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The possible origin of the empirically established universality of the spectral properties of centers 
with negative Hubbard energy in glasses is ascertained. In the described approach these centers 
are realized when pairs of like charge carriers are self-trapped in the structural units of an amor- 
phous substance containing atomic potentials called critical and having small quasi-elastic con- 
stants k. A significant circumstance is that the values of k have a probability distribution. The 
energy parameters of the self-trapped states observed in experiment are found to be related in 
simple fashion to the mobility gap of the substance. The agreement of the results with the empiri- 
cal data is discussed. 

PACS numbers: 61.40.Df. 72.20.5~ 

§I. INTRODUCTION 

The so-called chalconide glasses (a-As,S,, a-GeSe, and 
others) and materials related to them (a-Se, a-As, etc.) consti- 
tute an extensive group that is of interest in the physics of 
amorphous structures. The general treatment of the empiri- 
cal data on these substances leads to a contradictory picture. 
The basic facts are the following.' The Fermi level E, is 
practically insensitive to introduction of impurities and to 
change of temperature, and is fixed near the middle of the 
mobility gap, a typical value of which is G- 1 to 2 eV; the 
density of the localized states on the Fermi level is high: 
p(E,)- 10'7-1019 cm- I-eV- I .  On the other hand there is an 
optical gap Go = G, and there is no paramagnetism. The con- 
tradictions are resolved by Anderson's postulate that these 
systems have no centers with negative Hubbard energy 
(NEC) U <  0. The negative U is attributed to the reaction of 
the atomic subsystem to the carrier localization. There is no 
paramagnetism because the electrons are paired, and the re- 
lation Go = G is due to the appreciable excess of the optical 
transition energy over the energy of the thermal excitation of 
the NEC. It is assumed on the basis of empirical data that 
I U 1 5 1 eV. Anderson did not indicate the microscopic na- 

=: W ,  (with certain deviations from exact equalities for dif- 
ferent materials).' This connection between the observed re- 
laxation energies of the atomic subsystem and the mobility 
gap was not explained and contradicts the usual self-trap- 
ping premises. We present below a theory that establishes 
such a connection. The results are used to examine the singu- 
larities of the possible electronic transitions and for compari- 
son with the observed effects. 

The possibility of a large energy gain in self-trapping 
and the fact that U <  0 are attributed in the present paper to 
the existence of critical atomic potentials in the systems con- 
sidered. By definition, the quasi-elastic constants of the lat- 
ter are anomalously small, k<k " ' = ~ w ,  (Mand wD are the 
characteristic atom mass and the Debye frequency of the 
material. Self-trapping with participation of critical poten- 
tials was considered in Ref. 3, where it was demonstrated 
that a significant energy gain is possible when the carriers 
are paired. The question of the relation between the energy 
parameters of the self-trapped carriers and the size of the 
mobility gap was not considered there. 

a b 
E, (5) = ~ E , , - I L Q J ; - ~ U , ~ , ,  2, 

FIG. 1 .  a) Scheme of energy levels corresponding to electronic transitions 
with participation of NEC. The solid and dashed lines denote respectively 

where U= describes the repu1si0n in the pair ('n.2 is thermal and optical ionization processes with one ( le )  or two ( 2 4  localized 
the Kronecker symbol). electrons. For NEC on which one hole ( lh  )or two holes (2h ) are localized, 

A surprising circumstance, we wish to empha- the transition scheme is similar (e-+h, and the boundaries of the valence 
and conduction bands change places). b) Energies of the atomic ( V )  and is that for the parameters of the scheme of Fig. la the electronic (E, )subsystems and the total energy En of NEC with n = 1 or 2 

empirical result lead to the relations W -- W :  =: W ,  localized carriers, as a function of the configuration coordinate x .  

ture of such considerable values of I U I. Attempts by Mott et 4 
al. (see Ref. 1) to fill this gap were based on the concept of 
specific defects of the glass structure. According to the ex- 
perimental data these defects correspond to an energy-level I 
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scheme of the type shown in Fig. la. It is assumed that the 1 
pairing (U < 0) is equally effective for electrons and holes. I 
The differences between the energies of the optical and ther- 
mal transitions is interpreted in accordance with scheme of I 
Fig. lb, which is standard for the localization processes. The 2e ---- 

potential energy of the atomic system depends harmonically I 
on one configuration coordinate, V = (1/2)kx2, and the en- I 2e 
ergies (n = 1, 2) of the localized carriers are 
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52. CRITICAL ATOMIC POTENTIALS 

Problems connected with the description of critical po- 
tentials was considered in recent papers4 In this section we 
present the necessary results concerning the critical poten- 
tials, together with a brief physical interpretation. 

