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The localization of an electron in a conductor consisting of N elementary metallic chains is 
considered. The transverse size of the conductor is assumed to be small compared with the mean 
free path I. It is shown that N scattering channels define N different localizing lengths. The major 
role in the kinetic properties at the largest distances and at low frequencies is played by a single 
channel with the largest localization length I ,*. In the multichannel case N> 1 the problem re- 
duces to one-dimensional localization and it follows hence that I d = NI /2. Other solutions such 
as 1 ,+ = NI or I ,* = 2NI are obtained in the presence of an external magnetic field or of magnetic 
impurities, respectively. At a small number of channels, N- 1, the behavior differs significantly 
from that in the one-dimensional case. Two-channel localization corresponding to two chains 
with potential impurities or to a single chain with magnetic impurities is investigated. 

PACS numbers: 71 SO. + t 

1. INTRODUCTION 

The possibility of electron localization in a disordered 
metal was first indicated by Anderson.' Mott and Twose2 
postulated that all electron states are localized in the one- 
dimensional case, i.e., in an elementary metallic chain. Not 
so long ago, arguments were advanced favoring the localiza- 
tion of all the electrons in a sufficiently long wire3 and in the 
two-dimensional case.4 

Localization in a disordered metallic chain and, as a 
consequence, the vanishing of the frequency dependence of 
the conductance G (w) a w21n2w as w-0, was proved by Bere- 
zinskiX5 A more accurate method was later obtained by his 
method to obtain a more accurate pre-exponential factor in 
the asymptotic relation for the density-fluctuation correla- 
tor6: 

=nsls 
( 2 4 )  -" exp (-2/41) 

32~- l  
~ d m . ( l - n . ) .  (1) 

where v, is the Fermi velocity, I is the mean free path, 
n, = [ l  + exp( - E/T)]-' is the Fermi function, and averag- 
ing over the thermodynamic ensemble (( ),) and over the 
random potential ((  ) ,) is implied in the right-hand side. A 
different a p p r ~ a c h ~ . ~  to the problem of one-dimensional lo- 
calization considers in place the density-density correlator 
(1) the coefficient of electron transport to a disordered-chain 
segment of length L. The transport coefficient (L ) must de- 
creaseexponentially, T (L ) - exp( - L / I , , ,  ), overthecharac- 
teristic localization length I,,, . Indeed, at L>I the following 
asymptotic formulas is valid7.': 

<T ( L )  > ,  I .,,=2-'nvl(L/l)-" exp (-L/41). (2) 
In the one-dimensional case the transport coefficient deter- 
mines the static conductance G (L ) of the system in accord 
with the Landauer formula9 

Relation (1) or (2) can thus be used to determine the localiza- 

tion length (41 in this case). There is, however, also another 
reasonable definition. A hypothesis has been advanced'' 
that a suitable scaling parameter in localization is the quanti- 
ty E*: 

d 
( ~ * ) u = ~ a l l ' = - ~ p - - ( l n  dL T ( L )  >, ,  (3) 

and self-averaging of the parameter E* was proved in the 
one-dimensional case for L+ co . We regard it is natural to 
call E* the localization energy (see Sec. 3 of the present arti- 
cle), and call I * = U,/(E*) the scaling localization length, in 
the sense of Ref. 10. For a single chain we have'' I * = 1. 

We consider here several models of a wire in the form of 
a certain number N of elementary chains packed in some 
manner or another. We assume that a certain anisotropy 
exists in the wire and is due to the predominant motion of the 
electron along the chains. In other words the binding energy 
t between neighboring chains is assumed to be small com- 
pared with the Fermi level Ep ( ~ ~ > t  ). In addition, the disor- - . -  . 
der in the wire is assumed to be quite small: I>Na (i.e., E,/ 

N>vF/l), where a is the lattice constant. Under these condi- 
tions, the relation between the reciprocal free-path time 1/ 
T = vF/I and the characteristic spacing AE = E, + , - E, 

between the transverse quantization levels E ,  becomes par- 
ticularly important (generally speaking, AE-t/N). The 
point is that under the conditions AE( 1 / ~  and N> 1 classical 
diffusion takes place over short distances in the wire, and the 
localization is the result of interaction of the diffusion 

In this situation the principal role is played by 
the so-called fan diagrams. ".12 In the opposite pure quan- 
tum limit A&> 1/r there is no classical diffusion and to inves- 
tigate the localization it becomes necessary to take into ac- 
count all possible scattering diagrams. My preceding 
papers14-l6 are devoted mainly to this limit A&> 1/r. An in- 
vestigation of the very same problem was started in Ref. 17 in 
which, however, the answer for the localization length with- 
out a magnetic field was obtained in the form I*(N)=NI, 
which contradicts for two chains my result14 1 *(2) = I /  
(1 - l / r )  as well as Eq. (38') of the present article (see also 
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Ref. 16). Localization in wires without anisotropy (t-E,) is 
investigated in the limit A E < ~ / T  in Ref. 18. We shall not 
confine ourselves here to the case AE, 1/r, but use a much 
weaker condition of the type t)r-'. 

2. FORMULATION OF PROBLEM 

We consider several different manners of packing the 
chains into a wire and the approximation of band electrons 
in the field of the impurities along the chains in the approxi- 
mation of tight binding of the electron on the chain in the 
perpendicular direction. The Hamiltonian is 

where Un (x) is a random impurity potential in the n-th chain, 
and t is the binding energy between the chain. The boundary 
conditions on the wave functions $, (x )  can be chosen in one 
of two forms: 

$ N + I  ( X I  =$o ( x )  =0, (44 
$N ( x )  =$0 ( x )  exp ( i x )  , (4b) 

the first of which corresponds to packing of N chains on a 
plane, and the second to packing on a cylinder. The phase 
shiftx in the second case occurs in the presence of a magnetic 
flux @ inside the cylinder (;y = e@ /c). If the magnetic flux is 
not a multiple of the flux quantum @, = .rrc/e, i.e., @ #no@, 
and x = mo, the condition (4b) violates time-reversal sym- 
metry. 

