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Examination of the problem of exciton states in the "black" (semiconducting) phase of SmS is 
used as a basis for a theory of the transformation of the ground state during the transition to the 
"golden" phase under pressure. According to this theory, golden-phase SmS is a narrow-gap 
semiconductor with valence band consisting of mixed valence states in which one of the f-elec- 
trons of each Sm ion has a definite probability of redistribution over d-orbitals that span a number 
of coordination spheres. The kinetic, optical, thermodynamic, and magnetic properties of golden- 
phase SmS are explained within the framework of this model. 

PACS numbers: 71.25.Tn, 71.35. + z - 

1. INTRODUCTION 2. MODEL HAMlLTONlAN FOR THE DIELECTRIC PHASE 

Recent on the kinetic properties of SmS 
under pressure have finally convinced us that the so-called 
"golden" phase of SmS, which exists in the pressure range 
6 < P <  20 kbar, is a distinct state that is intermediate 
between the normal superconducting phase with divalent 
Sm2+( f 6, (P< 6 kbar) and the metallic phase with altered 
valence (P > 20 kbar). 

The currently established interpretation of the nature of 
this phase is that its ground state is a coherent superposition 
(since there is no experimental evidence for the inhomogene- 
ity of the system) of the f and f 'd states, and that the spec- 
trum of elementary excitations contains a gap or pseudogap 
that is responsible for the nonmetallic rise in resistance with 
decreasing temperature. The form of the d-function has been 
a matter for discussion. Two possibilities have been exam- 
ined, namely, d = d, (band states, and d = dl (localized 
states) (see, for example, Refs. 4 and 5). 

The difficulties of the model with band states (the so- 
called Anderson periodic model) arise because the statistics 
of the f and d, states are different (atomic and Fermi, respec- 
tively), the coherent mixed-valency ground state cannot, in 
general, be constructed, and one must resort to approxima- 
tions such as the coherent potential appr~ximation,~ in 
which the system is looked upon as a two-component "al- 
loy" f + f 5dc. The gap (or pseudogap) in this model has a 
purely hybridizational character and its presence in the 
three-dimensional energy spectrum is difficult to verify. 

It seems that the true mixed state must be sought along 
the path proposed by Kaplan and Mahanti5 (KM) although 
their own variant of this theory, which gives ferroelectric 
order at T = 0 and has some difficulties with the Nernst 
theorem [see Eq. (3) in Ref. 6 and the discussion thereafter], 
cannot be accepted as realistic. In the present paper we put 
forward a localized mixing model which yields a coherent 
ground state and, at the same time, takes into account the 
actual properties of the SmS crystal and explains the origin 
of the exciton dl states. The model is used to provide a com- 
prehensive explanation of the unusual kinetic, optical, and 
thermodynamic properties of the "golden" phase of samar- 
ium sulfide. 

The Hamiltonian for a system with mixed valency in the 
f-shell is usually written in the form 

In the Hamiltonian Hf for the inner shells of f-atoms in the 
cation sublattice of Sm, we must take into account two possi- 
ble configurations, namely, Sm2+( f 6)-the 7F0(T,+) sing- 
let, and Sm3+( f ')-the 6H,,, (r7-) Kramers doublet. It is 
convenient to express Hf in terms of projection operators: 

where E ,,, are the atomic level energies, 0 and M label the 
atomic quantum numbers of the singlet and doublet 
(M = + ), and m represents the coordinates of sites in the 
cation sublattice. In the band term, we shall take into ac- 
count only the lower conduction band with a mimimum at 
the X point of the Brillouin zone which also exhibits only 
Kramers degeneracy (see, for example, Ref. 7): 

Since thed and f waves have opposite parities, the hybridiza- 
tion term HyA will mix only states centered on different 
sites: 

whereX iM = ImO > < mM I is the Hubbard projection oper- 
ator, and 

is the many-electron matrix element of the Coulomb interac- 
tion W = e21r - r'I - I ,  which is reduced to the one-electron 
form (m f 1 V lnd ) by isolating the potential V(r) of the 
Sm( f 5, core. The form of the Coulomb interaction HyA and 
of the electron-lattice interaction He, will be chosen below. 

When given in the form (2.2)-(2.4), the Hamiltonian 
(2.1) is exceedingly inconvenient to deal with because the 
operators dm, and X r  have different statistics. We shall 
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therefore exploit the device proposed in Refs. 8 and 9, i.e., to 
begin with, we shall take exactly into account the hybridiza- 
tion interaction in the one-electron band problem with core 
potential V( f 5, in the Sm sublattice. As a result, we shall 
obtain two one-electron bands ~ l f . ~ '  with light and heavy car- 
riers: 

The corresponding one-electron wave functions have the fol- 
lowing form in the Bloch representation: 

The initial and renormalized electron bands are shown sche- 
matically in Fig. 1 together with the symmetry of the states 
along the r X  line. The mixing of the f and d states occurs at 
all common points of the Brillouin zone, but does not occur 
at the points (r, X )  (Ref. 4). 

The condition Dh ( U  is definitely satisfied for the nar- 
row band E ' ~ )  in the dielectric phase of SmS, where D, is the 
width of the band and u i s  the intraatomic Hubbard interac- 
tion between "heavy" electrons, so that allowance for U de- 
creases by one-half the size of the phase-space cell, and the 
band E ( ~ )  is actually a Hubbard subband containing N elec- 
trons, where N is the number of unit cells in the crystal. The 
upper band E"' is the usual Fermi conduction band. Thus, 
the band Hamiltonian for our semiconductor is 

( h )  
Emm =Ef, (2.7) 

where, in contrast to dm and X, , the symbols b, and Z,,, are 
used for the second-quantization opertors of the hybridized 
states. 

