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We introduce a rotating generalized coordinate frame, a concept necessary for a theoretical 
description of multipulse action on a spin system with an arbitrary nonequidistant spectrum. We 
consider the behavior of a nuclear spin system whose Hamiltonian includes the following: a) the 
principal interaction that forms the spectrum and consists of a Zeeman energy (interaction of the 
magnetic moments of the nuclei with the constant magnetic field) and a quadrupole energy 
(interaction of the electric quadrupole moments of the nuclei with the gradient of the crystal 
electric field); b) multiparticle spin-spin interactions that broaden the spectral lines; c) interaction 
with a multipulse rf field of arbitrary orientation. It is shown that any multipulse sequence acting 
on a spin system with a complex spectrum can be represented by a single-phase analog. The 
averaged Hamiltonian is constructed by using the method of canonical transformations and the 
Krylov-Bogolyubov-Mitropol'skii averaging method. Principal attention is paid to examples of 
averaging of interactions that broaden NQR spectral lines. 

PACS numbers: 76.20. + q, 76.60.G~ 

The idea of coherent averaging of interactions1 for the 
purpose of narrowing down NMR spectral line has spawned 
various high-resolution techniques for One of the 
most effective and promising ones is multipulse rf action, 
with which it is possible to increase by several orders the 
sensitivity of the NMR method in the study of weak interac- 
tions in  solid^.^ The theoretical description of such experi- 
ments is based on construction of the average Hamilton- 
ian2+ by using the Magnus expansion and the conditions for 
periodicity and cyclicity of the pulsed action. The behavior 
of a spin system subject to such an action by pulsed rf fields is 
then described by the average Hamiltonian only at definite 
instants of time-after the termination of the pulse cycles. 
Many experimental facts agree well with the conclusions of 
the average-Hamiltonian theory. The main objects of the in- 
vestigation are spin systems with a Zeeman, i.e., equidistant, 
spectrum. 

The first application of the average-Hamiltonian theory 
to spin systems with nonequidistant spectra was reported in 
Refs. 5-7, devoted to calculation of the degree of line nar- 
rowing in the spectrum of NMR with quadrupole splitting 
and in the spectrum of NQR at axial symmetry of the electric 
field gradient. Various different pulse sequences were con- 
sidered, as well as their modifications aimed at obtaining 
greater narrowing as measured by the second moments of 
the spectral lines. Attempts to explain the experimental 
NQR data8 with the aid of the average-Hamiltonian theory 
in the particular case of a system of quadrupole nuclei with 
unity spin were made by calculation in Ref. 9 and experimen- 
tally and theoretically in Refs. 10 and 11. 

It was recently established12-l6 that the average-Hamil- 
tonian theory is subject to certain restrictions, due to the 
incorrect form of the average Hamiltonian in higher-order 
approximations (starting with the ~ e c o n d ) , ' ~ , ' ~  as well as to 

the impossibility of describing the behavior of a spin system 
at times longer than T,. ''-I4 

A new approach to the description of the dynamics of 
equidistant-spectrum spin systems acted upon by arbitrary 
pulse sequences was proposed in Refs. 12-14, where a ca- 
nonical-transformation method is used. In this approach it 
was possible to overcome the difficulties of the average-Ha- 
miltonian theory and study the behavior of a spin system at 
any instant of time, including times much longer than T,. In 
the case of NMR it was demonstrated that dipole-dipole in- 
teractions can be fully or partially averaged by various pulse 
sequences. Application of this approach to spin systems with 
nonequidistant spectra was restricted only to the case of 
NQR of nuclei with unity integer spin.".18 

A theoretical approach to the problem of averaging the 
interaction in periodic action on a spin system, based on the 
Krylov-Bogolyubov-Mitropol'skii averaging method, was 
used in Refs. 15 and 16. This method yielded a correct 
expression for the average-Hamiltonian in all perturbation- 
theory orders, as demonstrated1' for a spin system with equi- 
distant spectrum. Nonstationary perturbation theory was 
used to investigated dipolar heteronuclear spin systems19 
and model systems (one-dimensional spin chains)." 