Besides the usual potential impurities we shall intro- 
duce at times into the system magnetic impurities which are 
regarded as a random magnetic field H, (x ) .  In other words, 
we neglect the mutual correlations of the magnetic impuri- 
ties and the quantum character of the impurity spin. This 
approximation becomes valid at not too low temperatures 
exceeding, in particular the Kondo temperature. Thus, un- 
der these conditions the potentials Un (x) must be regarded as 
matrices in spin space 

un(z) + (un0 ( 2 )  ~ + U , % ( X )  ~ X + U , U ( X )  W + U ~ ~ ( X )  a,)  ( 5 )  
where U b (x) = - p B  H h (x) and pB is the Bohr magneton. 

Corresponding to a rectangular wire consisting of 
N = NIN, chains packed into a simple quadratic lattice is 
the Hamiltonian 

+ t [  (6n,-1,n,v+6n,+i,n,*) 6nsn2*+6ntnC, (6n,-gsnz'+6n,+1,ns.) I (6) 
with zero boundary conditions 

$N,+ , ,  ns(x) =$0. n r ( 5 )  $nt, N,+I ( x )  =$nt. o ( z )  ( 6 ~ )  
Other boundary conditions 

$ ~ * + i ,  nr ( 5 )  =$o, nr (2 )  =0, $ni, N$ ( 5 )  o ( 5 )  exp ( i x )  (6d) 

on the Hamiltonian lead to packing of N = N,N, chains in 
the form of a hollow cylinder with a magnetic flux @ inside 
it. 

We diagonalize the Hamiltonians (4) and (6) with re- 
spect to the transverse motion of the electrons: 

where the transverse-quantization energy levels 

ena=2t cos [ n n / ( N + l )  1, (74 

enb=2t cos [ (2nn4-X) IN],  (7b) 

en:,,=2t cos [nn,/  (N,+I) ] +2t cos [nn,/ ( N , f  I )  ] (7c) 

&,fn,=2t cos [nn,/ ( N , + I )  ] f 2t cos [ (2nn2fx )  INz] (7d) 

and the matrices of the random potentials 

u"? ( x )  = Uno(x) N-i exp[i2nno (n-n' ) I N ] ,  (8b) 
'10 

U;,nznt,n,, ( I )  = C Untonm(~)2(Ni+I)-' s i n [ n n ~ ~ n ~ / ( N ~ + l )  I 
ntona 

~ s in [nn , ,n , ' /  (N1+l )  ]2(Nz+1)-I 

xsin[nnz0n,/ ( N z f  1) ] sin[nnzonz'l ('N2+1) 1, 
(84 

d .  
b7n,n,..~n,r ( x )  = Un,on.(r)2(Nt+I)-' sin[nnion,/(Nt+,+o I 

correspond to the packings (4a), (4b), (6c), and (6d), respec- 
tively. 

We regard as the simplest approach to the localization 
problem a method based on the investigation of the transport 
coefficient T (L ). To the left and to the right of a disordered 
section of length L the solution of the Schrodinger equation 
with the Hamiltonian (4') or (6') takes the plane-wave form 

I$, ( x )   ex^ (iknx)   ex^ (-ik,z)  

with wave vectors 

kn= (2m&) " ' - E ~ / U ~ .  (7') 

The amplitudes A f;, B f; and A f, B f to the left and to the 
right of the disordered section are connected by the scatter- 
ing matrix 6i: 

which must satisfy the constant-flux condition 

at all values of the amplitudes A and B f;. The matrix & that 
satisfies the restrictions (10) is of the form (for details see Ref. 
14) 

i=[ 2 ch (F/2)  f;. 2 sh (r"/2) 
i s h ( f / 2 ) i  Y^ e h ( ~ / 2 ) ; ]  ' (11) 

where2  ̂Y, 2, and 5 are unitary matrices of dimpnsionality N 
(or 2Nin the case of magnetic impurities), and r is a diagonal 
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real matrix with the same dimensionality. All the scattering 
information we need is contained in the matrix 

In the multichannel case the role of the transport coeffi- 
cient is played by the transport-coefficient matrix T(L ). In 
fact, assume that to the left of the disordered section we have 
an incident flux ji = (A + A ) =  and a reflected flux j$ 
= (B + B ) L ,  while to the right we have only a transmitted 

fluxj: = (A +A )R, i.e., B = 0. We expressj; in terms of the 
amplitudes of the incident flux A f;: 

jAR= (A+A) R= (A+)%+[2 (i+ch f)-'1 6 (A)&.  (13) 
The expression in the square brackets inJ13) is nonz other 
than the transmission coefficient matrix T 2/(cosh r + l), 
which was diagonalized with a unitary transformation ii in 
the space of the amplitudes An '. Thus, the transformation ii 
defines N (or 2N) independent scattering channels for the 
flux from left to right. In other words, if a flux is produced in 
one, say the nth, channel the scattering process will not af- 
fect the remaining channels and will be characterized by its 
own transmission coefficient Tn = 2/cosh rn + 1). For a 
wave traveling in the opposite direction, from right to left, a 
similar relation can be obtained, in which the transmission 
coefficients in the different channels remain the same, Tn , 
and the channels themselves are defined by a unitary trans- 
formation ir in the space of the amplitudes Bn R .  

If time-reversal symmetry exists in the system, i.e., 
there are no magnetic impurities or a magnetic field, the 
unitary matrices ii and ir are somehow related. Thus, in cases 
(4a) and (6c) we have ,. 