In the dielectric phase, so long as levels E~ and tk do not 
cross, hybridizational renormalization is small and can be 
taken into account by perturbation theory. The Wannier 
functions for the h and I bands can then be obtained from 
(2.6): 

FIG. 1 .  Structure of the forbidden band for SmS for P = 0. 

As a result of hybridization, the f and d wave functions are 
distorted by the admixture of electron states of opposite par- 
ity, which are localized on neighboring states of the cation 
sublattice. The mixing integral increases exponentially with 
distance, and this enables us to write the f d Coulomb inter- 
action, responsible for the formation of excitons, in a simple 
form which leads to a solution for the exciton spectrum in an 
analytic form and, at the same time, takes into account all 
the physically significant processes: 

The first two terms in this expression describe the attraction 
between an electron and a hole on a given site and on neigh- 
boring sites of the cation sublattice, and the last two repre- 
sent the transport of excitations and additional mixing, 
which were not taken into account in the formation of the 
electron-hole spectrum1' (2.5). As for the intraatomic "Fali- 
cov" interaction, it is reasonable to suppose that G<Dl  
(width of the "light" band), and the intersite interaction pa- 
rameter can be obtained with the aid of (2.8) in the form 

where 0, is the volume of the unit cell, A is the gap width in 
the spectrum given by (2.5), U-6-8 eV is the parameter in 
the initial intraatomic repulsion, V-0.1 eV is the effective 
hybridization parameter, and Dl ~2 eV. When we take into 
account the nearest-neighbor coordination number z in the 
cation sublattice, we find that the pre-exponential factor 
reaches approximately 0.25 eV. In the derivation of the ap- 
proximation (2.10) we took into account only that part of the 
interaction which was connected with the mixing of the f 
states with the initial d states in the conduction band. 

3. EXCITONS IN THE DIELECTRIC PHASE 

Possible formation of excitons in SmS and their influ- 
ence on phase transitions with change in valency were dis- 
cussed even in the earliest papers on unstable valence1' but, 
strange as it seems, a microscopic analysis of the properties 
of excitons in such an unusual system as SmS is still lacking. 
In all papers (without exception) devoted to exciton states in 
SmS,5,6,'0-'4 it is assumed without discussion that these are 
Frenkel states localized on a single site. In general, there is 
no justification for this assumption: even in alkali-halide 
crystals such as NaCl, whose ionicity is much greater, the 
Frenkel approximation is known to be invalid. On the other 
hand, the system parameters (E, = 5.9, rn; = 0.78) are such 
that the effective-mass approximation cannot be expected to 
be valid either. It is thus natural to expect that the states in 
which we are interested are excitons of intermediate radius. 
This case is least amenable to theoretical analysis but, as will 
be shown below, the problem of the ground state of an exci- 
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ton with interaction whose range is restricted to the nearest 
coordination sphere can be solved practically exactly. 

To find the exciton spectrum, it is convenient to trans- 
form in the Hamiltonian given by (2.7) and (2.9) to the hole 
representation of states in the heavy band. The role of the 
hole creation operator is then taken up by the operator of the 
change in the configuration Z to=f ,+, . Thus, we shall solve 
the problem 

with the Hamiltonian 

I 

G C f m o + f m . - , b A , b m n , -  C 5 m n h o + j m m b n o , b n o ,  

moo m n  

(we are assuming the Coulomb renormalizations are includ- 
ed in the band spectrum). We shall measure the energy from 
the level E, = NE,. The wave function will be sought in the 
form 

N 

where (0) = n ( m 0 )  is the ground-state wave function and 
m 

S,+ is the exciton creation operator which can be written in 
the form 

=N-" pq (k) Sq.+ (k) lo), (3.4) 

Fq (k) = F ,  (j) r - i k j .  s.,+ (k) = fk.+b:-,,.. 
1 

To be specific, all the spin directions were taken to be the 
same. Substituting (3.3) in (3. I ) ,  and multiplying from the left 
by (OIS&(k), we obtain the Schrijdinger equation for the 
envelopes 

(k) , S,n ,+  (kt) 1 10)) =E,, (q)F,  (k) 6,,,. (3.5) 

As a rule, the use of operators of the form x:*' leads to 
additional difficulties because of the complexity of the com- 
mutation relations that they satisfy. In particular, 

However, this anticommutator becomes a delta function 
within (01 lo), so that the operators fku can be treated like 
ordinary Fermi operators. Next, the second commutator in 
(3.5) gives simply the ground-state energy. Omitting, for the 
moment, the last two terms in (3.2), which describe the trans- 

lation of electron-hole pairs and supermixing, and recalling 
the identity 

(01 Sqo- (k) Gar (k') I 0)=6kk16aar, 

we obtain the following closed set of equations for the enve- 
lopes F, (k): 

It is immediately clear from this that, even when only 
the attraction G within the centers is taken into account, the 
exciton will not, in general, be of the Frenkel type. The set of 
equations given by (3.7) is then readily solved, and the fol- 
lowing expressions are obtained for the exciton energy and 
wave function (see Ref. 15): 

The quantity F, (0) = N - 'ZF, (k) can be looked upon as a 
k  

normalizing factor. In contrast to the one-dimensional Egri 
problem,15 a discrete exciton level appears, in our case, only 
for G > Gc . The threshold value Gc can be estimated by solv- 
ing the equation 

where So(E ) is the density of states in the renormalized con- 
duction band &,, . Replacing S,(E) with the effective con- 
stant 2D; ', we obtain the following equation for Gc : 

Thus, the system has a discrete exciton level when 

eDc'2G< D,/max {a, V). (3.11) 

If we assume that (2, V ] is approximately equal to 0.2 eV, 
we obtain Gc ~ 0 . 4 3  eV. 