Most studies of multipulse averaging deal thus with 
spin systems with equidistant spectra, describable by a Ha- 
miltonian that includes linear functions of spin operators 
(NMR). This situation was apparently brought about by two 
circumstances connected with the equidistant character of 
the spectrum: 1) the transition to the interaction representa- 
tion is equivalent to a transition to a rotating coordinate 
frame (RCF) and can be effected by a simple unitary trans- 
formation; 2) the action of the pulses reduces to rotation of 
the spin operators. For spin systems of quadrupole nuclei 
with arbitrary spin, the use of the new approaches to the 
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problem of multipulse averaging meets with difficulties. 
Only for J =  1 did the introduction of special operators2' 
permit the solution of the problem of multipulse action on a 
quadrupole system to be reduced to the case of systems with 
equidistant spectra. 17.18 

Our present purpose is to construct a theory of multi- 
pulse averaging ofinteractions of spin systems with arbitrary 
nonequidistant spectra by using the method of canonical 
transformations and the Krylov-Bogolyubov-Mitropol'ski? 
averaging m e t h ~ d . ~ ~ . ~ ~  The need for solving this problem is 
connected with the increased interest, on the one hand, in 
raising the sensitivity and the resolution in regions bordering 
on NMR (e.g., NQR), and on the other hand in investiga- 
tions of relaxation processes by using multipulse methods. 

1. TRANSFORMATION TO A ROTATING GENERALIZED 
COORDINATE FRAME (RGCF) 

In the laboratory frame, the behavior of spin systems 
with arbitrary (equidistant or not) spectrum, formed by the 
Hamiltonian (Xo) of the basic interaction, is described by 
the Neumann equation (3 = 1) 

wherep(t ) is the spin-system density matrix in the lab and 

% ( t )  =~,+&4,,+~, ( t )  . (2) 
In the general case the Hamiltonian Po can consist of a 

Zeeman part (XM ) and a quadrupole part (XQ): 

where y is the gyromagnetic ratio of the nuclei with spin J, 
while eQqL and q are the quadrupole-interaction constant 
and the asymmetry parameter of the electric field gradient 
(EFG). Depending on the relation between the Zeeman 

11 - yHo) and the quadrupole (IIXoll - eQq:=) energies, 
one distinguishes between the following cases: 1) NMR 
(eQq:= = 0); 2) NMR with quadrupole splitting (yHo>eQqL); 
3) nuclear spin resonance (yHo - eQqZ); 4) Zeeman effect in 
NQR (YH,<~Q~;~), and 5 )  pure NQR (yHo = 0). 

The Hamiltonian XI,, of the particle system includes 
the single-particle interactions (X1 ,, ), i.e., the interactions 
with the inhomogeneities of the magnetic and electric (intra- 
crystalline) fields, the chemical shift, and others, as well as 
paired interactions (X2 ,, ), i.e., direct dipole-dipole, indi- 
rect spin-spin interactions, and others. 

The Hamiltonian of the interaction with a multipulse 
radiofrequency (rf) field that can in general have several fre- 
quencies is of the form 

28, ( t )  =- C 7 1 H i P  cos ( o p t + f P v ( t )  ) f P ( t ) ,  (4) 
P 

where& (t ) and f z(t ) are functions that reflect respectively 
the time of the appearance of the rf-field pulses and the 
changes of their phases at various applied frequencies o,. 
The carrier frequencies of the pulses w, can be close to or 
equal to the spin-system-spectrum frequencies determined 

by Xw All the spin operators will be considered in a basis in 
which the Hamiltonian Xo is diagonal. We introduce the 
projection operators em, ((m' 1 em, In') = S,,. a,,. ) (Ref. 24) 
and express in their terms the Hamiltonian X ( t  ): 

28 ( t )  = (Sp 1 )  -'x o m n O e m m + ~  Gmniemni 
mn imn 

i > j  rnn m'n' 

+ C C 2 y ~ ~ ~ 1 ~ . ~ f ~  ( t )  cos ( o p t + f P v  ( t )  ern.. ( 5 )  

The Hamiltonian Xo is expressed here in terms of the eigen- 
frequencies wO,, = R O, - R :, where R 0, are the eigenvalues 
o f X o a n d S p  1 = W +  1. 

