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The current-voltage characteristic of a superconductor-normal metal-superconductor junction is 
calculated. It is shown that the deviation from equilibrium of the electrons with energies of the 
order of the reciprocal diffusion time in the normal-metal bridge may stimulate superconductivi- 
ty in the junction and give rise to a characteristic bend in the current-voltage characteristic. 
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1. INTRODUCTION 

The nonstationary Josephson effect in superconducting 
weak links is now being intensively investigated both experi- 
mentally and theoretically.'-2 In the simplest resistance 
model it is assumed that the current through the junction is 
made up of ohmic and Josephson components, and the cor- 
responding current-voltage characteristic (CVC) turns out 
to be hyperb~lic.~ Experimentally, however, deviations from 
this dependence due to a nonequilibrium electron energy dis- 
tribution at the junction are frequently ob~erved.~" 

This lack of equilibrium may be due to an external mi- 
crowave field or to oscillations of the order parameter A in 
the vicinity of the weak link when the current exceeds the 
critical value I,. In the second case an average voltage V 
appears across the junction, and this leads-to periodic 
changes in the density of quasiparticle states at the Joseph- 
son frequency 2eT/?i. As a result, a nonequilibrium compo- 
nent appears in the current and the CVC of the junction may 
differ substantially from the hyperbola corresponding to the 
resistance model. 

Nonequilibrium effects and their influence on the Jo- 
sephson effect have been studied theoretically for supercon- 
ducting systems having a constriction (bridges and point 
contacts). It turned out that whereas the nonequilibrium ef- 
fects should tend to suppress superconductivity in the case of 
short bridges,' superconductivity should be stimulated by a 
direct current in the case of sufficiently long  bridge^.^ In this 
case the superconducting current increases considerably 
even at low voltages, and a characteristic bend is observed on 
the CVC of the j~nc t i on .~  

In this paper we investigate the nonstationary Joseph- 
son effect at a superconductor-normal metal-superconduc- 
tor (S-N-S) junction. Here, superconductivity is stimulated 
by a direct current provided the length d of the normal-metal 
bridge joining the superconducting films is large as com- 
pared with the coherence length <, - (fiD / T ) ' / ~  in the nor- 
mal metal (here D is the diffusion constant). We consider the 
case of a dirty metal in which the electron mean free path is 
short as compared with 6,. In this case the main contribu- 
tion to the current comes from nonequilibrium electrons 
with energies ~ - m  /d of the order of the reciprocal diffu- 
sion time along the bridge. The nonequilibrium current pro- 
duced by quasiparticles with such energies decreases com- 

paratively slowly as the length d of the bridge increases, and 
if the energy relaxation time T, is long, it may considerably 
exceed both the ohmic and the Josephson components of the 
current. 

As a result, the current through the junction increases 
considerably even at low voltages (and the effective resis- 
tance of the bridge in the resistive state correspondingly de- 
creases). A bend appears on the CVC of the junction, analo- 
gous to the bend on the CVC of a superconducting bridge.' 
The effects under consideration of the stimulation of super- 
conductivity in an S-N-S junction at a current above the 
critical value are analogous to those of the stimulation of 
superconductivity by an external microwave field, which 
have been investigated for such junctions in Ref. 9. 

2. GREEN'S FUNCTIONS AND ELECTRON DISTRIBUTION 
FUNCTIONS FOR THE JUNCTION 

The expression for the current density, written in terms 
of Green's functions integrated over the energy variable,'' 
has the following form when none of the variables depends 
too strongly on time ( e 7 . g ~  / d  '): 

The quantities Ml and J are related to the matrices GR and 
GA of the retarded and advanced Green's functions by the 
formulas 

In Eq. (1) f and fl are electron energy distribution functions 
(equations for them and for the functions GR and GA are 
given below), a is the conductivity in the normal state, A is 
the vector potential, and T, is the appropriate Pauli matrix. 