When G > Gc , the envelope Fo(R ) has the following ap- 
proximate dependence on distance: 

F ,  ( R )  -F, (0) R-'e-xR, ~=h-~{2rn,'[A-E,(O)] 1'". 

Hence, it is clear that the Frenkel exciton appears only when 
the binding energy is approximately 3 eV, which is clearly an 
unrealistic figure. The difference from the Frenkel exciton 
becomes greater still when the attraction (R ) between the 
sites is taken into account. When theinteractionl (R )is taken 
into account only for nearest neighbors, so that 6 (a/d)=P, 
and neglecting the contribution to the envelope of all sites 
outside the second coordination sphere, we can transform in 
(3.7) to the site representation and thus obtain a set of thir- 
teen equations in the F ( j): 
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(we have confined out attention to the case q = 0, which is 
important for our purposes). In these expressions, 

D,(E) =N--l [E-Ekrh(0)  I--l exp R(j-m), (3.14) 
k 

where the sum is evaluated over sites in the second coordina- 
tion sphere. 

The energy levels of the intermediate-radius exciton are 
classified in accordance with the irreducible representations 
of the point group of the crystal, so that (3.13b) can be trans- 
formed to a block-diagonal form by going over to the irredu- 
cible basis of the group 0,. However, the fully-symmetric 
solution 

in which we are interested here and which corresponds to the 
lowest state of the exciton, can be found directly without 
resorting to the methods of group representation theory. Ac- 
tually, we shall use the fact that the lattice Green functions 
(3.14) that appear in (3.13) and their combinations depend 
only on [jl = a / a :  

where s ( k )  is the formfactor which, in the case of the fcc 
sublattice, is given by 

k.a k,a kva k,a 
s (k) = eik1=4 (cos - eoa - + o w  - cos - 

2 2 2 2 

Having constructed the solution F, of (3.13b), we obtain the 
equation for the energy of the singlet exciton: 

I+GDao (Em) 

=-E {Dz (Em) -G [Di (Eex)Doi (Eex) -Dz (Eex) Do0 (Eat) I ), 
(3.17) 

in whose right-hand side are gathered the terms responsible 
for the renormalization of the level Eex (0) by the interaction 
between the sites. Equation (3.13a) presents us with an 
expression for the envelope, which replaces (3.8b): 

with the normalization 
F2 (0) +zFi,Z=l. (3.19) 

It is clear from the last two equations that allowance for the 

Coulomb interaction between sites leads to the splitting of 
the exciton spectrum in accordance with the representations 
of the point group of the crystal. It also leads to an overall 
raising of the exciton states (D,(E,,) <0) and to a corre- 
sponding redistribution of charge density, i.e., to additional 
transport of negative charge in the electron-hole pair from 
the central cell to neighboring atoms in the cation sublattice. 

Exciton dispersion E,,(q) is limited by the exchange 
term in the Hamiltonian (3.2) and by the dispersion of the 
lower band" $ '. It is very small and will be unimportant for 
our ensuing analysis. 

The complete exciton wave function (3.3) is constructed 
with the aid of the vector-addition scheme for point groups 
from the wave functions of the f ion and the electron orbi- 
tals fl,. When q = 0, the wave function is given by 

where a," are the coefficients in the transformations of of the 
Wannier functions $,,, + to the irreducible representation A 
of the point group, r ' is the corresponding representation for 
the f ion, a n d r  = r ' e A. Hence, it is clear that the exciton 
can be taken to the higher-lying state in two ways: either by 
exciting thefishell (r') or by modifying the envelope (A ). 

The following picture of the behavior of the exciton 
wave function in the semiconducting phase of SmS as a func- 
tion of pressure P is thus seen to emerge from the foregoing. 
As P increases, the gap A in the electron spectrum (2.5) is 
reduced, and this leads to an increase in the degree of mixing 
of the d and f states in the wave functions (2.6), i.e., to an 
increase in the contribution of the f component to the wave 
functions of the conduction electrons and, hence, to an in- 
crease in the parameter (2.10) of the Coulomb interaction 
between the sites. When a discrete exciton level (G > G,)  is 
present in the initial state with P = 0, the level will fragment 
with increasing P, and the radius of the exciton will increase 
as a result of negative-charge transport to neighboring Sm 
atoms, whereas the positive charge will, as before, be essen- 
tially localized in the single cell. In the final analysis, the 
reduction in the size of the band gap of the semiconductor 
will ensure that the exciton binding energy will exceed the 
size of this gap, i.e., we shall have exciton instability of the 
crystal. 

4. GOLDEN PHASE: NARROW-GAP SEMICONDUCTOR WITH 
MIXED VALENCE 

We have found in the last section that the presence of 
discrete exciton levels in the spectrum unavoidably leads to 
the onset of exciton instability of the "black" semiconduct- 
ing phase of SmS, well before the gap is reduced under pres- 
sure. The traditional way of treating exciton instability is 
based on the application of perturbation theory and BCS- 
type approximations, but this is invalid in our case for a 
number of reasons. First, in a system described by the Ha- 
miltonian (3.2), which does not conserve the number of elec- 
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tron-hole pairs because of the presence of its last term, the 
phase transition, in accord with the general ideas of exciton 
instability, will be of first order16 (see also Ref. 17). Actually, 
isomorphous transformation in a direct-gap semiconductor 
reduces to a redistribution of electron density in the d and f 
shells of the Sm ions, accompanied by a reduction in the 
volume of the unit cell without the appearance of any new 
order parameter. Second, as will be seen from the ensuing 
analysis, the mixed valence state can be obtained only by 
abandoning the self-consistent field approximation. Finally, 
it is known that perturbation theory encounters major math- 
ematical difficulties when m*-tco in one of the bands. It 
seems to us, therefore, that the simplest way of finding a 
realistic wave function for the ground state constructed 
above is to use the variational method. 