Critical potentials appear in an amorphous phase be- 
cause of random fluctuations of the short-range parameters 
(for the valence-angle bonds etc.). In an ensemble of topolo- 
gically equivalent microscopic structural units, fluctuations 
of the short-range parameters correspond to fluctuations of 
the quantities k; these fluctuations are characterized hereaf- 
ter by a distribution g(k ) whose approximate form is shown 
in Fig. 2. It is recognized here that the mean value 

should be of the order of k 'O'. In other words, it is assumed 
that fluctuations with k(k 'O' are very infrequent and that a 
typical unit of the ensemble considered differs little from its 
crystalline prototype. This agrees, in particular, with the 
empirical fact that the macroscopic elasticities of the amor- 
phous and crystaline phases do not differ excessively. 

The region k<O in Fig. 2 corresponds to two-well 
atomic potentials. Their presence in glasses is confirmed by 
independent empirical data on the thermal and ultrasonic 
properties (see Refs. 4-7). In accord with these data, the rela- 
tive concentration of the two-well potentials is small, c g  1. 
The available empirical estimates of the values of c allows us 
to put here ~ -~ (O) /g (k '~ ' ) -  lop4 - lop5. Thus, g (k )  de- 
creases rapidly with decreasing k. Specifying various g(k ) 
dependences of exponential type we can estimate the charac- 
teristicscaleofthedecreaseofg(k ) atSk(k 'O', say Sk - 0.1k 'O' 
(see Ref. 4). 

Since the fluctuations that lead to small values kgk  'O' 

are rare, we can neglect the probability of simultaneous 
smallness of k for two or more modes of the atomic motion, 
and assume that a typical critical potential is effectively sin- 
gle-mode, V= V(x). For the same reason, generally speak- 
ing, no important role should be played by fluctuations for 
which not only k but also the higher (anharmonic) coeffi- 
cients of the expansion of the atomic potential are small. At 
the same time, the critical character of the potential requires 
that its cubic anharmonicity be small. Otherwise V(x) with 
kgk"' contains a deep and a noncritical well. We assume 
hereafter for simplicity that the cubic anharmonicity of V (x) 
is small for systematic reasons. '' As a result, a typical critical 
potential can be described by the expression 

( k )  k 
FIG. 2. Probability distribution of quasi-elastic constants of local atomic 
potentials in an amorphous structure. 

V (x) ~ ' / , k ~ ~ + C x ~  at kKk"', C=const. (1) 

Taking into account the character of theg(k )dependence, we 
confine ourselves hereafter exclusively to single-well critical 
potentials (k > 0) that exceed substantially in concentration 
the two-well critical potentials (k < 0, I k I (k 'O'). It is conven- 
ient to regard the displacements x as made dimensionless by 
introducing a corresponding atomic length scale a,- 1 A; 
then k and C are energy parameters and the characteristic 
values are C 5 k 'O'-Ma, 'aO2- 10 eV. Expression (1) serves 
as a basis for further description of the relaxation of the 
atomic subsystem in self-trapping of the carriers. 

L3. ELECTRON-ATOM INTERACTION 

We examine the character of the shift of the electronic 
term E(X) upon relaxation of x of the atomic subsystem. To 
describe such an electron-atom interaction it is customary to 
use the linear approximation ~ ( x )  = E, - Qx (see 0 1 and also 
Refs. 1,2, and 8). A certain distinctive feature of the present 
problem is that, in accord with the requirement that I U ( be 
large, the term ~ ( x )  should be shifted upon relaxation by a 
very large amount. Thus, Anderson has proposed that the 
universality of the properties of NEC may be connected with 
the condition I U I > G, which corresponds in Ref. 2 to a shift 
in which ~ ( x )  crosses the mobility gap and lands in the "for- 
eign" band (e.g., the valence band in the case of electron 
localization). It is clear that, when speaking of appreciable 
shifts I E ( x )  - E,I - G, account must be taken of the contribu- 
tions made by both bands-valence and conduction-to the 
wave function of the state ( I  ) localized on the term E, and the 
relative values of these contributions change with changing 
E. The linear approximation, however, corresponds to an in- 
variant localized wave function for a linear change SX(x)  of 
the potential, i.e., 

A definite role can thus be played in our problem by the 
nonlinear behavior of ~ ( x ) .  

