(~02+~:)~: cth - 

2 2kT ' 

D~=U cos q., 

Thus, the quantity h J , ,  where 

is the shift in the frequency of magnetic resonance due to 
spin-phonon coupling. If we disregard surface spins, the 
quantities D, , and with them the shifts a,, do not depend onj. 
Equation (14) takes into account the contribution to the reso- 
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nance frequency shift from the spin-phonon interaction (4) in 
all orders. 

We pause to look in detail at the operator HSs(,, , which is 
traditionally regarded as the Hamiltonian of indirect inter- 
action of the spins through the phonon field: 

where the nonzero interaction potentials are equal to 

The parameters of this equation have the following 
meaning: 

ha, Bjj+ 
B** =x I GXql'w:z.' (l-tcos qr,) cth - B = -  

2kT' 4 .  

As already noted, the equation for the potentials of indi- 
rect two particle interaction (16) were obtained without ap- 
proximation in the constant G, . They constitute rather com- 
plicated integrals with respect to the phonon wave vectors, 
which are calculated only approximately. Such a calculation 
is given in the Appendix, and using its results we obtain the 
following equations for the contribution of the resonant 
phonons to the potentials 

sin pjh ( s i ; , ~  ) 
j k = e l a k  ( )  , Pikzz=c-la, sh -- , 

It appears strange at first glance that the potentials (17) 
turn out to be independent of the spin-phonon interaction 
constant and therefore do not vanish in the limit G, +O. This 
is explained by the fact that the transition to the limit in the 
potentials (17) is not valid, since it was assumed in obtaining 
them that the spin-phonon contribution to the level width 
exceeded all the others and thus was bounded below. Just as 
(A.2), the more general formulas should contain the ratio 
Cw,,/r, where r is the total magnetic-resonance level width, 
which as G, 4 goes over into the width determined by the 
other interactions. 

In contrast to all the existing calculations of spin-spin 
indirect interactions through the phonon field, which were 
always obtained in the approximation of second order per- 
turbation theory in the coupling constant G, , the result (16) 
is obtained from the mathematically exact expression for the 

transformation of the Hamiltonian. We note that since the 
transformation (5) converts the system to a representation 
that is different from the Frohlich representation, the sec- 
ond-order perturbation theory, which is obtained from the 
result (16), need not coincide with the traditional expression 
for the indirect interaction, obtained previously in Refs. 2 
and 3. 

The procedure of successive canonical transformations 
that we have proposed turned out to be effective. It allows us 
to solve the same problem in a significantly broader formula- 
tion than the result communicated here. Thus, we have ob- 
tained an exact equation for the operator HSs(,, in the case of 
spin-phonon coupling of the form (2). The restrictions to 
spinsS = 4, and also to the two-particle spin-spin interaction 
in H, have only a quantitative character. The operators of 
other multispin interactions can be obtained from the trans- 
formed Hamiltonian 2 (7), whereas for another spin the Ha- 
miltonian g itself must be derived anew. Moreover, the re- 
sults extend automatically to an arbitrary quantum system 
having a discrete spectrum and interacting with a boson field 
of arbitrary nature. For example, it can be extended to atoms 
having optical energy levels and interacting with the electro- 
magnetic field. 

However, in the present paper we shall not develop the 
results that further in these indicated directions, but shall 
confine our attention to one important problem which arose 
in the course of our obtaining the exact expression for H,,,,, . 

54. DISCUSSION OF THE RESULTS 

To obtain the exact expression for the operator H,,,, , a 
transition was proposed in Sec. 2 to a new representation, 
with the help of two successive canonical transformations, 
which were subject to a single condition (3) that determined 
the sum L = L ,  + L, of the generators of these transforma- 
tions, and also to a tacit condition that follows from the pur- 
pose of our research, namely that the transformation (5) be 
followed up to conclusion with mathematic rigor. Within 
the framework of these conditions, the question of the uni- 
queness of our splitting ofL into L ,  and L,  remains open: one 
can choose some other pair of operators L ; = L ,  - AL and 
L ; = L, - AL with arbitrary Hermitian AL. In particular, 
setting AL = L,, we obtain the Frohlich transformation and 
it is unclear apriori which of these representations should be 
preferred. Moreover, choosing certain L ,  and L,, we never- 
theless have leeway in the sequence of realization of these 
transformations: 

f l=e- iL2e- iL ,HeiL,e iL ,  H / = e - i L  ,e-zL,HeiL.eiL, 
(18) 

Since [L ,,L,] # 0, the transition in Eq. (1 8) to different repre- 
sentations and the Hamiltonians i;l and 3' are generally 
speaking not equal. 