Li=u*. ( 14ac) 

For the cylindrical packings (4b) and (6d), when the magnet- 
ic flux in the cylinder is a multiple of the flux quantum, 
@ = no@, and x = rn,, the following relations hold: 

We define now the elementary act of scattering by an 
impurity whose position in the lattice xn = an of each of N 
chains is assumed random. Thus, we define the random po- 
tentials Un (x). Let the amplitude for passage of an electron 
through a solitary impurity be d = cos y e p i B ,  and let the 
probability of finding an impurity at a given lattice site of one 
of the chains be q. Since we are considering weak disorder 
IsNa, we can assume these to be Born impurities with y, 
p( 1 and widely spaced, q( l/N. For the forward and back- 
ward scattering mean free paths we have then respectively 
I = a/q f and If = a/q p 2.  The generalization to the case of 
magnetic impurities (5) is obvious: 

y-y. . .= ( y o 4 + r x e r + r ~ q + y z a z . . ~ .  ( 5 ' )  

A similar relation holds for 0 .  The mean free path corre- 
sponding to backscattering is given by 

The fact that we have set the densities of the simple and 

magnetic impurities equal is of no fundamental significance, 
since combinations corresponding to the mean free paths Ii 
enter everywhere. The matrix rit (xono) for backscattering by 
one impurity located at site xo of chain no is of the form 

where we have retained only the terms linear in y andp. For 
the packings (4a) and (4b) we have respectively 

7:- (xOno) 

~ : n .  (sono) =-iyN-' exp[-i(kn+kn-)xo+i2nn0 (n-n') I N ] ,  

Similar relations for the packings (6c) and (6d) can be easily 
obtained by comparing (1 7), (1 8), and (8). 

3. BASIC RELATIONS 

Expressions as, e.g., (2) and (3) are averaged over the 
realizations of the random potential with the aid of the func- 
tion W(L, hi?), which determines the probability density of 
the random quantities T, ii, and ir given the length L. Since 
we are dealing with weak impurity potentials ( p, y( 1), the 
function W(L, ?;D) is described by a Fokker-Planck partial 
differential equation. T? obtain this equation we must define 
a Markov process for T, ii, D. In other words, starting from 
the distribution density W(L, %ir) we must find W(L + a, 
Tuu). Expanding the relation obtained i%terms of the small 
increments ofa (up to the linear term), AT, Aii, and Air (up to 
the quadratic terms) and averaging over the rapidly oscillat- 
ing functions, we obtain the sought Fokker-Planck equa- 
tion. We thus add one lattice constant a to the disordered 
section of length L. A new lattice site of one of the N chains 
(say, the chain no) will contain, with probability Nq( 1, an 
impurity. The matrix (12) then acquires an increment 

AM (L)  =m+ (L+a, no) M ( L )  m (L+a, no) -M ( L )  . 
From this we g g  the corres~onding increments of the ran- 
dom quantities T = 2/cosh r +*I), ii, and 0. We present ex- 
pressions for t$e incyments A r ,  Aii, and Air, accurate to 
terms linear in y and p: 

Arn=Rnn+Rnn*, (19) 
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where we have introduced the notation energy t between them. This remark applies to all the results 

fi"ii.[ (L+a, n,)^v+, j=j (L+u, no), @=j(-L-a, no). of the present section, which are therefore quite general. 
The Fokker-Planck equation is obtained with the aid of 

(2 (19)-(2 1) by the method described above. It is more conven- 
It is important to note that in relations (19)-(21), ob- ient for us to deal with an equagon for the distribution den- 

tained on the basis of Eqs. (12) an< (16), we di< not use so far sity of the quantities F = cosh r, ii, and 0, i.e., for the func- 
the actual form of the matrices y(xono) and p (xono), which tion W(L, FCC). We present the first few terms of this 
depends on the packing of the chains and on the coupling equation: 

where the bar over the terms quadratic in ;(xono) denotes 
averaging over the rapidly oscillating dependence on xo and 
np; Followi%g next in (22) are terms with the derivatives d 2/ 

dFdii, d '/d~b'0 and all the remaining derivatives with respect 
to ii and 0. Since the variables F, determine the transmission 
coefficients, T, = 2/(Fn + I), even the terms retained in (22) 
contain important information on the localization in various 
channels. In fact, if we insert lnT, = ln[2/(^F, + I)] in both 
halves of (22 and integrate with respect to F, ii, and 0, only 
the terms written out in (22) make a nonzero contribution. 
The result can be represented in the form 

where we have introduced, in accordance with (3), the local- 
ization energies E, * and the localization lengths I,, * corre- 
sponding to the different channels. We now average (23) over 
all N (or 2N) channels. We rewrite first the factor that con- 
tains F, and F,, in the form of two terms: 

the first of which reverses sign upon the substitution n-n' 
and therefore makes no contribution to the answer averaged 
over the channels: 

The important and unexpected result (24) shows that 
the localization energy averaged over the realizations of the 
random potential and over the channels is equal to the reci- 
procal free path time and is independent of the number of 
channels, of the method of packing, the chains, and of their 
binding energy t. At the same time we expect that some local- 
ization should decrease, and a localization length should in- 
crease, when Nor t is increased. The answer is that spontane- 
ous symmetry breaking between the channels takes place, 
and as a result the channels have different localization 
lengths (E, *) and localization lengths 1, *.I4-l6 In other 

words, the localization-energy degeneracy existing at t = 0 
and in the absence of magnetic impurities is lifted with re- 
spect to the transverse quantization index because t #0, and 
with respect to the spin index on account of the magnetic 
impurities. One of the N (or 2N ) channels receives in this case 
the smallest localization energy (E," *) and the largest local- 
ization length lno *. It is just this channel alone which plays 
the principal role in the kinetic phenomena at the very long- 
est wavelengths and lowest frequencies. Thus, for sufficient- 
ly long samples the channel in question makes the main con- 
tribution to the transmission coefficient 
T = N -'2, T, = N -ITno averaged over the channels. All 
this obviates the intensively d i s c ~ s s e d ' ~ ~ ' ~ ~ ~ ~  question of how 
to use the Landauer formula9 for the conductivity (2') in the 
multichannel case. The total conductivity of long samples is 
determined by the very same channel with maximum local- 
ization length: 

ea 
G ( L + w ) = - T , ( L ) / [ 1 - T , ( L ) ] .  