When clarifying the character of t h e ~ ( x )  dependence we 
shall start with the known Anderson Hamiltonian (see Ref. 
9) 

Here E, are the energies of all those electronic states of the 
system (except 11 )), the interaction which is described by the 
quantities v,, = ( j,lSX(x) 1 lo). The Hamiltonian (2) is writ- 
ten in the basis of the starting states I j,) and 11,) of the 
system (in the absence of relaxation of x). In the linear ap- 
proximation we have for the perturbation SX(x)  

E~'=E~-QX, ujl=a(ej) Qx, 

Q=(lo I (a%/dx).=, I lo), a(&,.) =Q-i(lo 1 (~%/O?X),=~ I jo). 
(3) 

To determine that eigenvalue of the Hamiltonian (2) which 
corresponds to the state 11 ) we obtain the equation 

la(ej) 1 '  ~=.s.-Qx+QYo(~), 0(8)= -. 
e-ej (4) 

j 
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From here on we shall take s to mean its real part, and take 
accordingly the integrals contained in a(&) in the sense of the 
principal value. In the case of a disordered system the deter- 
mination of a(&) is made difficult by the lack of detailed in- 
formation on the spectrum and structure of the states cj. For 
our purposes it suffices to make clear the approximate form 
of a(&). We start here from the accepted premises that the 
mobility-gap density of states has tails that fall off rapidly 
with increasing distance from the band edge (the scale of the 
decrease is w<G ). 

Let us ascertain first the character of the influence of 
different sections of the E, spectrum on the behavior of s(x). 
The spectrum s, can have a finite low density even deep in 
the interior of the mobility band. The corresponding states 
are strongly localized, so that close-lying levels correspond 
to centers that are considerably separated in space and to 
values of a(&,) that differ exponentially. It suffices then to 
take into account in a(&) only seyeral terms corresponding to 
the closest centers. The random energies of these centers 
differ noticeably, and the interaction of a term with them can 
be considered separately in the "paired" approximation. 
Thus, the usual quasicrossing of individual levels sj by the 
term E(X) takes place in the interior of the mobility gap. The 
situation changes when dealing with levels E, ZE, near the 
edge E, of the mobility band. As IE, - s, 14 the density 
P,(E,) of the localized states increases noticeably, as do also 
their radii, which become infinite at sj = s, . I  Owing to the 
appreciable spatial overlap of such states, a comparable con- 
tribution to the interaction is made by many levels that are 
close in energy, i.e., what is effectively realized is interaction 
of the term E with the continuous spectrum. The transition 
from the effectively discrete to the continuous section of the 
spectrum sj takes place in an interval SE, g G  whose small- 
ness is due to a rapid (exponential) decrease of the factor 
f (E, ) = pO(s, )la(&, ) 1 as sj moves away from the edges E, into 
the interior of the mobility gap. The essentially nonlinear 
behavior of (z) can be due precisely to the interaction of the 
term with the states of the continuous spectrum. 

We use first a very rough approximation, assuming that 
the continuous spectrum terminates abruptly at E, = 2,. In 
this case 

and the term E(X) cannot cross the boundary of the contin- 
uous spectrum. The singularity of a(&) in (5) is due precisely 
to the jump off (E,), owing to which the divergences of the 
integrals over the regions s, > s and sj < s in the expression 
for a(&) do not cancel each other. 

In a real situation, regardless of the choice of 2, , which 
is a certain arbitrary boundary of the continuous spectrum, 
the level density differs from zero on both its sides and the 
function a(&) should not be singular. However, although the 
spectrum does indeed have no sharp boundary, f (E, ) can nev- 
ertheless change substantially over a small energy interval 
Ss, (G. As the term E passes through this interval, a(&) in- 
creases and the shift of s ( ~ )  is effectively slowed. 