As a model of the junction we shall consider a bridge of 
variable thickness in which the connecting neck has constant 
transverse dimensions that are so small that all the quantities 
within the neck can be treated as functions of the longitudi- 
nal coordinate x alone, and we shall also set A = 0. We shall 
also assume that the electron-phonon interaction in the nor- 
mal metal is weak, so that the order parameter A is zero. 
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The matrices GR and GA can be expressed as follows in 
terms of the ordinary Green's functionsg and Gor'kov func- 
tions F: 

As was shown in Ref. 9, the functions q andx are determined 
by the equations 

in which y = 2Ed 2/D is a dimensionless parameter and the 
coordinatex is measured in units of the length d of the bridge 
and is reckoned from the center of the bridge. The coordi- 
nate-independent parameters q, = q(0) and $ ($ is related to 
the parameter Jby the formula J = Im$/d ) can be expressed 
in terms of the difference 0 between the phases of the order 
parameter at the banks and the reduced energy y by means of 
the boundary conditions. At energies that are small as com- 
pared with the modulus of the order parameter A ,  at the 
banks, these conditions have the form9 

(the integration path in the complex plane of the variable 
u = q/qO, as well as the branches of the root in Eqs. (4)-(7) 
are chosen in such a manner as to ensure the necessary ana- 
lytic properties of the Green's functions). The parameters 
and $describe the effect of the superconducting banks on the 
density of electron states in the junction, and as functions of 
energy their moduli are of the order of unity when y- 1 
(E-D /d 2, and decrease exponentially at higher energies. 

The electron energy distribution functions f = f, + Sf 
and f, are found from the kinetic equations," which have the 
following form in a normal metal: 

where p is the scalar potential. In equilibrium the distribu- 
tion functions are 

In connection with solving the set of equations (8) and 
(9), we note that M vanishes at the ends of the junction at the 
energies E < A o  of interest to us. This corresponds to the fact 
that the excitations described by f cannot diffuse out of the 
junction because their state density vanishes on the banks. 
They are forbidden in the bridge and relax to equilibrium 
only by collisions with phonons (the right-hand sides of Eqs. 
(8) and (9) are the collision integrals). On the other hand, if 
the length d of the junction is small as compared with the 
diffusion length I- ( D T ~  )'I2 corresponding to these pro- 
cesses, Sf can be treated as independent of the coordinates 
and can be found by averaging Eq. (8): 

(( ...) denotes averaging over the length of the bridge). 
As regards the functionf,, the quasiparticle mode that 

it describes (an unbalance of electrons and holes) can diffuse 
out of the junction without hindrance (as follows from Eqs. 
(2) and (4), MI does not vanish on the banks). At the ends of 
the bridge it assumes the equilibrium values given by Eqs. 
(1 1). On substituting these values into Eq. (12) and solving it, 
we find the relation between the nonequilibrium addition Sf 
to the distribution function f and the voltage V ( t  ) across the 
junction: 

D expl-(t-tl)/r.) eV(t') I(t ,)dt,. 
8f(e,t)=- a j Re<g, (t') ) 2T (13) 

- rn 

As follows from Eq. (13), the nonequilibrium addition Sf is 
proportional to J(E) and is therefore important only at ener- 
gies E - ~ / d  2. 

Now we can calculate the current I using Eq. (1). In the 
first term, the energies E - Tat which f, assumes equilibrium 
values are important. This term gives the normal current V /  
R, where R is the resistance of the bridge in the normal state 
(the deviations of fl from equilibrium when E - D /d can be 
neglected in comparison with Sf because of the large value 
of 7,). In integrating the second term over the energy we 
express f as the sum of the equilibrium function f, = t anh(~/  
2T) and the nonequilibrium term Sf given by Eq. (13). The 
integral containing f, is determined by the exponentially 
small values of J at the poles E = (2n + l).rrTi of the tangent 
(as is evident from Eq. (3), J consists of two terms, of which 
one is analytic in the upper half, and the other in the lower 
half, of the complex E plane; this makes it possible to shift the 
integration path away from the real axis). As a result we 
obtain the equilibrium Josephson current I, sine, where the 
critical current of the junction, 

1,- (min {T, bo2 /~ ) / eR)   EN) exP (-a&) 

is exponentially small." At the same time, as is evident from 
Eq. (1 3), Sf is not analytic at low energies E -D /d '. The cor- 
responding integral in Eq. (1) for the current therefore de- 
creases only according to a power law as the length d of the 
bridge increases, and the nonequilibrium current given by 
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the integral exceeds the Josephson current even at very low 
voltages. 