2nfi (25) 

We now renumber the channels in decreasing order of 
their transmission coefficients, i.e., we have Fo < F, < ... 
< F,-, . As a result, as can be seen from (23), the localiza- 
tion energy (E, *) is arranged in increasing order. This 
means that all the transmission coefficients decrease with 
increasing L in accord with different exponential relations 
T, (L ) - exp( - E, *L /u,). Thus, for sufficiently large 
lengths L>U,/(E,*+ - E, *) we get already the strong ine- 
quality 

FoKF1<. . . <FN-,. (26) 

Using this inequality, we can simplify the relation (23): 

<co*) = V ~ / Z ~ * = V ~ U - ~ N ~ <  I f ? ? > ,  (23') 

(~~*)=v, / l~ '=v~a- 'Nq 
n'=O 

(23 ") 

Similarly, without essentially finding the total probabil- 
ity density W(L, %0), we can obtain an expression for the 
average logarithm of the conductivity (25)x Inserting 
In G (L+w ) in (22), integrating with respect to F, G, and G, 
and using the inequality (26), we arrive at the expression 
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(In G ( L + m )  > = - L ~ - ~ N ~ ( ~ R , , = - L / z ~ * .  (27) 

To determine the localization energies (23) as L-cc it 
suffices thus to calculate the correlators, indicated in (23') 
and (23"), of the random matrices u and u. At large distances 
L)V,/(E,*+, - E,  *), when inequality (26) holds, the distri- 
bution of ii and D ceases to depend on L and T, i.e., it is 
determined by the stationary distribution density W (ii,D). 
This can be seen from expressions (20) and (20') 5 r  the incre- 
ments Aii and AD, which cease to depend on r under the 
condition (26): 

where we have used the matrices (8 (x) is the step function) 
P,,.=0 (n-n') Rn,f-0 (n'-n)Rnn, ,  (29) 

Hnnr=O (n'-n)  Rnnp-0 ( n - n f ) K n , , .  (29') 

Starting from relations (28) and (29) we can find a closed 
Fokker-Planck equation for the function W (iiD) used to aver- 
age in (23'), (23"), and (27). Generally speaking, however, the 
stationary density W (GD) is not sufficient for the averaging of 
the transmission coefficient T,(L ) or of the conductivity (25). 
The inequality (26) permits simplification of this question, 
too. The point is that under condition (26) Eq. (22) for the 
function W(L, ?Zit) splits into N (or 2N) equations for the 
function Wn (L, F,, fiD). Using the inequality (26) and inte- 
grating with respect to all the variables Fn, except for one Fn , 
we obtain 

a a -- 
Nq dL 

W n  ( L ,  F,;;) 

Equation (22') for the channel with maximum localiza- 
tion length is already very similar to the equation for the 
function W(L,F) in the case of one chain7.': 

a a a 
1 - W ( L ,  F )  -- - (FZ-1)  - W ,  

dL a F  a F (30) 

from which follows, in particular, the asymptotic form (2).7,8 
Equation (22') reduces exactly to (30) only if JR,12 is in fact 
a number independent of ii and D, so that (22') can be inte- 
grated with respect to ii and 0. Two cases of this kind (with- 
out and with magnetic impurities) are presented below. As 
an example of a correlated distribution of the parameters Fo 
and ii or D, when it is impossible to obtain (30) from (227, we 
cite the two-channel case considered in Sec. 6. More general, 
however, is the situation wherein it is possible to reduce Eq. 
(22') approximately (relative to some parameter) to the one- 
dimensional case (30). Thus, if we are dealing with smooth 
impurity potentials forward scattering is much more effec- 
tive than backward, I ,*(I. The characteristic distance If 
over which the matrices ii and ir change substantially turns 
out then to be much less than the localization length lo*, 

since I,* > 1. This circumstance permits averaging in (22') 
over the fast dependences on ii and 0, and obtain Eq. (30) 
accurate to the substitution - 

l+a(Nq) Roo) ')-I, (30') 

which agrees with Eq. (23'). 
Of greater importance is the situation N> 1, when the 

localization length I,* -NI is again much larger than the 
distance 1 over which the matrices ii and D vary. Consequent- 
lyI6 the localization in sufficiently thick wires with N> 1 is 
described by the same equations (30), (30'), (2) (I), etc. as in a 
single chain, whereas in very thin wires with N- 1 this is not 
the case. 

4. LOCALIZATION IN THE MULTICHANNEL CASE WITHOUT 
MAGNETIC IMPURITIES 

Having at our disposal Eqs. (23'), (23"), and (30') we can 
proceed to calculate the localization length. The question is, 
over which of the characteristic distances is it necessary to 
average over the rapidly oscillating dependence on x, and no 
in expressions of the type 

* * 
Rnn'Rk, = unnlvn,nlru;;;;~;;.;;I,Ynln~l ( X O ~ O )  (XO~O). (3 1) 

The answer is that, since we are dealing with the nth channel, 
the averaging in (3 1) should be over characteristic lengths x, 
of the order of the corresponding localization length I, *. 
Since we shall be interested hereafter mainly in the contribu- 
tion from a short localization length I,* - NI, we average in 
(3 1) over distances x, - NI. 