An approximate description of the growth of a(&) when 
E lands in a rapidly growing section off (E,) can be obtained 

by approximating on this section 

The lower limit of integration in a(&) is then determined from 
the condition that the approximating function vanishes, and 
the upper limit is of the order of the length SE, of the section 
itself. As a result we have 

The nonsingular function a,(&) describes here the interaction 
of the term with the more remote regions of the continuous 
spectrum JE - s, I -D. We bear it in mind here that outside 
the mobility gap f (s, ) increases smoothly into the interior of 
allowed bands of width D)G. Since a(&,) = 0 in the chosen 
basis and in this case a(s,)~a,(s,), for the important small 
1s - sol 5 G we can write 

dol e-eo 
o l e )  = - 0 -  1 - - 

de = D2 

Taking as an estimate x = (E - s,)/Q, we find that 
Q 'x21a,(~)I < 1s - and allowancefora,(a) in (4) leads only 
to corrections that are small in terms of the parameter G '/ 
D ', without a change in the form of ~ ( x ) .  At the same time, 
the first term in (6)  can be substantial. Differentiation of (4) 
yields 

de - =-Q 
1-2Q2xa ( e )  

ax 1-Q" x " 0 ( 8 )  . 

At 1x1 - Is - sol/Q5 G/Q we have 

Therefore, considering the strong slowing down of the term 
(when G /Ss, ) - Q 2~2a'(s)) 1) we can neglect the quantity 
2Q 'xa(&) in the right-hand side of (7). Determining Q 'x2 
from (4), we get 

Equation (8) is convenient for iterations. In the zeroth ap- 
proximation we assume that the deviation AE(x) from the 
linear law is zero at x<x,(- G /Q ), and that at x > x, total 
stopping takes place, ~ ( x )  = const, i.e. A E ( ~ )  = Q (x - x,). 
Making the substitutions af(~)/a(s) z f '(s)/f (E) z l/Ss, , we 
obtain after integrating (8) 

The corrections introduced by the subsequent iterations are 
small in the parameter Ss,/G< 1. From (9) it can be seen 
directly that when s lands in the section of rapid growth of 
f (s,) the linear law d~/dx = - Q is replaced by the much 
weaker ds/dx =: - QSE,/G. It is important in what follows 
that this effect manifests itself only at 
A,E~~E - sol - G I <G. It can thus be assumed that as x re- 
laxes the term E(X) shifts practically linearly all the way to 
energies close to the opposite edge of the mobility gap, and 
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then shifts much more slowly (Fig. 3). We shall see that the 
specific form of the nonlinearity plays no role. 

In concluding this section we note that there is one oth- 
er type ofnonlinearity o f ~ ( x ) ,  due to the higher powers of the 
expansion 

It is assumed next that the corresponding corrections to the 
law E(X) = c0 - QX are small at the important not too large 
values of x (see below). 

54. SPECTRAL CHARACTERISTICS OF SELF-TRAPPED 
STATES 

The equilibrium energy E(,O)=E,,(x,) of the system in 
self-trapping of n = 1,2 carriers is the result of minimization 
of the functional (see also $1): 

E, ( x )  =V(x)+ne ( x ) + U , ( X )  tin, z--V(z)  +&n(x) .  (lo) 

As shown in $3, effects connected with the change of the type 
of wave function of a localized state 11 ) are negligibly small 
in the course of the shift of a term, all the way to values 

I E ( x )  - E,I zG. The quantity Uc(x) in (8), which describes 
the carrier interaction in a pair, can then be regarded as prac- 
tically constant, Uc (x) z U, = const. The results of a nu- 
merical calculations of Uc (x) for a strongly localized pair of 
carriers in an actual crystalline structure confirm this con- 
clusion. 

The equilibrium energies E r) depend parametrically on 
the quant i t ies~~,  k, Q, C, and U, . The position of the starting 
term E, can vary in principle in a very wide range inside and 
outside the mobility gap. However, self-trapping effects are 
suppressed for E, outside the mobility gap, and inside the gap 
they have a very low relative density. It is therefore natural 
to assume that the term E~ is located in the mobility gap at a 
distance - w<G from that gap boundary that corresponds to 
the type of localized carriers-electrons or holes. The corre- 
sponding states are characterized by a localization radius of 
the order of the "unit cell" size.' We confine ourselves here- 
after to just these most effective terms and neglect for simpli- 
city the variance of their distribution. Such a simplification 
is justified if, as we shall for the most part hereafter, we deal 
with strong self-trapping whose energy scales exceed w ap- 
preciably. We note that if necessary the probability distribu- 

FIG. 3. Dependence of the shift of the electron term c on the configuration 
coordinate x. 

tion of the terms E~ can be easily accounted for and no new 
qualitative peculiarities are encountered. 