We finally obtain the following expression for the cur- 
rent I :  

With the aid of Eqs. (4)-(7) we can obtain the functions $(8,y) 
and 

which occur in Eq. (14). Then, assuming a fixed total current 
I and using Eq. (14) and the Josephson relation 

8 = 2 e ~  (16) 

we obtain the time dependence of 0 and calculate the CVC of 
the junction from the formula 

3. CURRENT-VOLTAGE CHARACTERlSTlC OF THE 
JUNCTION 

First we find the CVC of the bridge in the low-energy 
region where eT(r; '. In this case the physical quantities 
change slowly as compared with the energy relaxation time 
rE ,  and this permits us to take these quantities outside the 
integral with respect to time (replacing t '  by t ) .  Then the 
expression for the current becomes 

(Imlp(y, 0))" 
'(')= I Re(gi (y, 0) ) 

The function P (0 ) as obtained by solving Eqs. (4)-(7) and (1 5) 
numerically is shown in Fig. 1. On substituting 8 from Eq. 
(18) into Eq. (17) we obtain the following expressions for the 
c v c :  

a) a parabolic expression for the case I - I, (I,, 

b) a linear expression for the case ISI, , 

As follows from Eqs. (20)-(22), the nonequilibrium ef- 
fects influence the CVC of the bridge differently, depending 
on the length d of the bridge. If d is very large (d~({,l,)"~) 
the deviations from the resistance model are small. At inter- 
mediate bridge lengths 

the nonequilibrium effects considerably reduce the effective 
resistance of the bridge as compared with the ohmic resis- 
tance, and the superconductivity is strongly stimulated. We 
note that the order parameter at the banks, A,, does not 
occur in the formula for the CVC, since the important ener- 
gies E - D  /d are assumed to be small as compared with it. 

Thus, when the junction is not very long, virtually all 
the current of the initial section of the CVC is carried by the 
nonequilibrium component, and this leads to comparatively 
low energy dissipation. As is evident from Eq. (14), however, 
the nonequilibrium current cannot be arbitrarily strong. 
When the current Iexceeds a certain value I,,, , which will be 
estimated below, it can no longer be carried by the nonequi- 
librium component alone, and the ohmic component (the 
first term in Eq. (14)) becomes important. This leads to a 
rapid rise of the average voltage 7 across the junction from 
values of the order of (ere)-', corresponding to currents 
I < I,,, , to values of the order of I,,, R, and a bend appears on 
the CVC of the bridge. 

At voltages 7>(erE)- ' ,  the phase difference 8 and all 
the quantities associated with it change rapidly as compared 
with 7,. In that case the time integral in (14) can be trans- 
formed according to the formula 

Here the superior bar denotes a time average of the type 
illustrated below for an arbitrary function Z (8 (t )): 

FIG. 1.  The function Pit? )that determinesthenonequilibriumcur- 
rent at low voltages (eV<Iir; I ) .  NOW Eq. (14) takes the form 
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(the average in K (8,8 ') is taken over the time dependence of 
the second variable). Using Eq. (26) to express 8 and employ- 
ing formula (25), we obtain the following integral equation 
for Q (8 ): 

As Eq. (29) shows, the function Q (8 ), which determines 
the dependence of the nonequilibrium current on the phase 
difference, is determined by the parameter I /Io. A search for 
an analytic expression for Q (0 ) was unsuccessful. The form 
of the CVC of the junction can be estimated by considering 
Eqs. (29) and (30) in the limiting cases of low and high vol- 
tages. 

At comparatively low voltages, such that (er,)-'(V 
(I$, the phase 8 is almost always close to one of the values 
8, and 8, that correspond to the two maxima of the function 
Q (8 ). The neighborhoods of these points, in which Q (8 ) can 
be expressed in the form 

Q = Q ~ , ~ - ~ / , Y : ~  (e-et ,z )2 ,  

make the main contribution to the integral over 8 ' in Eqs. 
(29) and (30). In that case Q (8 ) takes the form 

The self-consistency conditions 

provide a set of six equations from which one can determine 
the points (el,,) at which the function Q (8 ) reaches its maxi- 
ma, as well as its values (Q,,, ) and second derivatives ( - y:,, ) 
at the maxima. That is enough to determine the I depen- 
dence of V from Eq. (30) in the limit under consideration. 
The rapid rise of the voltage on the CVC sets in at the current 

at which Q, = Q,( = Q,). Then Eq. (3 1) for Q (8 ), and there- 
fore Eqs. (32), become indeterminate. This indeterminacy 
can be lifted by considering small deviations of1 from I,. As 
a result, we obtain the parameters 

C t , z =  lim { ( Q t , z - Q O )  I [  (IIIO) -QO]}, 
I-.Im 

which determine the numerical coefficient in the parabolic 
dependence of the voltage 7 on the current I when I - I,,, 
4, : 

An accurate determination of the numerical constants c,,, 
and Qo in Eqs. (33) and (34) would require a very complicated 
simultaneous solution of Eqs. (32) on a computer. The com- 
plexity of this calculation is due to the complicated form of 
the function K (8, 8 '), so we replace that function by the fol- 
lowing approximate function that shares its basic properties: 

a (0,  0') =az sin 0 (1-cos 0') (35) 