Thus, we shall seek this function in the form 
N 

This trial function relies on the assumption that, first, the 
phase transition does not involve any essential rearrange- 
ment of the "orbitals" B, and, second, the black-phase exci- 
tons are still sufficiently localized at the critical pressure 
P = PC, and we can confine ourselves to inclusion of the 
nearest neighbors alone. The second restriction is dictated 
only by considerations of mathematical simplicity, and does 
not have a decisive effect on the physical picture. The choice 
of the directions of a is dictated by the requirement that the 
states to be mixed transform under the same representation 
as the original representation (see below). 

Trial functions with localized orbitals have already 
been examined in the in relation to special 
cases of the Hamiltonian (3.2). It was notedIsb that the "lo- 
calized" basis gives a lower variational energy than the stan- 
dard basis with Bloch functions. However, it has a basic dis- 
advantage, namely, the trial functions are not orthogonal. In 
fact, in our case, we have from (4.1) and (3.19) 

where y is the number of nearest neighbors common to the 
sites m and m + j ( y = 4 for the fcc lattice). It has been 
~ h o w n ' ~ . ~ ~  that, in the metallic case (when, in the ground 
state, there are electrons in the conduction band), one has to 
take into account excluded-volume type effects, which 
sharply complicates the situation and takes us back to the 
problem of the "Kondo-Anderson lattice." It seems to us 
that the situation is much simpler in the dielectric ground 
state. The excluded-bond effect does not then arise because 
the formation of the orbital B, involves only the l/z part of 
the Wannier amplitude b,,  .The main problem that we 
now encounter is the "nonorthogonal catastrophe," well 
known in the Heitler-London-Heisenberg model.21 

Actually, if we evaluate the ground-state energy 
Es=<Y IHI Y>/(Y I Y> (4.3) 

with the trial function (4. I), both the numerator and the de- 

nominator contain diverging series -(Na2)k. In principle, 
the problem can be solved because terms -Nk  , k > 1 in both 
the numerator and the denominator in (4.3) almost com- 
pletely cancel out, and the remaining corrections which are 
-N can often be found explicitly. In the case of weak over- 
lap this procedure can be implemented in our problem as 
well. Details of how diverging terms can be removed from 
the variational expression for the ground-state energy will be 
published elsewhere, and only an outline of the computa- 
tional scheme will be given here. 

The expression given by (4.3) with the Hamiltonian (3.2) 
and trial functions (4.1) can be written in the form 

If we exploit the fact that the operator [H, A ,+ ] can gener- 
ate only one-exciton excited states, whereas 
[ [H, A ;t 1, A ,+ ] generates two-exciton states, we can fac- 
torize (4.4) as follows: 

N-' (B,-E,) mOtAe,  sinZ 0-0 ,J  sin4 8-(DsM cos 0 sin 0, 

The first term in this expression describes the "crossing" of 
the levels Ee, and E ~ ,  whereas the second the third terms 
represent interaction between the excitons and supermixing 
effects with the corresponding energy parameters 

where @ are the nonorthogonality parameters 

The primes on II indicate the absence from the product of 
one or two operators A ,  (the quantities @ do not, of course, 
depend on the choice of the site). 

The factors given by (4.7) can be evaluated by the well- 
known Lowdin-Carr procedure of expansion in terms of the 
minors of the determinants in their numerators (see Ref. 21). 
For weak overlap, 

this procedure gives the following result in the lowest order 
in a: 

This expression includes the parameter n, = sin28, which 
can be interpreted as the density of electrons on the localized 
orbitals. Higher-order terms in the density are not written 
out because they do not affect the qualitative picture of the 
phase transition. We see thus that nonorthogonality intro- 
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duces in the ground-state energy a correction that is qua- 
dratic in the density and can, at least in principle, contribute 
the establishment of mixed valence in the system (see below). 

In the case of stronger mixing, when (4.8) is violated, the 
procedure for evaluating the corrections is much more com- 
plicated, but we shall assume that the transition can be un- 
derstood qualitatively by considering the example of the 
simple situation examined above. The expression (4.9) repro- 
duces the phenomenological functionals E (n, ) introduced 
in Refs. 14 and 22, where n, was replaced by the concentra- 
tion of the free electrons or bound excitons. However, it is 
important to emphasize that the microscopic justification of 
(4.9) in our theory is quite different from that in the Kuroda- 
Bennemann approach. l4 We have already had occasion to 
notes that the analogy with dilute alloys, in which a mixed- 
valence state is treated as a mixture of the ions Sm2+ and 
Sm3+ (see, for example, Ref. 4), will not contribute anything 
useful to the construction of the coherent ground state. This 
is also valid for the exciton mechanism of the transition. The 
concept of localized quasimolecular excitons, whose concen- 
tration increases as one approaches the phase transition 

seems to us to be as unproductive in the descrip- 
tion of the ground state as the alloy analogy in the case of the 
Anderson lattice. In reality, an exciton is excited in a homo- 
geneous system not on an individual site, but simultaneously 
all over the crystal, and this dictates the choice of the trial 
function in the form given by (4.1). 