We transform to the representation of the rotating gen- 
eralized coordinate frame (RGCF)25 with the aid of the oper- 
ator 

mn 

The spectrum of the operator A is defined as follows: The 
quantities w,, corresponding to the frequencies w:, at 
which the pulses are applied are chosen to be exactly equal to 
o,; the remaining frequencies are assumed equal to w in .  
Transforming in Eq. (1) with the aid of the operator 
u(t ) = exp(iAt )to theRGCFrepresentation, i.e., substituting 
p(t ) = u-'(t p ( t  )u(t ), we obtain 

idpldt= [%, p ( t )  1, (7) 

i 
= C J-', gmniemni+ TI C d 2 n m ~ . ~ e m ' e m ~ n , .  

i Inn i > j  mn m'n' (gb) 

2, ( t )  = TI y, Zmnp{6mp,m, , ,n  e x p [ i f P v ( t )  I 
P mn 

We have left out of (8) the terms that are nonsecular relative 
to &Po and contain rapidly oscillating factors with frequen- 
cies w,, . The frequency detunings A,, are defined as A,, 
=Am:, -om,; S,, are Kronecker symbols; the pulse 

functions f F(t ) of an arbitrary pulse sequence with period t $ 
have a form similar to that in Ref. 14: 

k 
3t 

f p T ( t ) =  pip 8 (sin z i p )  + ~ p ~ P l  ( t )  , 
i -1 

t . 
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po and q, p = yHlp twf are respectively the angular durations 
of the first and of all the remaining pulses, S(t ) is the Dirac 
delta function, and S (sin x) is a generalized function.26 
Expression (9) takes into account the instants of the action of 
the pulses in the period t:. The pulse functions f$(t) that 
determine the instants when the phases $; of the pulses 
change are also determined by expression (9) subject to the 
substitutions q,,+$, and P ~ - + $ ~ .  

The introduction of the RGCF representation allows us 
thus to take into account the influence of a multifrequency 
multipulse action on a spin system with arbitrary nonequi- 
distant spectrum, and separate the secular parts of the inter- 
actions. In Appendix 1 are given expressions for the secular 
parts of the Hamiltonians that describe the influence of the 
inhomogeneous broadenings and the dipole-dipole interac- 
tions in NQR when there is no axial symmetry of the EFG 
( ~ $ 0 ) .  A quadrupole spin system is the most typical exam- 
ple of a system with arbitrary nonequidistant spectrum. In 
the particular case of an equidistant spectrum and in the 
absence of degeneracy, the RGCF representation reduces to 
the GCF representation in NMR. 

2. CONSTRUCTION OF THE AVERAGED HAMILTONIAN FOR 
ARBITRARY PERIODIC PULSED ACTION 

The action of periodic rf-field pulses on a spin system 
consists of a preparatory pulse and a multipulse sequence. 
The density matrix @ + (0)) of the spin system immediately 
after the end of the action of the first (preparatory) pulse that 
takes the spin system out of equilibrium is the initial condi- 
tion for Eq. (7) which describes the behavior of the spin sys- 
tem under the influence of a multipulse periodic action. We 
transform in (7) to the interaction representation in mo- 
menta and detunings, i.e., we make the substitutions 

I 

=T exp { - i  J [ ( S p  1)  -' ~ m ~ e m m +  y, y, I m n p  { 8 m p  ,mmn 

where the symbol T stands for time averaging. To simplify 
the subsequent calculations we confine ourselves to single- 
frequency multipulse action. We consider initially single- 
phase pulse sequences, and then show that the result of the 
action of arbitrary non-single-phase1 multipulse sequences 
on a spin system with nonequidistant spectrum is equivalent 
to the result of the action of single-phase analogs of such 
sequences, as is the case in NMR.I3,l4 