For the states considered with small localization radius 
we can estimate Q in the tight-binding approximation at 
Q-zdZ/dx -zI, where z is the coordination number and I is 
the "transport integral." Recognizing that in this approxi- 
mation 221-0, we get Q-D/2. Thus, Q is of the order of 
several electron volts (say, Q- 3 eV) and at any rate Q > G. 
The parameter Uc remains one of the most indeterminate. 
By way of estimate we can use the numerous empirical data 
on the values of Uc for deep (multiply charged) centers in 
semiconductors (see Ref. 10) as well as the result of a numeri- 
cal cal~ulation.~ This leads to an estimate Uc 5 0.2-0.5 eV. 

Proceeding to minimization of the functional (8), we 
note that the energies IE and IE(,O)I= IE,, (xn)l are maximal 
in the case k = 0. We assume furthermore that at k = 0 the 
equilibrium value x, of the coordinate x at n = 2 corre- 
sponds to the nonlinear section of the ~ ( x )  plot in Fig. 3. This 
is equivalent to assuming that terms cross the opposite edge 
of the mobility gap in the hypothetical case of the purely 
linear relation E = E~ - QX (u = 0) and under the condition 
that the self-trapping conditions are maximal (k = 0, n = 2). 
The corresponding conditions on the parameters 

agree with the estimates given for them above. With increas- 
ing k, the value of lx,l decreases. This decrease, however, is 
negligibly small so long as the potential V(x) is effectively 
biharmonic (Cx: ,+kxi). A noticeable change of lx,l takes 
place when V(x) becomes effectively a harmonic potential, 
and only then can the value of x, land on the linear section of 
the E(X) plot. We arrive at the conclusion that under the con- 
dition (1 1) the linear region of E(X) corresponds to harmonic 
V(x). In that case the following relations hold: 

( 0 )  - En - n ~ ~ + U ~ 6 ~ , ~ - n ~ Q ~ / 2 k ,  ~ ~ ( ~ ' = ~ , , ' ~ ' - n ~ ~ ~ / 2 k ,  
(12) 

u=E,"'-~E,"' =-QZ/k+U., x,,=nQlk. 

The condition for linearity of ~ ( x )  is 

E (5) = & ~ - Q X < E ~ -  (G-Ao), AoCG. 

Putting here x = x, = 2Q /k, we find that relations (12) are 
valid at 

k>k,-2Q" (G-Ao) s2Q2 /G .  (13) 

They are violated at an insignificant decrease of k < k, to the 
extent that k ,  - k<k, is small. The inaccuracy introduced 
in (1 2) by neglecting the biharmonic component V (x) is small 
relative to the parameter f 9-g 1. It will be shown below that 
the NEC corresponding to k that are much smaller than k, 
have practically no effect on the properties of the glasses 
considered, so that there is no need to minimize (8) for small 
k and for nonlinear E(x). 

We introduce for the paired NEC states (n = 2) the ef- 
fective single-particle energies g, = E f)/2. Their distribu- 
tion density 
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decreases rapidly in the interior of the mobility gap; here 
k (E2) is the inverse of E2(k ); n is the density of the starting 
terms whose variance is negligible. The corresponding scale 
of the decrease is 

Fork5  kG wehave I ~ ~ ; , I  5 ~ / 2 a n d S E ~  5Sk (G/D)'.Itcanbe 
assumed on the basis of $2 that Sk 5 G ( -  1 eV), so that the 
scale of variation of p(E2) is small in the sense that 
S E ~ ~ G ( G / D ) ~ ( G .  