A phase transition in the system with ground state de- 
scribed by the density functional (4.9) can be either of first 
order or continuous. However, in the real case of SmS, we 
cannot confine ourselves to consideration of electron subsys- 
tem alone, and we must take into account the electron-lattice 
interaction because the radius of the Sm ions varies apprecia- 
bly in the transition when the valence is changed. The lattice 
mechanism for the transition is based on the old, Zacharia- 
sen-Pauling idea, put forward in connection with the a-y 
transformation in Ce: the isomorphous transition is looked 
upon as the "crushing" of the shells of REM ions, as a result 
of which ions of smaller radius are packed in the new phase 
into the same lattice. Extending this idea to the "exciton" 
transition in SmS, Kaplan and Mahanti5 have written down 
the following phenomenological expression for the volume- 
dependent energy: 

E (V) ==?Iz [B, (V-Vz)Z cosz 8+B, ( V-V,) sin2 81 +const, 
(4.10) 

where V2, V3 are the specific volumes per Sm2+ and Sm3+ 
ion, respectively, B, and B, are the corresponding compress- 
ibilities, and the parameter 8 is a measure of the fraction of 
these and other ions in the crystal. 

In our model, the electron-lattice interaction manifests 
itself in at least three ways: the deformation of the lattice 
changes the energy gap A,, , the depth of the exciton level 
Eex , and the magnitude of the Green functions DM that de- 
pend exponentially on the lattice constants. Thus, an in- 
crease in pressure is accompanied by an increase in the frac- 
tion of negative charge on the periphery of the exciton 
quasimolecule, and this means that the mixing constant M in 
(4.6) increases, too. Next, assuming that the energy gap A 

FIG. 2. Ground-state energy as a function of the specific volume (see text). 
Dashed line--exciton energy in the modified state. 

decreases with increasing pressure much more rapidly than 
the fragmentation of the exciton level E,, , we can use the 
expression 

where S = (V - V,)/V2 is the relative change in the volume 
and D is of the order of the deformation potential. 

The phase transition problem for a system described by 
(4.9)-(4.11) has been investigated in great detai16*13'14 and we 
shall therefore confine ourselves to a brief examination of the 
effect of the leading interactions on the nature of this transi- 
tion. To estimate the range of possible values of the param- 
eters of the problem, we begin with the very crude approxi- 
mation in which J, M = 0 and the change in the elastic 
constants during the transition is ignored. In this variant 
with simple level crossing, the ground-state energy is given 
by 

E (P, 6) =Eg+ilzBzV,62, 16 1 < 161 1, 
(4.12) 

E (P, 6) =Eg+'IZBzVz6,+D(6-6i), ( 5  61 1 
(broken line in Fig. 2), where 3 is the equilibrium value of 6 
for given P, determined by the condition P = - d E  /d V, and 
S, is the value of S for which the gap (4.11) closes. The equa- 
tion of state is 

Of course, this equation will reproduce the actual equation 
of state only in a very schematic way (fine lines in Fig. 3a), 
but it does yield quite reasonable values for its parameters. 
For example, if we take D = 4.5 eV, V2 = 60 A3, and 
B, = 500 kbar, we find that the jump in the volume that 
accompanies the phase transition, and is shown by (4.13) to 
be AS = D /B 2V2, turns out to be 0.24 (the experimental val- 
ue is AS = 0.13). In the simplified linear model, the critical 
pressure for the transition is given by PC = - B2/Sl. Using 
the experimental result PC = 6.5 kbar, we obtain the upper 
limit for the energy of the exciton state: 
Eex S A ,  - JS,ID = 0.17 eV (for A, = 0.23 eV). In reality, 
the exciton level will lie higher because the modulus B2 will 
be softened as PC is approached, but the limiting value of Eex 
seems reasonable, and the nearest-neighbor approximation 
realistic. 

We now introduce hybridization. Minimization of the 
functional (4.9) without allowing for the correlation effects 
-ni yields the following expression for the energy: 
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0 4 P 

FIG. 3. P- V and P-n, diagrams for SmS. 

If we neglect the contribution to the compressibility due to 
the orbitals B,  , the elastic energy will be largely determined 
by the core, which includes thef-shells and should be of the 
form given by (4.10). According to Refs. 6 and 13, a phase 
transition in a system described by (4.10) and (4.14) can be 
either discontinuous or continuous. It is clear from Fig. 2 
that the role of hybridization is to smooth out the transition 
(the broken line is replaced with a hyperbola). The jump in 
the volume is then reduced (thick lines in Fig. 3a) and the 
"valence" n, on either side of the transition point is no long- 
er an integer (thick lines in Fig. 3b). Hybridization plays a 
comparable role in the dielectric-metal t r a n ~ i t i o n . ~ ~  

The "interexciton" attraction appears in our model 
only when we leave the self-consistent field approximation 
(compare this with Ref. 17). It gives rise to a tendency toward 
a discontinuous transition but, because of hybridization, a 
transition with a change in valence, but without allowance 
for elastic energy (4.10), remains continuous. In our theory, 
the orthogonalization correction in (4.9) plays a role similar 
to the anharmonic contribution to elastic energy.22 We have 
A,, < 0 for IS 1 > IS, 1, so that the effect of orthogonalization 
reduces to the smoothing out of the transition and the estab- 
lishment of intermediate valence. Thus, the hybridization 
and orhtogonalization corrections facilitate, in our theory, 
the replacement of the discontinuous by a continuous transi- 
tion along the series SmS-SmSe-SmTe. 