We consider the action of the operator L (t ) in the case of 
the single-phase pulse sequence M W-4 (Refs. 2 and 3) (pulsed 
spin-locking (PSL)) on an arbitrary transition mo-+no (and 
fi,+TiO in the presence of degeneracy). During the time 27 of 
the period, L ( t  ) can be represented as 

L ( 2 z )  =exp (- iAazSs)  exp ( - i @ S , )  exp ( - - ~ A " T S ~ ,  (12) 

where A " and @ are respectively the effective detuning and 
the effective angular duration of the pulse, and depend on 
the parameters of the excited transition: 

Here r is the degeneracy multiplicity; A = oO,o,o 
- o = oO,o,o - o; K, K *, R, R * and R * are matrix elements 

of the operator (11) in the Zo representation, and the unity 
operator 1 determines the direction of the field Hi. 

The components of the Hermitian operator S(S,, S,, S,), 
which are defined in Appendix 2, satisfy the commutation 
relations 
[S,, Si] =is,, i ,  j ,  k=l, 2,  3 and their cyclic permutation 

so that L (27) can be represented in the form (14) 

The action of a single-phase multipulse sequence on a 
spin system with arbitrary nonequidistant spectrum over a 
period 27 is thus equivalent to the action of an effective field 
whose magnitude and orientation are determined from the 
relations 

cos (a er T )  =cos (+) cos ( A Y )  , 

sin ( @ / 2 )  cos ( @ / 2 )  sin (A?) 
a, = a2=0, as = 

sin (ole= T )  ' sin ( a  .E r) (171 > .  

In the particular case of spin J = 1/2 we haveA "-+A; @-+p, 
and relations (16) and (17) reduce to expressions (6) and (7) of 
Ref. 12. 

The unitary transformation operator (1 1) expressed in 
terms of the introduced operators Si (i = 1, 2, 3) is given by 

or, if (9), (16) and (17) are taken into account, 

n 
L ( t ) = T e x p { - i x O i 6  (sin- ' t , n) ( ~ ) t  (19) 

0 

where 8 = 20,,7 is the angular duration of the pulse of the 
effective field oriented along the axis a(a1, a2, a3). 

Resolving ziF into a secular part (en, ) and a nonse- 
cular part (Z:,, m#O) relative to the operator So = (as) 
(see Appendix 3), which satisfy the commutation relations 

and introducing the dimensionless time i = t /t,, we obtain 
for the density matrix an equation analogous to Eq. (6) of 
Ref. 14: 

idpldt = 8 [z y, ( f )  e-imeiVm, p ( f ) ]  . (21) 
m 

Here&=t,IIZintII, Vm =Z:t/IIZi,tll, andXmp)isape-  
riodic function with unity period. 

The value oft, in multipulse experiment is chosen such 
that E( 1. In this case the right-hand side of (21) is propor- 
tional to the small parameter&, and the entire equation takes 
the standard f ~ r m . ~ ' , ~ ~  
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We shall not describe here the procedure for the canoni- 
cal transformation of Eq. (21), since it is analogous for the 
spin system considered to the procedure of Ref. 14. On the 
one hand, this procedure yields, in any order in E,  the contri- 
butions to the time-independent averaged Hamiltonian, and 
on the other it provides an estimate of the contribution of the 
oscillating nonsecular terms to the absorption of the energy 
of the external fields by the system at an arbitrary ratio of 
we, and w,, a llFin, 11. TO reach our aim of finding the aver- 
aged Hamiltonian it is convenient to use the Krylov-Bogo- 
lyubov-Mitropol'skiy averaging method. 15,22,23 Expanding 
the function X, (t ) in a Fourier series 

we obtain the averaged Hamiltonian (accurate to E ~ )  

As shown in Ref. 15, the expression for the averaged 
Hamiltonian coincides with the mean Hamiltonian3 only in 
first order in E. 