In accord with the general formulation of the problem 
(see § 1) we assume that the NEC is realized for both types of 
carrier--electrons and holes-and the arguments advanced 
above are applicable to them to an equal degree. In particu- 
lar, we can consider the distribution densities p, (E,, ) and 
p, (E,,) corresponding to paired states of electrons (e) and 
holes (h ) on the NEC (Fig. 4). Owing to the rapid decrease of 
pe (Eze ) and ph  (E2, ) in the interior of the mobility gap the 
overwhelming majority of the carriers should be localized on 
NEC with k close to the maximum value k,,, allowed by the 
condition for filling of their paired states E2 - E2(k ). If it is 
assumed (on empirical grounds for the time being, see $1) 
that the Fermi level is near the center of the mobility gap, 
EF --G/2, then - k,,, is determined by the conditions 
E2, = - EF and E ,, = - G + E, and, in accordance with 
( 12), is equal to 

for the electrons and holes, respectively. Here and below the 
subscripts e and h designate the type of carrier to which the 
pertinent parameters apply. It can be seen from a compari- 
son of (16) with (13) that at the parameter values estimated 
above we have k ,,,, , z k , ,  and k ,,,, , z k , ,  . The carriers 

are therefore localized mainly on NEC with kzk , ,  for 
which the simple relations (12) hold, and the NEC with 
kgk, (for which relations (12) are markedly violated) can be 
disregarded because of their low density. We note that for 
NEC with k z  kG the absolute value of the correlation ener- 
gy I U I = - U z  G /2 - U, /2 is high enough and agrees 
with the empirically determined situation. 

Substituting in (12) k = k,,,, , or k = k,,,, , we easily 
obtain, given E, =: G /2, all the energy parameters. With the 
same accuracy with which the relation k,,,,, or 
k,,,, , = k , ,  is satisfied, we have 

for both types of carrier. The quantities W :  defined in § 1 
can be easily expressed in terms of (12). As a result we can 
write, with the same accuracy as in (17), 

Thus, the observed NEC energy parameters turn out to be 
connected with the size of the mobility gap of the material, as 
called for by the experimental data. 

It was assumed above from empirical considerations 
that E, --G /2. In the described approach EF is determined 
from the electroneutrality condition (see Fig. 4) 

The densities n, and nh of the starting terms E,, and E,, in 
(19) can differ noticeably. This circumstance, however, can 
be neglected if EF is located near the center of the mobility 
gap and the ratio of n, and n, is substantially smaller than 
p(w)/p(EF) -g(k 'O')/g(k, )& 1. Recognizing, in accord with 
the prevailing notions,' that the densities of states on the 
tails of the valence and conduction bands do not differ very 
greatly (say by not more than one or two orders of magni- 
tude), we put n, = n, . Transforming in the integrands of (19) 
to the distribution g(k ) and equating the integration limits, 
we obtain 

FIG. 4. Densities of effective single-particle levels of two-charge NEC 
states in the mobility gap. The dash-dot horizontal line is the level E,. 

The error introduced by the approximation n, = n, is small 
to the extent that IsE,, + SB,, / (2G is small. At il z 1 and 
at the characteristic values indicated above for the remain- 
ing parameters, expression (20) yields EF -- G /2 in agree- 
ment with the experimental results. On the other hand, if il 
differs substantially from unity, E, is located near one of the 
edges of the mobility gap. 

The condition il z 1, which agrees within the frame- 
work of the described approach with the empirical data, calls 
for special comments. It is obvious that although Q, and Q, 
are of the same order, they are in general still noticeably 
different (say, by 1.5-2 times, in analogy with the constants 
of the deformation potential). Therefore the condition il =: 1 
can hold only in special cases. This, in particular, is the situa- 
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tion if the electrons and holes are localized on terms of oppo- 
site parity, antibinding and binding. The data on the band 
structure of chalcogenide glasses' ' suggests that such a case 
is quite realistic. The condition A z 1 is satisfied also if both 
types of carrier are localized on identical terms. In the latter 
case the filling of a term by two electrons corresponds qual- 
itatively to formation of an assembled valence bond, whereas 
filling with two holes corresponds to its complete destruc- 
tion. In this case the presence of one electron on the bond is 
not energetically profitable. The second of the noted possibi- 
lities agrees with the premise whereby the NEC is identified 
with glass-structure defects (see §I), for which either forma- 
tion of a fully assembled valence band or its absence is ener- 
getically favored. We shall hereafter not particularize the 
analysis by choosing a specific situation that ensures the re- 
lation A = 1, but confine ourselves on the basis of the forego- 
ing to the statement that such situations are perfectly feasi- 
ble. 

95. ELECTRONIC TRANSITIONS BETWEEN LEVELS IN THE 
MOBILITY GAP 

If account is taken of only the states with k z  kc, which 
are the most effective with respect to density, the results are 
summarized by the scheme of Fig. la, which is no longer 
assumed on empirical grounds but is the consequence of the 
developed approach. At the same time, in certain respects 
our approach does not reduce to the discrete-level scheme of 
Fig. la. The presence of a continuous distribution of the qua- 
si-elastic constants g(k ) and of a corresponding distribution 
of the levels leads to a number of distinguishing features. 