The state with mixed valence appears mainly as a result 
of Coulomb supermixing. The nature of the mixing process 
is clearly demonstrated by the form (4.6) of the matrix ele- 
ment of this interaction: as in the Hartree-Fock hybridiza- 
tion (2.8), this matrix element involves only states connected 
with neighboring sites and, mainly, due to the f-components 
of wave functions in the conduction band. Thus, in our mod- 
el, the realization of a mixed-value state signifies that one of 
the electrons on the divalent ion Sm2+ (f6) can be partly 
redistributed over the nearest sites of the Sm sublattice, but 
still remains bound to its own site (Fig. 4). According to (4. I), 
the wave function $, (f 6 J  then acquires an admisture of 
$, (f 6B J in which the orbital B has the following form when 
expressed in terms of the original d- andf-wave functions 
[see (2.8)]: 

FIG. 4. Structure of mixed-valence state. 

(the contribution due tof-functions from neighboring sites is 
neglected). It  is readily seen that the added state has the same 
set of quantum numbers as the f configuration. In fact, 
functions from sites in the second coordination sphere com- 
prise fully symmetric combinations, so that the f component 
of the orbital (4.15) transforms in accordance with the repre- 
sentation of the rotation group with I = 3 and, together with 
the spin function, forms a state with total angular momen- 
tum j = 5/2, which is dictated by the scheme used to com- 
bine the angular momenta of the states f 5(6H,,2) and 
f '( j = 5/2) into the singled 'FO. As noted by Stevens,"" the 
j = 5/2 combination can be made up of d functions from the 
second coordination sphere [second term in (4.15)]. As a re- 
sult, we have the following expression for the wave function 
of the Sm ion at the site m in a mixed-valence state: 

Coherent Bloch waves made up of these combinations are, in 
fact, the wave functions of valence electrons in the golden 
phase of samarium sulfide. In addition to the "bonding" 
state (4.16), it is also possible to constuct an "antibonding" 
state of the f 6-f 5B, which is an exciton in the new phase. As 
in the usual theory of excitonic  dielectric^,'^ collective exci- 
tations are separated from the ground state by a gap (dashed 
line in Fig. 2). 

The variational procedure that we have used does not 
enable us to estimate the rearrangement of the band contin- 
uum b, but, when this is neglected, the gap separating it 
from the valence states can be estimated from the expression 

A<AeZc+M, (4.17) 

where A f, is the critical value of A,, corresponding to the 
exciton instabi9lity. Thus, in our model, the golden phase of 
SmS is a narrow-gap semiconductor with a specifically con- 
structed valence band, whose symmetry is identical with 
that of the normal black phase. 

5. GOLDEN PHASE. INTERPRETATION OF EXPERIMENTAL 
DATA 

We must not overestimate the fact that the mixed-va- 
lence "excitonic" dielectric model explains the P V  diagram 
of the phase transition: it shares this distinction with practi- 
cally any theory of a transition with a change in valence that 
involves the crossing of two levels or the entry of a level into 
the band. The criterion for choosing between competing 
models is their ability to explain numerous unusual experi- 
mental facts in an unified rather than fragmented manner. 
Examination of all the variants of the theories proposed so 
far forces us to acknowledge that the KM m ~ d e l ~ . ~  is the only 
one that has not been unsuccessful in attempting to provide a 
unified explanation of the properties of the golden phase of 
SmS. To be sure, this model is not free of the fundamental 
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FIG. 5. Density of electron states in black (a) and golden (b) SmS in the 
KM model, and in golden SmS in our model (c). 

deficiencies mentioned in the Introduction. We shall show in 
this section that our mixed valence model of a semiconduc- 
tor is free of these shortcomings, and will put forward our 
own interpretation of the kinetic, optical, and magnetic 
properties of the intermediate phase of samarium sulfide. 

We note, to begin with, that our model does not predict 
ferroelectric order at T = 0, the possibility of which in the 
KM model is its most objectionable feature. The physical 
reason for this ordering in the KM theory is the interaction 
between the dipole moments that appear in each cell as a 
result of mixing of states of different parity. In our case, we 
showed in the last section that the fully-symmetric orbitals 
form a singlet ground state with zero angular momentum. 

Second, to explain the finite conductivity of the golden 
phase and its metallic reflectance, Kaplan and Mahanti5 
propose that roughly 0.1 of an electron per site remains in 
the conduction band after the transition. At the same time, 
they have had to assume that a localized mixed-valence level 
crosses the band near its bottom (Fig. 5). Hence, it follows 
that the ground-state wave function is5 

where b-0.1 is the fraction of delocalized electrons (in the 
zero-order approximation). This expression corresponds to 
nonzero configurational entropy, and Kaplan and Mahanti 
do not propose a satisfactory method of avoiding the viola- 
tion of Nernst's theorem. 

The level scheme shown in Fig. 5b has been criticized 
for another reason as well: it was considered that it is in 
conflict with the experimentally observed rise in the concen- 
tration n, of conduction electrons from 10'' to lo2' cm-3 
that accompanies the transition to the golden pha~e . '~  How- 
ever, the data reported in Ref. 24 were obtained at room 
temperature, and it is now clear that they are unrelated to the 
properties of the system in the ground state: Hall-effect mea- 
surements3 have shown that, at Trzl5 K, the sign of the 
carriers changes, and the hole concentration amounts to 
6 X 1019 - 9 X 1019 cmV3 as T 4 ,  which is roughly the same 
as the impurity concentration in the system. However, these 
data also contradict the level scheme shown in Fig. 5b. 