Using (17a) and (17b) we obtain the following relations 
for the packings (4a), (4b), (6c) and (6d): 

(Ynnq&,)b = yafb (nn', EE')/NO, (32b) 

where we have introduced the notation 

We can similarly obtain expressions for the terms quadratic 
inb. The essential difference is that there appear not only the 
mean value m*, but also and fl *fl * . 

We shall illustrate the averaging over the fast depen- 
dence on x, using as an example expression (33b), in which 
the exponential can be rewritten in the form 
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- 
exp {-8ixotvp-'  sin [n (12-6) IN] sin [ n  (n+nl 

+ x / n )  IN] sin [ n  (n-n'-Nl2) IN] ) . (34) 
If there is no time-reversal symmetry ( x # rn,) and Nis odd, 
the second and third sine function in the exponential of (34) 
cannot vanish exactly. The minimum values that they as- 
sumeatn +E l=  Nandn - n l =  ( N +  1)/2areoftheorder 
of 1/N. Therefore, if we want a fast dependence on x, in the 
exponential (34) at arbitrary parameters n #E, n', E' we must 
to stipulate satisfaction of the condition 

s o t /  ( v p N 3 )  >> 1.  (35) 

This restriction, which takes at x, - NI the form 

min A ~ - t / P > l / . t  (35') 

and means total absence of classical diffusion, is precisely 
the one assumed by us in the earlier Here we 
obtain first the answers under the condition (35), and then 
show that for the results (38), (38') and (38") to be valid we 
need the much weaker restriction (42). Thus, for odd Nand 
x #m, we have under the conditions of (35) 

jb (nn', ti%') = 6 n i i 6 n ~ ~ r .  (36) 

In the presence of time-reversal symmetry ( x = rn,) at odd 
N, expression (33b) takes a different form 

Similar formulas are easily obtained also for even N, when 
the last sine function in the exponential (34) can also vanish. 

Substituting (32b), (36), and (36') in (31) and using at 
x = rn, the relations (14b), we obtain 

( R n n n ~ X ~ ) : ,  nn.= Y * G ~ G ~ ~ , ? / N ~ ,  (37) 
* b 

(Rnn'R;; )X=nno 

Since the mean value (37) does not contain the matrices li and 
a, the answers forx = rn, are directly obtained15 from (23') 
and (23"): 

l,*=Nl, l n * = N l / ( l + 2 n ) ,  (38) 

where the last relation requires, generally speaking, satisfac- 
tion of the inequality (35) with x,-I, *. We have here an 
exact reduction to the problem of one-dimensional localiza- 
tion and, in particular, we get an asymptotic form with I 
replaced by NI. 

I fx  = rn,, the matrix ii, strictly speaking, enters in the 
expression for the localization length (packing (4b), N odd): 

Since u is a random unitary matrix, we have lu,,. 1 2 -  1/N 
(for details see Appendix I) and we get the estimate 

At N> 1 we get thus the approximate reduction, accurate to 
the parameter 1/N and described in the preceding section, to 
the one-dimensional problem. In the presence of time-rever- 
sal symmetry the localization length is then16 

l0'=N1/2, (38') 

or half the value in the absence of this symmetry (cf. Ref. 18). 
In Appendix I, starting from Eqs. (37') and (39) and 

calculating the necessary mean values of the matrix ii, we 
obtained the corrections to (38'): 

lo*=N1/(2-2 /N+ . . .). (41) 

In the limit ofstrong forward scattering ( /3 2>y2) it is possible 
to obtain in the case of (39) for the localization length an 
expression that is valid for all N: 

lo*= ( N + l )  112. (41') 

We now stop to examine whether the rather strong re- 
strictions (35) and (35') are really so necessary for the validity 
of the answers (38) and (38') at N>1. The cube of N in the 
inequality (35) is necessary for the dependence on x, to re- 
main fast in the rather untypical case when all three sine 
functions in the exponential (34) are small. It is understood 
that the phase space corresponding to the situation in which 
two or three sine functions in the exponential (34) are close to 
zero is definitely small. We confine ourselves therefore to a 
condition that is much weaker than the inequality (35), 
namely 

[In ( v p N 3 / x o t ) ]  -'xOt/ ( v F N )  > I r  (42) 
As a result, a smooth term corresponding to classical diffu- 
sion appears in relations (36) and (36'). This function, how- 
ever, differs from zero in a small region of the space of the 
variables n and n', in analogy with the third term of (36'), 
which gives a small correction, - 1/N, to the localization 
length. Thus, the use of the weak restriction (42) leads to 
corrections for the localization length in (38) and (28'), but 
these corrections are small in terms of the parameter (42). 
Since x,-NI, the inequality (42) is equivalent in the case of 
the two-dimensional packings (4a) and (4b) to the condition 

[In ( N Z / t z ) ] - ' t z ~ l ,  (42ab) 

For the three-dimensional packings (6a) and (6d), similar 
reasoning leads to the restriction 

t . t> l .  (42cd) 

It is convenient here to estimate the characteristic val- 
ues of the magnetic flux in a cylinder (more accurately, its 
differences A @J = @J - no@ ) from the total number of flux 
quanta at which the interchange of the regimes (38) and (38') 
takes place. This estimate can be obtained by considering the 
second sine function in the exponential (34): 

Strictly speaking, Eqs. (38) and (38') were obtained so 
far only for the cylindrical packing (4b). At N> 1, however, 
these results are universal in the sense that they do not de- 
pend on the packing method. On the other hand, the correc- 
tions to the answers, such as, e.g., in Eqs. (41) and (411), are by 
far not universal, i.e., they depend on whether the number of 
chains N is odd and on the shape of the wire cross section. 