(the 8 dependence of 1C, is approximated by the sine, and the 
coefficient a, is the average value of the function P (8 )-Eq. 
(22)). Then we obtain the following expression for the CVC 
of the junction: 

v = R [ ~ z ,  (I-I,)]  '", Z - z r n e Z m ,  (36) 
Zm=29 Zo. (37) 

- Now let us consider the CVC at very high voltages 
V>I$ where almost all the current is carried by the ohmic 
component. Expanding Eqs. (29) and (30) in powers of the 
small quantity Io/Iand taking account of the fact that Q (8 ) is 
an odd function, we obtain 

1 "  
Q (0) -K(0,  0 )  - Zn K (0.0') dBf, P>Z0R. 

-n 

Using Eq. (35) we obtain 

As is evident from Eqs. (38) and (39), the deviation of the 
CVC from Ohm's law at high voltages follows the (Io/I )'law, 
as in the resistance model, while the current I, plays the 
part of the critical current in order of magnitude. 

4. CONCLUSION 

Our results show that superconductivity may be stimu- 
lated in an S-N-S junction by currents exceeding the critical 
value. The effect is strongest when the length d of the junc- 
tion satisfies condition (23). Then the CVC of the bridge be- 
comes a curve having characteristic bends as shown in Fig. 2. 

When the current I exceeds the critical current I,, the 
average voltage across the junction increases much less 
rapidly as I increases than would be required by Ohm's law 
(Eq. (22) for the effective resistance). This is associated with 
the fact that the current is carried not by the ohmic compo- 
nent, but by the nonequilibrium component. The latter is 
produced by electrons whose energies E are of the order of 
the reciprocal time fiD /d for the diffusion of electrons 
through the junction. Such electrons (unlike the electrons 
with energies E -  T that carry the equilibrium current and 
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A(TgfiD /d the result of Ref. 7, obtained for short super- 
conducting bridges, are directly applicable.) Experimental- 
ly, the low-temperature CVC exhibits a sudden change in 
voltage at I = I,, but at higher temperatures it behaves as 
described here: the CVC is a sharply bent curve, while the 
extent to which the superconductivity is stimulated is in ac- 
cordance with Eqs. (20)-(22) (where rE a T -3)  and decreases 
with increasing T (Re,  a T4). 

The author thanks L. G. Aslamazov for formulating the 
problem and guiding the work, and A. A. Abrikosov and A. 
I. Larkin for discussing the results. 

FIG. 2. Current-voltage characteristic of an S-N-S junction. 

lose their coherence at distances of -f,) do not lose their 
coherence when they diffuse through the layer of normal 
metal of thickness d, and their current gives rise to virtually 
no voltage drop. 

The appearance of the nonequilibrium current is asso- 
ciated with the periodic variations of the density of quasipar- 
ticle states, which are responsible for the alternating voltage 
that appears when I >  I,. As long as the frequency 2er/fi of 
these variations is low as compared with the electron- 
phonon collision frequency 7; ', the nonequilibrium addi- 
tion to the electron distribution function and the corre- 
sponding current are proportional to the voltage (Eq. (18)). 
When these frequencies become comparable, the nonequilib- 
rium current reaches its maximum value of the order of I,, 
whichis large by the parameter (d /c,) as compared with the 
critical current I, (Eq. (26)). Then the voltage begins to rise 
sharply and approaches values corresponding to Ohm's law 
(Eqs. (33)-(39)).We note that here the voltage 3 i s  still small 
as compared with fiD /d 'e, and that is the condition for the 
applicability of the equations used in this study. Small devia- 
tions from Ohm's law (excess current) at higher voltages are 
discussed in Ref. 12. 

The nonstationary Josephson effect in an S-N-S junc- 
tion has been previously investigated in Ref. 13 on the basis 
of the nonstationary Ginzburg-Landau equations, which are 
valid for gapless superconductors. In addition, there is a re- 
cent paperI4 devoted mainly to clean junctions. Stimulation 
of superconductivity in the junction was predicted, in accor- 
dance with e ~ ~ e r i m e n t , ~ . ~  in those papers as well as in the 
present work. The situation observed in Ref. 5 corresponds 
to the results of the present study. In our case the stimulation 
occursat fairly high temperatures a f i D  /d *. When thiscon- 
dition does not hold, the nonequilibrium current no longer 
exceeds the equilibrium current and the superconductivity 
may be suppressed rather than stimulated. (Thus, when 
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