We proceed now to discuss a multipulse non-single- 
phase sequence and consider by way of example the se- 
quences MW-2 (Refs. 2 and 3). In this case the behavior of 
the spin system is described in the RGCF by the equation 

idpldt= [AUSJ-f@ ( t )  S I + e :  , P ( t )  1, (24) 

where we have for the MW-2 sequence (t, = 4r) 

fQ(t)=cD- " [ 6 ( sin- '-' n) -6 (sin""'n)] . (25) 
t c t , t , 

The unitary transformation 

(26) 
yields 

=s, cos ( n- ' , ; " ) + ~ , s i n ( n G ) ,  

In the last expression we used the commutation relations 
(14). Taking the property f (x)S[f (x)] = 0 of generalized func- 
tionsZ6 into account, we get 

It can be seen from (27) and (29) that the action of the se- 
quence M W-2 differs from the action of M W-4 by a detuning 
change A "-4 " + ?r/27. In addition, the transformation 
(26) alters the initial condition, i.e., for the single-phase ana- 
log of M W-2 it will be produced, as it were, by a pulse shifted 
in phase by r/2. 

In similar fashion it is possible to obtain single-phase 
analogs of the sequences WHH-4, H W-8, and others, as was 

done in Ref. 14 for NMR. When constructing single-phase 
analogs of an arbitrary multipulse sequence it must be recog- 
nized that the following parameters change: a) the period, b) 
the detuning, c) the initial conditions, i.e., the phases of the 
first pulse. The first two conditions determine the magnitude 
and direction of the effective field that acts on the system and 
has two components, the pulse field and the detuning field. 

3. AVERAGING, BY MULTIPULSE ACTION, OF 
INTERACTIONS THAT BROADEN THE SPECTRAL LINES 

It is clear from the theory expounded in the preceding 
section that multipulse action leads to two types of averaging 
of interactions describable by the Hamiltonian Fin,-gen- 
era1 and selective. It is possible to choose (by a method de- 
scribed below) a pulse sequence that influences right away all 
the types of interaction, regardless of their nature. We call 
this general averaging. An example is pulsed spin locking 
(PSL) used in NMR.2 On the other hand, in the NMR region 
there were proposed and are being various pulse se- 
quences that average various interactions to different de- 
grees. Such an averaging is called  elective.^ To obtain selec- 
tive averaging when constructing pulse sequences of this 
type for spin systems with nonequidistant spectra, account 
must be taken of the actual structure of the secular parts of 
the interactions (see Appendix 1). 

We shall show that in the presence of interactions of 
arbitrary type it is possible to construct a pulse sequence that 
satisfies the condition of spin-locking (the so-called spin 
"capture"). Namely, the magnetization vector taken out of 
its initial equilibrium does not change, under the action of a 
periodic (with period t, (T,) pulse sequence, its direction in a 
time t>T2. The fact that the echo signals observed in each 
period do not drop to zero, i.e., the absence of total damping 
of the magnetization in a time t < TI, is evidence of averaging 
of the interactions that broaden the line (with the exception 
of the natural line width connected with the finite lifetime of 
the energy levels on account, say, of thermal motion). 

In NMR spectroscopy, PSL is of no interest for the 
study of weak  interaction^,^ but is used to investigate relaxa- 
tion proces~es .~ ' .~~  In the case of spin systems with nonequi- 
distant spectra, and particularly in NQR spectroscopy, the 
use of PSL is important not only for the study of relaxation 
but (as will be shown below) also to increase the sensitivity of 
the method. 

We consider first the action of single-phase PSL with a 
constant arbitrary @ (angular duration), 11 (phase) and A " 
(detuning, i.e., deviation from resonance conditions). We 
next describe the principle of selecting a universal PSL, in 
which the phase can vary periodically. 