It seems to us that the most intriguing peculiarities of 
the golden phase of SmS (its kinetic properties) can only be 
understood by taking into account the presence of impurities 
(and stoichiometric defects) in the real crystals of samarium 
sulfide. We recall that the temperature dependence of the 
resistance R ( T  ) of golden SmS is nearly exponential for T >  5 
K, and passes through a maximum as the temperature is 

reduced still further. It reaches 800-2300pf2 cm at TE l K 
(depending on the magnitude of P). In our view, this tem- 
perature dependence of the resistance is the combined result 
of two charge-transfer mechanisms, namely, hole conduc- 
tion for T < 5 K and electron conduction in the d zone, which 
rapidly increases with increasing Tin a thermally-activated 
manner and shunts the low-temperature hole conduction. 
The latter can be ascribed to donor levels found in the black 
phase of SmS.25 However, data on electron specific heats (see 
below) force us to assume that there are holes in the "exci- 
ton" band E,, (f f 'd ) (Fig. 5c). The presence of holes is 
most likely associated with the acceptor action of intrinsic 
defects whose concentration is about 1 % (we recall that, as a 
rule, even the black phase exhibits hole conductivity at low 
 temperature^^^.'^). We shall not examine here the specific 
question of conduction in the narrow hole band with strong 
correlation and its dependence on P and T. The exponential 
reduction in R for T >  5 K, which is connected with the acti- 
vation of carriers across the gap, can be partially masked by 
the temperature dependence of the m~bi l i ty .~  We also note 
that our model predicts that, as 7'4, the resistance should 
increase with increasing degree of purity of the crystal. 

The next group of properties relates to the optical and x- 
ray spectra. They include experimental data on optical ab- 
sorption that provided Kaplan and Mahanti with the basis 
for the level scheme shown in Figs. 5a and b. In this connec- 
tion, we must note that the dl exciton states (Fig. 5a) have 
been recorded2' as the final states in the optical transition 
f 6+f 5d, SO that they must have different parities as com- 
pared with f 6. At the same time, hybridization with a center 
of inversion occurs in a cubic crystal only between states of 
the same parity, so that the experiment reported in Ref. 27 
can serve as a justification for the localized mixing model 
only if it is assumed that forbidden transitions have been 
observed. On the other hand, our view is that these transi- 
tions correspond to the excitation of high-lying exciton 
states (3.1) with J #O. In the golden phase, the frequencies of 
these transitions are shifted as compared with the black 
phase, and this may well be the explanation of the disappear- 
ance of the corresponding lines from the experimental spec- 
tra'' for P >  PC. In the light of (4.16), which gives the ground- 
state wave function, we can readily understand the absence 
from the golden phase of intracenter transitions that corre- 
spond to the f c~nfiguration.'~ 

The metallic nature of the reflection coefficient (the 
presence of a plasmon edge at we2.5 eV) is very puzzling in 
the light of data obtained as a result of studies of transport 
effects, but has an unexpectedly simple solution in our mod- 
el. Although there are no free electrons in the golden phase, 
the electron density distribution on the quasimolecular or- 
bits (4.1) (Fig. 4), on which all the electrons that have left the 
f shells reside, is not very different from the metallic distri- 
bution. In fact, these orbitals may be even less localized than 
in our simple model, so that the natural frequencies of elec- 
trons in the orbitals may lie in the infrared region. As a re- 
sult, the frequency of their collective vibrations can be deter- 
mined from the expression wi = hn,ne2/m, where 
n = 2 x lo2' cm-3 is the concentration of samarium atoms 
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in the crystal. When n, ~ 0 . 7 ,  we have ?iup =: 3.8 eV, which is 
in reasonable agreement with experiment if we take into ac- 
count possible renormalization of the plasmon frequency by 
interband transitions. 

The anomalously high temperature coefficient of elec- 
tron specific heat, y = 145 mJ/mole . deg, in our model can 
be naturally related to the contribution of hole excitations in 
the "exciton" band, which also determine the kinetic prop- 
erties of the system for T <  5 K (see above). We note, by the 
way, that the linear temperature dependence C ( T )  is ob- 
served precisely in this interval of temperature, and there- 
after the specific heat rises relatively sharply,29 which prob- 
ably indicates that a new group of electron levels comes into 
play. The quantity y cannot, as yet, be accurately calculated 
because the question of Fermi excitation in a band whose 
ground state is described by wave functions of the form of 
(4.16) requires special analysis. It is clear, however, that this 
band is very narrow and that the effective hole mass is 
strongly renormalized by different interactions. In particu- 
lar, the strong Hubbard-type Coulomb interaction can be 
taken into account in the gas appr~ximation.'.~ Estimates3 of 
the effective mass, based on experimental values of y and 
n, - lo2', yield m*.li300-500. Kaplan and Mahanti5 have 
put forward in their review some ideas that explain how elec- 
tron and polaron interactions can reduce the width - 5 eV of 
the original band to - 500 K and increase the effective mass 
of the carriers to about 90. Allowance for the Fermi-liquid 
renormalization and for the degeneracy factor g = 3 con- 
nected with the presence of several valleys yields a figure for 
m* that is of the required order, but proper quantitative esti- 
mates must be underpinned by a regular theory. 

The presence of the linear contribution to the electron 
specific heat and entropy due to carriers in the narrow band 
enabled Kaplan and Mahanti to explain the change in the 
slope of the separation boundary between the black and the 
golden phases on the P T  diagram.6 This explanation remains 
in force in our model. 