We present expression (33a) averaged over x, under the 
condition (33): 
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p(nnl,  E') 

=sn,s*~,r+6,,~s,~,+2-'{(2-sn,-6,,,,~)sn+,., N+,S,t,~, ,+I 

- (1-6, .  ( N + 1 , / 2 )  6nii6n.ii,6nnl). (364 

Relation (3 1) now takes the form 

(R,,..R~,,)" = y2  (6,-,Sd2 + 6n26n,-, + . . . ) / [ N  (N f I ) ] ,  (37a) 

where we have used the relation (14a) and the three dots 
denote the terms - 1/N that stem from the expression in the 
curly brackets of (36a). These terms are estimated in analogy 
with (40). Thus, for chains packed on a plane we get the 
answer (38'). The same results (38) and (38') are obtained (in 
principal order in 1/N) when (32c) and (32d) are used for 
three-dimensional packings. Just as before, by foregoing the 
condition (35) and changing over to the restrictions (42cd) we 
arrive at universal corrections that are small in the param- 
eter (42cd). 

5. MAGNETIC IMPURITIES AND MULTICHANNEL 
LOCALIZATION 

It can be stated right away that the influence of magnet- 
ic impurities of general form reduces to two effects. First, 
they eliminate the time-reversal symmetry. Second, they lift 
the degeneracy in the spin index of the electron, leading 
thereby to a doubling of the number of channels. Even these 
general considerations allow us to write down a correction 
equation for the localization length" (cf. Ref. 18): 

1,'=2Nl. (38") 

Deviations from this result can occur on account of the 
strongly anisotropic character of the magnetic impurities. A 
difference is obvious, e.g., for Ising magnetic impurities 
(yx = yy = fix =f ly  = 0). In this case all the matrices are 
diagonal in the spin indices and the results for nonmagnetic 
impurities remain in force if account is taken of the change of 
the mean free path (15). A different formula is obtained also 
for magnetic impurities in the form of plane rotators ( y ,  
=fly = 0). A feature of these impurities is that they leave 

the Hamiltonian (4) or (6) real ( i fx = rn,), i.e., they do no 
violate the symmetry with respect to complex conjugation of 
the wave functions. 

If the system contains magnetic impurities, the ampli- 
tudes y and fl must be regarded as spin matrices (5'). The 
averaging in Eqs. (32) is not only over the impurity position, 
but also over the direction of the random magnetic field. It is 
necessary to make in (32) the substitution 

y2 -> Yss'Y:2 = 2-' (yo2 + yx2 + yy2 + yzZ) 68SsS12 

+ 2-I {(yo2 + y x 2 - Y B  " Y z2) 

x o ~ ~ o ~ , ; ,  - (yoZ - - 7  i x. + y  y2  - yZ2)  f;.:,;. 
$. (yo2 - yx2 - yy2  + yz" .:so:;s,). (44) 

It follows therefore that the simplest case of Heisenberg im- 
purities is the model (4b) under the conditions I, = 1, 
= I, = I,, x #rn, and N is odd, when we obtain, using (37) 
and (44), the result (38") even at N- 1. In the general case of 
magnetic impurities, when I,#I, #Iy #Iz, the terms in the 
curly brackets of (44) add a small correction, in terms of 1/N, 
to Eq. (38"), in analogy with the reasoning of the preceding 

section. For Heisenberg impurities I, # I, = I, = 1, we have 
obtained in Appendix I1 the following expansion, which 
makes more accurate the result (38") at x #m,, at odd N, 
and in the absence of forward scattering (If = co ): 

l ~ = 2 N l / { 1 + 3 ( a / 2 ) 2 / [  ( 2 N ) ' - l ] +  . . .), (45) 
where 

a,= ( l o - i - l ~ - ' )  / [ L o - ' + l ~ - ' + 4 ( l ~ )  - * I .  (46) 

The expansion of (45) is in powers of a and is valid even for 
N- 1. Eq. (45) shows directly how the universal answer (38") 
is arrived at when the number of chains is increased. 

We consider now the multichannel case without a mag- 
netic field, but with magnetic impurities in the form of plane 
rotators (2 = 2, fl l: = fl 5, y, =fly = 0), when it is con- 
venient to rewrite (44) in a somewhat different form: - 

~ Z + ~ . s ~ ~ ~ ~ = 4 - '  (yoZ+ 3yx2)  ( 6 8 5 6 s ~ ~ , + 6 s 7 ~ 6 s ~ x )  

+4 - ' ( yo2 -~12 )  { (d . s6 .~i ,+  6,,6.,,) ( - 1 )  "a'+46,0,6=r (1 -6 . ; ) ) .  

(47) 
Substituting this expression in (37) or (37a) and retaining 
only terms of principal order in 1/N, we obtain 

Zoe=2N/ (10-'+31=-1). (48) 

Since the mean free path (15) is equal here to I = 1/(1; ' 
+ 21; I), the result (38) does not agree with (38"). 

Relations (38") and (48) should go over into (38') if the 
effectiveness of the magnetic impurities is greatly decreased, 
a+l .  Under these conditions a tendency appears toward 
degeneracy of the localization energies in channel pairs that 
differ only in spin. We were unfortunately unable to calcu- 
late to correction proportional to N (1 - a ) ' I 2 ,  to expression 
(38), i.e., to track the instant when the spin degeneracy is 
lifted. The difficulty here is that one must deal with two 
channels that can in principle not be uncoupled. To estimate 
the characteristic value (1 - a), at which the interchange of 
the regimes (38') and (38") takes place, it is necessary to use 
the following approximate considerations. Change of the 
symmetry of the matrices u and v from the case (38') to (38") 
requires one act of total scattering by magnetic impurities in 
at least one of the N channels. Therefore the distance over 
which this takes place is equal to I, /N, where I ,  is the scat- 
tering mean free path for the magnetic impurities. If the 
scale I, /N exceeds the localization length, I,/N> l ,*(N), 
the symmetry of the matrices ii and O cannot change before 
1 ,*(N) is formed, i.e., the regime (38') takes place. We thus 
obtain the estimate (cf. Ref. 18) 

(I-a) c-l/AJ'. 