It was established in the preceding section that the ac- 
tion of a multipulse sequence on a spin system is equivalent 
to the action of an effective field o,, along the a axis, i.e., it is 
characterized by a Hamiltonian - w,,(aS). In the represen- 
tation of this effective field, which is strong enough to exceed 
all the local fields, the spin system is described by the Hamil- 
tonian (23). Clearly, the spin-locking state will be realized 
upon satisfaction of the condition 
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This condition means that the orientation of the magnetiza- 
tion of the spin system after the action of a preparatory pulse 
should coincide with the orientation a of the effective field 
produced by the multipulse sequence. The density matrix 
j5+(0) =p+(O) immediately after the action of the first pulse 
characterized by an angular duration @, and a phase $, can 
be calculated in the high-temperature approximation in the 
following manner: 

p+ ( 0 )  =I-pe-lQos~i%,e 'Doso,  P=l/kT,  (31) 

So= ( b S ) ,  b,=cos ($-I$,), b i n  - b3=0. 

(33) 

Taking (32) and (33) into account, we obtain forp+(O) 

where the orientation of the unit vector P along which the 
magnetization is directed after the first pulse is determined 
in terms of the parameters of the rf field of the preparatory 
pulse: 

pI=b2 sin @,, p2=-b, sin mot p3=cos @,. (35) 

Satisfaction of the conditions (30) requires satisfaction of the 
equalities 

Using (17), (33), (35), and (36) we obtain the connection that 
must hold between the parameters of the preparatory pulse 
and the pulse sequence in order to satisfy the conditions (36) 
and hence also (30). The phase difference $ - $, should be a 
multiple of r/2,  i.e., $ - $, = (2k + l)?r/2, where k = 0, 1, 
2. We have then 

Let us consider some particular cases. Let @, = ~ / 2 ,  
corresponding to the sequence 90+0 - (7 - @+o + ,, - r)"; 
relation (37) holds at A " = 0, and @ is arbitrary. Such a 
sequence does in fact produce PSL; the averaging of the in- 
teractions and the time of observation of the spin-echo signal 
envelope will in this case be maximal. We note that the use of 
such a sequence in NQR spectroscopy is quite promising 
because of the unique possibility of increasing the sensitivity 
and accuracy of tuning to the resonant frequency. Experi- 
m e n t ~ ~ * ' ~ . "  confirm this conclusion. Spin-echo . signals at 
14N nuclei in both polycrystalline8 and single-crystal1' 
NaNO, are recorded up to times - T, ( - 3 X lo4 msec)." 
The NQR line narrowing attainable in such experiments 
corresponds to values of the order of T,/T,. Investigations 
of 14N nuclei in methylamine and sodium nitrite'' using var- 
ious multipulse sequences have shown that the greatest nar- 

rowing (from 1 kHz to 0.1-1 Hz) is observed when the chosen 
sequence parameters satisfy relation (37). This relation is sat- 
isfied also at @ = T and A #O. 

For non-single-phase pulse sequences, the effective- 
field orientation vector a can be arbitrarily directed.I4 To 
satisfy condition (30) in this case it is necessary to choose 
preparatory-pulse parameters such as to satisfy relations 
(36), when all ai +O. As shown in Refs. 2 and 3, the desirabil- 
ity of using non-single-phase multipulse sequences is dictat- 
ed by the need for selective averaging of the interactions. The 
degree of averaging of various interactions depends on the 
choice of the sequence parameters that enter in the expres- 
sions for Z Z ,  . 

CONCLUSION 

One of the main features of a spin system with an arbi- 
trary nonequidistant spectrum is that the multipulse se- 
quence acts on only one of the possible transitions, whereas 
in the case of equidistant spectra (NMR) all the transitions 
are simultaneously excited. The question is: will the averag- 
ing effect be the same when acting on different transitions? It 
turns out that if the parameters of the pulse sequence are so 
chosen that they correspond to the given transition, the aver- 
aging effect does not depend on the acted-upon transition. It 
was established that for any system it is possible to choose a 
pulse sequence that can lead to a spin-locking state and aver- 
age any interaction. In selective averaging, the averaging of 
interactions for systems with complicated spectrum changes 
qualitatively. If the PSL state does not obtain in the action, 
none of the sequences can average the spectrum-line broad- 
ening factors for systems with nonequidistant spectra. A 
similar conclusion, based on the theory of the average Ha- 
miltonian in the case of NQR (with axial geometry of the 
EFG), was arrived at earlier in Refs. 6 and 7. For systems 
with equidistant spectrum, the results of the described the- 
ory agree with the already established experimental 
We note in conclusion that a similar approach to systems 
with complicated spectra can be used not only in the nuclear 
resonance region, but also in other radiospectroscopy re- 
gions, as well as for optical spectroscopy. 