Consider by way of example certain features of carrier 
recombination. Let the electron and hole be localized on spa- 
tially separated centers with quasi-elastic constants k, and 
k, (in particular, one or both carriers can correspond to non- 
equilibrium NEC states with n = 1). Their total energy is 

, , 
~,h(~'=~-e~/x~+&o.+8oh, 

where x is the dielectric constant and R is the distance 
between centers. After the recombination the energy is equal 
to 

From this we obtain the value of the recombination activa- 
tion barrier 

where h is the energy of the quantum that might be emitted 
in this process. It can be seen that the deeper the location of 
the carriers in the mobility band, the smaller AE and Cio and 
the more probable is radiative recombination. 

It can be concluded from the foregoing that at small Cio 
the luminescence intensity I (h) decreases rapidly with de- 
creasing h. In addition, I (h) decreases with increasing fiw 

in the region of large Cio 5 Go, owing to the decrease of the 
population of the levels as their energies approach the edges 
of the mobility gap. The reason is that the nonequilibrium 
carriers produced by the interband light h > Go lose their 
energy rapidly, in transitions of the type of diffusion in ener- 
gy space, to centers with deeper levels, i.e., with smaller k. 
We note also that the density of deep nonequilibrium NEC 
states with k z  k, and n = 1 builds up as a result of similar 
transitions. These states arise in the interaction between the 
doubly filled NEC states with n = 2 and carriers of opposite 
sign, and are effective recombination states. 

The foregoing leads to the following qualitative picture 
of the processes that occur when glass is irradiated with in- 
terband light. If Cio, exceeds considerably the width of the 
optical gap, the excess energy hao - Go = A h ,  is sufficient 
for spatial separation of the produced electron and hole. The 
subsequent lowering of their energy terminates as a rule in 
nonradiative recombination, and the luminescence intensity 
is not high. At small A h ,  the Coulomb interaction hinders 
the separation of the produced carriers, so that the effective- 
ness of their independent energy diffusion due to transition 
in real space is decreased. The pair, however, can move as a 
whole. One of the pair carriers has a noticeable probability of 
decreasing in energy and landing at the center with k z k ,  , 
whereas the transitions of the second carrier take place 
between centers with k z  k 'O' (the probability of finding si- 
multaneously two centers with sufficiently small k in the 
volume occupied by the pair is low). The result is a system 
that includes a singly populated center with k z k ,  and a 
carrier of opposite sign having an energy close to the edge of 
the mobility gap. Its radiative recombination corresponds to 
an energy h z G  /2 [see (23)l. Thus, as A h ,  decreases the 
luminescence intensity I (h) at a given h first increases be- 
cause of the suppression of the energy diffusion processes, 
and then decreases because of the weakening of the absorp- 
tion at h, < G. In other words, the luminescence excitation 
spectrum has a maximum at ho=:G,. The spectrum of the 
luminescence itself I(Cio) is a band with a maximum at 
h =: G /2 and of width determined by the joint effects of the 
strong relaxation of the atomic subsystem and the distribu- 
tion probability g(k ). We note that as the nonequilibrium 
NEC states n = 1 with k z k ,  accumulate in the course of 
the illumination, the nonradiative recombination connected 
with the presence of these states becomes more and more 
effective, i.e., the luminescence intensity should decrease 
with increasing irradiation (photoluminescence fatigue). In 
addition, the accumulation of nonequilibrium NEC states 
n = 1 leads to photon absorption with h z G / 2  (induced 
photoabsorption) and to the appearance of an EPR signal 
(induced EPR). 

The foregoing regularities agree with the experimental 
results of investigations of chalcogenide glasses (see Ref. 1). 
We emphasize that the quasicontinuous spectrum of the 
states in the mobility gap manifests itself outwardly in the 
described processes as an effectively discrete spectrum (e.g., 
by appearance of photoluminescence or induced-photocon- 
ductivity bands with h z G /2, agreeing in this sense with 
the scheme of Fig. la. 