At first glance, it may appear that the indicated arbi- 
trariness does not have serious significance, since the mea- 
sured physical quantities do not depend on the representa- 
tion in which their operators are specified. However, in Sec. 
3 the Hamiltonian (7) was projected on a spinor subspace by 
replacing all the phonon operators by their equilibrium 
mean values at a given temperature. Since such a projection 
is not an exact procedure, the resultant Hamiltonian opera- 
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tor and hence, the properties of the spin system are generally 
dependent on the choice of the new representation. 

The problem of the correct choice of the operators L ,  
and L, turns out to be very difficult, since it is impossible to 
formulate mathematically the restrictions imposed on their 
form by the condition of solvability of the transformation. 
There remains the path of formulation of the rules for this 
choice on the basis of general physical and intuitive consid- 
erations. 

One of such criteria can be the condition of the invar- 
iance of the direction of the spin quantization axis in the new 
representation. One cannot expect the spin-phonon interac- 
tion (2), which describes the fluctuations of the local magnet- 
ic field, to be capable of creating local magnetic field with 
zero mean value, whose direction does not coincide with the 
quantization axis. 

For example, it was possible for us to realize an exact 
transition to the new representation for two other subdivi- 
sions of the operator L  that correspond to 

A L = ~  S j y l j  and AL= sixqj. 

In both cases, after averaging Hamiltonian Hover the equi- 
librium states of the phonons, the spin quantization axis ac- 
quired components in the xy plane and was turned through 
an angle proportional to arctan (G 2, /ii2m2,). We have reject- 
ed these transformations on this basis and considered transi- 
tions to new representations only with 

which do not change the direction of the quantization axis in 
the effective spin Hamiltonian Hss regardless of the order of 
carrying out the transformations with the operators L, and 
L2. 

To choose the order of carrying out the transformations 
with the generators L ,  and L,, we made use of the principle 
of minimum free energy in the new representation. As is well 
known, the free energy of a system of N spins can be repre- 
sented in the form 

The last equation is obtained if we take H,, to be only the 
spin term HmW. The shift of the Zeeman frequency in the 
Hamiltonian H ' is equal to 

fro, bf=6+ e-A(T1 161 1'1, cth - 
2kT ' 

9 

Taking .it into account that the second term of this expres- 
sion is less than zero, we see that 6 ' < S and consequently, the 
free energy has a minimum in the representation with the 
Hamiltonian R, as discussed in detail in this paper.4' 

There is a possibility, within the restricted framework 
of the second approximation, to illustrate the differences 
that arise in the potentials of indirect interaction because of 
the differences between the Frohlich representation and 
successive canonical transformations with the generators L ,  

and L,  chosen above. It is seen from the expansion (5) that 
the second approximation in the spin-phonon interaction 
takes in the case of the Frohlich representation the form 

1 
f l ~ ~ ' = ~ ~ + i [ ~ . ~ ~  L I  -T[ [H., L], L] 

since in the other case considered 

We average the operators (19) and (20) over the equilibrium 
states of the phonons and transform in the isotropic model of 
Debye from summation over the phonon wave vectors to 
integration. The potential of the operator (19), which con- 
tains a pole of first order z, , is calculated in the sense of its 
principal value:3 

The calculation of the potential aj, in the right-hand side of 
Eq. (21) is given in the Appendix: 

n oo sin pi, 
Pjkxr= (Pjkrx) Irr-PjkYY, PjkVY = - - C--  

2 I' pjk . (22) 

In addition to the contribution in (22) from the resonant 
phonons, the potential P;$ contains also the contribution 
(A. 1) of the nonresonant phonons, which, as is shown in the 
Appendix, is significantly smaller. 

The second approximation obtained with the same pair 
of canonical transformations but in reversed sequence [see 
Eq. (18)] yields exactly the same potential (22). 

In conclusion, we note that the procedure suggested by 
us for the calculation of the spin-phonon interaction in all 
approximations does not remove the divergences either in 
the second or in the higher terms of the series (5). As a conse- 
quence, the criterion of applicability of perturbation theory 
is not satisfied in the resonance region. For example, calcu- 
lating for the potential Pj;S; the ratio of terms of fourth order 
in the interaction constant to terms of second order we ob- 
tain 

This confirms the necessary of summing all order of pertur- 
bations theory, which was in fact done in this work. 