APPENDIX 1 

When account is taken of the influence of inhomogen- 
eous broadenings on the spectral lines of a quadrupole spin 
system, it is sufficient to take into account in the Hamilton- 
ian (8b) at v#O only one term 

since the second term Bi, G Lee;, vanishes in the case of 
half-integer spins (G L, = O), and for integer spins it vanish- 
es because of the lifting of the degeneracy. In this case 

Aqi 
+ -[ (I+:) rnm+ (I-: )  rnrnl} 7 

2 
dqi= ( A ~ , ~ - A ~ , , ' ) / A ~ , ; ,  Aq,.i=q.i-q. , 3, 3 3 ,  i=5, Y, 2. 

(A. 1.2) 
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The operators I, are chosen in a basis where ZQ is diagonal. 
The secular part of the dipole-dipole interaction Hamil- 

tonian that enters in (8) can be represented in the case r ]  # 0 as 

3 - -- sinz O i j e - z t ~ i j ~ J  I emK'ed,iii+ C.C. 

4 I ' 

i > j  mm' 

3 -- +j . i 

2 
s in  Oij  cos Osij[ ( I m m z i Z m ~ R f ~ e m m ' e m ~ ; i i ~  

. z i  j + Z m ; : ~ + ' Z m ~ m . e m i ~ e m ~ m ~ )  e-'Wl+ C.C. ] 

Expression (A. 1.3) describes the secular part of homonuclear 
dipole-dipole interactions for half-integer spins. For heter- 
onuclear interactions it is necessary to take into account in 
P d y  only the terms in the first curly brackets. The last cir- 
cumstance reflects the well known phenomenon of "freez- 
ing" of dipole-dipole interactions for integer spins at 7 #O 
(Ref. 29). 

Expressions for the seclar parts of the inhomogeneous 
broadening and of the dipole-dipole interactions in the case 
of axial symmetry of the EFG were obtained earlier in Refs. 
6 and 30. 

APPENDIX 2 

The operatores Si (i = 1 ,  3,4) can be defined in general 
form as follows: 

st ( K r + R R W )  -% [ R  (e,n,e'Q+eFio~oe-i') 
+r (enOme-'*+e- mono - ei$\ i 

+K (e,,,ei*-enOm,e-'*) +K' (er;,mae-i9-e,ii,n,ei*) 1 , 
SI=L/2 ( K K I + R R 0 ) - I h  [ R  ( e ~ i i O e - i v - e n o ~ e i v )  

+Re (e,me-i*-eiiiOxDei") 

- ~ ( e ~ , ~ e ' * + e , , ~ , e - ~ * )  +K' (etA,n,ei*+eiiomoe-ilP) 1 , 
S3 = (emomo-enono+errr~-e~o~o) /2. (A.2.1) 

APPENDIX 3 

For single-particle interactions A?, ,, the resolution 
into secular and nonsecular parts relative to the operator S, 
is of the form 

I i mm' 

(A.3.1) 

For paired interactions int : 

{ K r ' h f  K O j  ,K;;j 
= 7 m m nn mm 

i j  mm' nn' 
*'/a1 KTnt; +K * t i ,  f ; ; } ,  

+Kmmr  mm 

i j  mm' nn' 

il mm' nn' 

(A.3.6) 

1  7 1 ;  m:. = yl yl r/ d ~ m , n n , ~ m m .  Knn , (A.3.7) 
ij  mm' nn' 

where 

~ ' l r l  
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