6. TWO-CHANNEL LOCALIZATION 

It is of interest to consider in greater detail two-channel 
localization, which does not reduce generally speaking to the 
one-dimensional situation. We shall not find the behavior of 
the mean value (T (L )), whose asymptotic form does not co- 
incide here with Eq. (2). It will be much simpler to calculate 
the scaling localization length I ,*. Two-channel scattering 
occurs either in two chains with potential impurities, or in 
one chain in the presence of magnetic impurities. We consid- 
er first the former case. 
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For two chains, both models (4a) and (4b) are equivalent 
apart from a certain redefinition of the binding energy t. At 
N = 2 the localization length is specified by expression (39), 
as can be easily verified by using relations (23'), (32a), and 
(32b). For a sufficiently long disordered segment L%I we can 
obtain with the aid of (28) and (29), by the method described 
above, a Fokker-Planck equation for the stationary distribu- 
tion function W(f)  of the random parameter 
f = Iuoo12 - IuO1 1 2 .  This equation is of the form 

The solution of (49), satisfying the conditions 

- 1  

is obviously 

W ( t )  = (1+2p2/y2) 'l2/{2 arctg [ (1+2pZ/y2) -'12 ]  (1+2P2/y2+g2)). 

(50) 
Averaging in (39) with the aid of the distribution function 
(SO), we obtain the localization length: 

We present two limiting values of (5 1) for weak and strong 
forward scattering: 

The first of these values was obtained by us earlier,I4 and the 
second is obtained in accord with the result (41'). As can be 
seen from (51) and (517, the localization length in the two 
coupled chains depends on the forward scattering amplitude 
/3, this being a new feature compared with the one-dimen- 
sional situation and with the case N> 1. For numerical rea- 
sons, however, this dependence is quite weak. As already 
noted in Sec. 3, in the case of strong forward scattering 
( /3 2>,/2) the distribution function W(L,f ) the stationary dis- 
tribution (50) at distances L -If = a/q P 2 ,  much shorter 
than the localization length I,* = 21/3. This reduces the 
problem to that of one-dimensional localization (after substi- 
tuting1-+21/3) and yields, in particular, the asymptotic form 
(2). For an impurity potential of general form ( /3 - ,/2) local- 
ization in two chains is described by equations that cannot be 
reduced to the one-dimensional case (for details see Ref. 14). 

We consider now magnetic impurities in one chain. 
Here, as in the preceding section, the localization depends on 
the assumption that the magnetic impurities are anisotropic. 
We consider first the case of isotropic Heisenberg impurities 
(2 = = g, 8: =/3: =/3:), when it follows from (31) 
and (44) that 

h 

where we have introduced the unitary matrix S = i i O + .  
Thus, to calculate the localization length in accord with (23') 
we must find the mean value of IS,[ = (1 + 17)/2. The equa- 
tion constructed for the stationary distribution function 

W(q) with the aid of (28) and (28') takes the form 

where the parameter a is defined in (46). The solution of (53), 
which satisfies the condition 

can be easily obtained 
W ( q )  =la(l--a2)'h/ {2 [  (l+a)Ih- (I-a)'"] (I-aq) ' ) .  (54) 
We thus obtain for the localization length the expression 

which agrees at a( 1 with the expansion (45). 
To complete the picture we consider also the case of 

magnetic impurities in the form of planar rotators (y2, = 2, 
85; = flf, y y  = /3, = 0). Since the Hamiltonian is real, we 
have ii = O*. Using this circumstance we obtain - 

I Roo I'=(yo2+72) - (yo2-7.2) b2, Z;= I ~oo~ot*-uoo*~oi 1. 
We seek the equation for W(( ), as before, with the aid of (28) 
and (29): 

where a is again defined by (46). A solution of this equation, 
satisfying the positiveness and normalization conditions 

(57) 
Using the distribution function W (5 )we obtain the following 
expression for the localization length: 

2 lo'= 1 - I +  -- I lo-l-ls-~ I 'I* ( l s - l+  2/12) 'A 

{ 12 arctgl (lo-l.-L-l)%/ (1;1+2/12)bh1 } (58, 

If lo > I,, the arctangent in (55) and (58) is replaced in natural 
fashion by the hyperbolic arctangent. 

We note that the results (55) and (58) for the localization 
length in one chain with magnetic impurities contain the 
mean free path I ,* for forward scattering by magnetic impur- 
ities. Just as before, at 1'; (I the problem becomes equivalent 
to the one-dimensional one. 

7. CONCLUSION 

We have considered multichannel localization of an 
electron in a conductor. It is assumed that the transverse 
dimensions of the conductor are smaller than the mean free 
path. When the number N of channels is large, localization at 
the largest distances (lowest frequencies) is described by the 
same equations as in the purely one-dimensional case. The 
expressions (38), (38') and (38") obtained for the localization 
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length do not depend at N> 1 on the shape of the conductor 
cross section. 