APPENDIX 

We calculate the integrals encountered in the potentials 
of the indirect-interaction Hamiltonian (16). For example, 
we calculate the following integral for the phonons in the 
approximation of the isotropic model of Debye: 
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C @ D  sin (oqrjklv) 
= -- j doq oq3 - (a,& n o n ~ f  (ajd R ,  

P lk  (0',~-09")~ 

where C = 3 (G, 12~o/2?rZ$? is a dimensionless constant, V 
is the volume of the crystal, and r,, = Ir,, 1. We divide the 
entire integration region into two parts: resonant [a, - r/  
2,0, + r / 2 ]  where r is the total width of the magnetic reso- 
nance line, and the entire remaining nonresonant region. 
Since the maximum contribution to the integral is made in 
the nonresonant region by the high-frequency phonons, we 
can set approximately z, zo; in the integral and carry out 
the integration over the entire phonon spectrum, since now 
the narrow resonance band has no singularities, 

where a is the lattice constant. In the resonance region, the 
approximation (1 I) is valid, and gives 

3t 0 0  sin pja 00 
(aj,JR== - C - -  , pjk = - rjk. 

2 r pjk u 
( A 4  

Both parts of the function a,, (R,,) in fall off in like fash- 
ion with distance and the ratio of thelr constants is 

( a d R l ( a j k )  nonRm@0/r>1. 

Thus, the contribution from the resonant phonons to the 
integral is decisive. In this connection, we present below the 
potentials (16) calculated in the resonance region: 

sin pjk pj;l=-e-l ( T )  - [e-B~*+-e-B Ix - 1, (A.3) 
 PI^ 

sin pjk 
PjA"52 [ e - I  ( T )  - 

Pjk  

sin pik 
aj,=20-' ( T )  - , aj,=20-' ( T )  , 0 ( T )  =41'lnooC, 

Pjk 

ha0 sin p~ fia o 
Bj,*=20-' ( T )  cth - [ 1 3  -1, B=0- ' (T)c th- .  

2kT pjk 2kT 

For the parameters A ( T )  and A,(T) in the expression for the 
shift of the magnetic-resonance frequency we have 

ha0 600 A ( T )  =28-'(T) cth- , A t  ( T )  =8-' (T) cth - . (A.4) 2kT 2kT 

The expressions (A.3) and (A.5) are simplified apprecia- 
bly if, as in Sec. 2 we assume in the calculations of the transi- 
tion probabilities W ,  ', that the magnetic-resonance line 
width is determined by the spin-phonon interaction. Then 

where A (2 are the probabilities of one-phonon processes 
of emission-absorption by the spin ~ y s t e m . ~  In this case, 
8 ( T )  = 2 coth(fiw,/2kT) and theparametersA,,A, B ,* and 
B lose the temperature dependence, which is preserved only 
in a,, and D, . 

The authors are grateful to L. K. Aminov, B. I. Koche- 
laev, I. B. Levinson, B. 2. Malkin and E. I. Rashba for criti- 
cal comments. 

'H. Frohlich, Phys. Rev. 79,845 (1950). 
'K. J. Sugihara, J. Phys. Soc. Japan 14,1231 (1959). L. K. Aminovand A. 
K. Morocha, Fiz. Tverd. Tela 8, 2480 (1966) [Sov. Phys. Solid State 8, 
1981 (1966)l. L. K. Aminov and B. I. Kochelaev, Zh. Eksp. Teor. Fiz. 42, 
1303 (1962) [Sov. Phys. JETP 15,903 (1962)l. R. Orbach and M. Tachiki, 
Phys. Rev. 158, 524 (1967). 

3A. F. Izmailov and A. R. Kessel', Fiz. Tverd. Tela 24, 55 (1982) [Sov. 
Phys. Solid State 24, 31 (1982)l. 

4S. A. Al'tshuler and B. M. Kozyrev, Elektronnyi paramagnitnyu rezon- 
anq soedinenii Clementov promezhutochnykh grupp (Electron Paramag- 
netic Resonance of Compounds of Elements of the Intermediate Groups), 
Moscow, Nauka 1972, ch. 5. 

Translated by R. T. Beyer 

634 Sov. Phys. JETP 58 (3), September 1983 A. F. lzmallov and A. R. Kessel' 634 