The essential role of the quasicontinuous spectrum in- 
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side the mobility gap is confirmed by results of the investiga- 
tion of the kinetics of the conductivity of chalcogenide 
glasses." In Ref. 12 this form of the spectrum was postulated 
in contradiction to the usually assumed discrete-level 
scheme of Fig. la. This contradition is eliminated within the 
framework of our approach. 

An interesting consequence of the concepts expounded 
is the possibility of temporal evolution of photolumines- 
cence spectra. Carriers excited by a short light pulse recom- 
bine during the first instants of their existence and emit pho- 
tons with ?h--EbO,'zG. Next, with evolving energy 
diffusion, the maximum of the photoluminescence spectrum 
shifts towards smaller ?h and becomes fixed in practice at 
tiw -- G /2. Such a picture was indeed observed in recent ex- 
periments. l 3  

96. CONCLUSION 

The essential result of the present paper is the identifi- 
cation of the nature of the observed connection between the 
energy characteristics of carriers self-trapped on NEC and 
the mobility gap of the material. It turns out here that the 
quasicontinuous spectrum of the states inside the mobility 
gap can manifest itself as effectively discrete, corresponding 
to the scheme previously established on an empirical basis. 

Conceptually, the described approach is closer to An- 
derson's ideas2 than to viewpoint of Mott et al.,' who set the 
NEC in correspondence with definite defects of the glass 
structure. This applies in particular to the conclusion that 
the paired states have a quasicontinuous spectrum in the 
mobility gap. In contrast to Ref. 2, our approach specifies 
the nature of this quasicontinuity and attributes it to fluctu- 
ations of local quasi-elastic constants of the amorphous ma- 
terial. It is this which explains the empirical relations 
between the parameters of the carriers localized on the NEC. 
At the same time, our analysis does not contradict the "de- 
fect" approach' (see §4), if it is assumed that the quasi-elastic 
constants are characterized near the corresponding defects 
by a broad probability distribution of the type shown in Fig. 
2. In this case the structural models of defects' only specify 
more concretely the physical meaning of the configuration 
coordinate x in our analysis. 

We note that the results obtained above can be applica- 
ble to a certain degree not only to amorphous substances, but 
also to crystals in which the critical atomic potentials are 
realized as defects. Among the various structure faults al- 
ways present in a crystal, defects with critical potentials have 
the advantage that part of the energy needed for their forma- 
tion is cancelled out upon self-trapping of a carrier pair. The 
nonlinear behavior of ~ ( x ) ,  of the type shown in Fig. 3, can 

then play an important role. Because of this behavior, the 
energy gain due to self-trapping should be a maximum for 
those defects whose critical potentials admit of a shift of the 
single-electron terms by precisely the value of the linear sec- 
tion of ~ ( x ) ,  i.e., actually to the boundary of the opposite 
band, and it is precisely such effects that should occur with 
maximum densities. The energy spectrum of such defects 
with k - k ,  and 1z2 I =: G / 2  in the forbidden band of a crystal 
turns out to be practically discrete. It can be assumed that 
this situation is realized in chalcogenide crystals. Indeed, the 
luminescence spectra of amorphous and crystalline As$, 
and As,Se, are similar, but the excitation spectra are differ- 
ent, and no fatigue effect is observed in the crystals.' In our 
approach the latter discrepancies are quite understandable. 
They reflect the qualitative differences between recombina- 
tion processes in the quasicontinuous spectrum of glass and 
in the discrete spectrum of a crystal. 

"This assumption is not necessary. It is shown in Ref. 4 that for indepen- 
dent fluctuations of the expansion coefficients of V(x) with k<k'" the 
anomalous smallness of the cubic anharmonicity is still substantially 
more probable than simultaneous smallness of the quasi-elastic con- 
stants for two modes of the atomic motion. Thus, in the one-mode model 
of the critical potential it is legitimate to take into account fluctuations 
for which the cubic anharmonicity is anomalously small alongside with 
k, and the presence of systematic causes of this smallness is not obliga- 
tory. 

"The nonlinear behavior of+) in crystals, of the type shown in Fig. 3, can 
be due to singularities of the band structure. The effect of slowing down 
E(X) should be particularly noticeable in layered crystals such as As,S, 
and As2Se,, where the electron spectrum retains the features of quasi- 
two-dimensional systems, i.e., the density of states falls off quite steeply 
near the boundaries of the forbidden band; in this case A,-G (G/D )' 
with v >  1, i.e., A,<G (see (5)). 
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