The central point is the statement (34), that the localiza- 
tion energy (reciprocal localization scaling length) averaged 
over the channels is a constant quantity independent of the 
model and of the number N of channels. We advance the 
hypothesis that this statement holds also for three-dimen- 
sional samples. Then Anderson's transition from localized 
to delocalized states would have a somewhat different char- 
acter than previously assumed in the literature. In fact, if we 
go with respect to a certain parameter from localized to delo- 
calized states, condition (24) remains in force at all times but 
an increase takes place in the splitting of the localization 
energies corresponding to different channels. At a certain 
value of the parameter of one of the channels, the localiza- 
tion length becomes larger than the sample size. At this 
point, which would correspond to the Anderson transition, 
the localization length in the remaining channels remains 
finite. With further increase of the parameter, the number of 
channels in which the electron is delocalized will increase. 
These channels, however, do not contribute to (24). There- 
fore channels with localized electrons must exist on both 
sides of the transition point. The situation is analogous to the 
percolation transition, on both sides of which there are clus- 
ters of finite dimensions. These considerations help under- 
stand the experimentally observed [21-231 absence of a min- 
imal metallic conductivity. 

Our hypothesis contradicts thus the statement (see [24] 
that localized and delocalized states cannot coexist at a given 
energy, and predicts the presence of localized wave functions 
in the metallic phase. A possible experimental test could be a 
search for localized paramagnetic centers near a metal-insu- 
lator transition on the metallic side. These singly occupied 
centers usually arise24.25 near the Fermi level on account of 
the weak Hubbard repulsion of electrons in one localized 
state. 

APPENDIX I 

For the packing 4(b) a t x  = m, and odd N the localiza- 
tion length is given by Eq. (39), which contains the mean 
value (lu,,. 14). The Fokker-Planck equation for the distri- 
bution function W(L, I u,,. 1 2, is constructed under conditions 
(26) with the aid of relations (28) and (39). In the principal 
order in 1/N< 1 there is no correlation between I u,,. 1 and 
the other matrix elements, and the equation for W (L, 1 u,,. 1 2, 

becomes closed: 
~a -- 

1-'+illf aL 
W (L, I unnr I ') 

Inserting lu,,. l 2  in both sides of this equation and integrat- 
ing we obtain 

We obtain similarly the relation 

The stationary values of the averages takes in this approxi- 
mation the form 
( 1 unn. 1 '>=N-'+O (N-') , ( I unn, I ')=2N-'+0 (P3).  (AI.4) 

When If 41 we can obtain the equation 

which is valid even at N- 1. The stationary mean values 

( 1 unnt 12>=N-', ( 1 unn. I '>=ZN-' (N+l)-' (AI.6) 

are obtained just as before. Expressions (AI.4) and (AI.6) for 
the mean values ( 1 u,,. 1 4 )  lead to the results (41) and (41'). 

APPENDIX II 

In the simplest model (4b) with odd Nand x #rn, the 
Heisenberg magnetic impurities (I,#I, = I,, = I,) lead to 
the following elaboration of relation (37) in the absence of 
forward scattering: 

where the indexp corresponds to the set (n,s), a is defined by 
(46), and we have introduced the matrices (i = x,y,z) 

n,s:81 

whkh areAunitary, Hermitian, and have zero trace, 
Sp U = Sp V = 0. We note also the commutation properties: 

0 ' ~ ~ + 0 ' 0 ' = 2 6 i ~ ~ .  (AII.2) 

The localization length follows from expression (AII. 1): 

To determine the correlator (8, U&, V&, ) it is necessar~to 
construct an equation for the distribution function W (U, V). 
With an aim at inserting in this equation the quantity 
Xi U &  V&, and integrating next over all the random varia- 
bles, we present here only those terms of the equation which 
make a nonzero contribution to the result: 

We thus obtain the relation 
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We assume now that a( 1 and obtain the first correction 
to the localization length (38"). For this purpose it suffices to 
calculate the correlator in the right-ha%djide of (AII.5) at 
a = 0. The equation for the function W ( U ,  V )  at a = 0, while 
much simpler than at a #O, is still quite cumbersome: 

a 
ciir + - V:,) [ 2 ~  + 

- 

ioo' dV&, 
2 I 

d2 
f (P)  ;-  

X( a ~ L . a u ; ~  a~;~.av;;;. " f t c ~ )  
d . I  + . U3ppVi-,  - (6 - + 6 - - 6 -, - 6 

dUio38v3- P P  2 P P  P'P' P P  
PP' 

where we use the notation 

i ' 

--u;, u A -  U ~ ~ ~ U G -  f z ( 6 p * i ~ ~ p , ~ ~ , 5 .  +6Paa uPt6 u&.) . 
P ,  

'Inserting the terms from the curly brackets of (AII.5) in 
(AII.6) and allowing for the commutation relations (AII.2) 
we can verify that only the terms with i = j and p = p' re- 
main in the sums over i and j and overp andp'. We introduce 
the correlators 

< Ki>=<Uo~Up,'Vo,'Vp,'), <Kz>=<Uoo'Uppi( Vo'o,' 1 '), 
( K 3 ) = ( I U o , ' I ? I V o ~ l z )  

and rewrite the mean value (AII.5) in the form 

f p= 1 

(AII.7) 

Inserting in succession K , ,  K,, and K,  in (AII.6) and inte- 
grating over all the variables we obtain the system of equa- 
tions 

2N<Kl>=-<Kz) ,  4N<Kz)=<UooUpp)-<KI)-(Ks), 

2 N ( K 3 > = (  I U o , I Z ) - ( K z ) ,  

from which it follows that 

Summation over p in (AII.7) leads now to the relation 

(AII.8) 

From (AII.6), just as in Appendix I, it is easy to find the 
simplest mean values: 

Ultimately the expression for the sought correlation takes 
the form 

The first term of the expansion of the localization length 
(AII.3) in powers of a is thus given at N- 1 by Eq. (45). 
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