The transition to the golden phase of SmS is known to 
be accompanied by a reduction in the magnetic susceptibility 
of SmS by about 60%, but the susceptibility remains tem- 
perature-independent for T <  50 K. The absence of a para- 
magnetic Curie contribution due to f 5(6H5/2 ) states from our 
model can be naturally explained by the fact that the ground 
state (4.16) is still a singlet in the new phase. As far asx  ( T 4 )  
is concerned, its magnitude is determined by two factors. 
First, the Van Vleck susceptibility 

of the golden phase can be reduced by the increase in the 
separation between the lowest level E f = ,  and the excited 
(exciton) term E :, , because the less localized orbitals (4.16) 
are more sensitive to the crystal field than the f-functions in 
the black phase. If the excited states Eh lie in the continuum 
because of the reduction in the dielectric gap for P > PC, the 
susceptibility X, may also fall as a result of the reduction in 
the overlap integral between the radial parts of the wave 
functions in the ground and excited states (h Ig). Second, our 
assumption that a heavy-hole band is present forces us to 

take into account the Pauli contribution X, made by this 
band to the susceptibility. In general, the temperature de- 
pendence of this contribution is indistinguishable from the 
Van Vleck contribution for similar energy parameters. The 
result y = 145 mJ/mole . deg corresponds to a susceptibility 
xP = 1.85. lov3  cm3/mole (in the free-electron approxima- 
tion). The experimental result i s ~ ( ~ 4 )  =: 3. cm3 mole, 
which is in reasonable agreement with this corrected value if 
we recall that, in reality, both C and x are renormalized by 
the interaction. It may therefore be considered that the sus- 
ceptibility of the golden phase is essentially of the Pauli type, 
and the width of the corresponding hole band is about 100 K, 
which is in good agreement with specific-heat data. 

The weak point of this interpretation of low-tempera- 
ture thermodynamic properties of the system is its depen- 
dence on the presence of acceptor levels in SmS. There is no 
doubt that such levels are  present,'^^^.^^ but it is meaningful 
to associate them with the thermodynamics of of the golden 
phase only if the acceptor levels are due to residual intrinsic 
defects whose concentration is always greater than the con- 
centration of random donors. It is known that the kinetic 
properties of the black phase are very sensitive to stresses 
produced in the and this enables us to suggest 
that structural defects with acceptor action are also pro- 
duced during the phase transition, with a jump in the volume 
that is sufficient to have a decisive effect on the low-tempera- 
ture properties of the golden phase of SmS. 

We shall now explain how our model can exhibit the 
second phase transition that is observed at high pressures 
P-20 kbar.1-3 The reduction in residual resistance by an 
order of magnitude would appear to indicate that a transi- 
tion has taken place to the normal metallic phase, but the 
overall form of the temperature dependence of resistance 
shows that the situation is not so simple.2 The function R ( T )  
has the characteristic shape of the "spine of the Anderson 
elephant" with a maximum at T- 10-20 K, a quadratic tem- 
perature dependence as T 4 ,  and a logarithmic dependence 
at high temperatures. In the language of the model of Fig. 5c, 
complete ejection of a single electron from the f-shell into the 
conduction band signifies a Mott-Hubbard transition in the 
band E,, (f + f 'd, ), the result of which is that the number 
of places in the band increases by a factor of two.9 However, 
thef-shells of the Sm atoms must then go over into the state 
f 5(6H5/2 ) with localized angular momenta. The fact that the 
ground state of the system remains nonmagnetic under these 
conditions signifies that the high pressure SmS phase is a 
"Kondo lattice" of the same kind as the CeAl,. 

The mechanism of the phase transition during the dis- 
solution in SmS of divalent Y or Gd impurities (chemical 
collapse) is outwardly similar to the pressure-induced transi- 
tion, but all evidence points to the fact that it is completely 
different. If we base ourselves on the temperature depen- 
dence R (T), the compound Sm, -, Me/+S is an ordinary 
"dirty" metal. More specifically, in the light of the ideas 
developed here and in Ref. 9, chemical collapse requires sep- 
arate analysis, but we note that the substitution of 
Y3+(Gd3+) for Sm2+ does not facilitate but, on the contrary, 
impedes the formation of excitons. The charged substituent 
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impurity breaks up the electron-hole pairs by its Coulomb 
potential, as was noted by Zittartz30 as far back as 1967. 
Second, it disturbs the coherence of the narrow exciton band 
because, by releasing an electron into the conduction band, it 
does not produce a hole in the valence band, since each sub- 
stituted atom signifies a loss of one level in the "Hubbard" 
band $)  in the Hamiltonian (3.1). For this reason, during 
chemical collapse, SmS undergoes a transition to the metal- 
lic phase and bypasses the mixed-valence state. 

To summarize, our model provides a definite answer to 
the question of whether the golden phase of SmS is a metal or 
a dielectric. The answer is that this is a narrow-gap p-type 
semiconductor with an unusual, very narrow valence band 
that is responsible for practically all the puzzling properties 
of the system, such as the absence of Curie paramagnetism, 
metallic behavior of high-frequency permittivity but semi- 
conductor-type static &,, negative slope of the phase separa- 
tion line on the PT diagram, complicated shape of the tem- 
perature dependence of resistivity, and, finally, the mixed 
valence itself. It is probable that the foregoing discussion 
can, essentially, be extended to SmB,. 

The author is indebted to B. A. Volkov, L. A. Maksi- 
mov, and D. I. Khomskiifor constructive criticism and valu- 
able advice. 

"The appearance of the last term in (2.9) can be explained in terms of the 
nondegenerate model in which the f and f configurations are modeled 
by thes2 and s1 states. The mixing (2.4) then corresponds to processes of 
the form f ,, + f ,+ - f, ,dm - ,, and the "supermixing" 7 in (2.9) cor- 
responds to processes of the form f ,, + f A, - f, - ,d, - ,. Strictly 
speaking, supermixing need only include charge fluctuations 
Z(R - (Z(R), and the mean field can be included in the original hybridi- 
zation (2.4). However, we shall neglect mean-field effects because they do 
not affect the overall picture of the phase transition. 
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