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The collective modes of the A-phase of superfluid 3He are classified in terms of the irreducible 
representations of the symmetry group H of the "vacuum." In distinction from the modes in 3He- 
B which are characterized by one quantum number Jand  a single parity (with respect to complex 
conjugation), the modes in 3He-A are characterized by two quantum numbers: Q and S, , and two 
parities P ' and P '. The charges Q andS, assume the values 0, + 1, + 2, and 0, + 1, respectively. 
Owing to the parities P ' and P ' those modes which differ in the sign ofeithers, or Q turn out to be 
degenerate. Consequently, if the wave vector q is parallel to the orbital anisotropy axis the spec- 
trum of modes will consist of two four-fold degenerate branches, four two-fold degenerate 
branches, and two nondegenerate branches. The splitting of the mode spectrum under the lower- 
ing of the symmetry H of the vacuum due to spin-orbit interaction and magnetic fields is investi- 
gated. An additional degeneracy of the spectrum of modes is exhibited in the weak coupling limit, 
on account of an enlargement of the group  o ow in^ to hidden symmetry. The consequences are 
analyzed of the asymmetry between quasiparticles and holes near the Fermi surface, which results 
in a splitting of the spectrum of modes with different signs of Q. This classification allows one to 
indicate necessary conditions for mutual mode pinning. All results have been obtained without 
the use of any equations describing the collective modes. 

PACS numbers: 67.50.Fi 

I. INTRODUCTION 

In superfluid 3He the order parameter A, is a complex 
3 X 3 matrix. The oscillations SA, of the order parameter 
around its equilibrium A,' (the "vacuum" of the system) 
form 18 collective modes in each of the superfluid phases of 
3He (see the review papers'.'). The majority of these modes 
were observed in experiments using NMR or ultrasound ab- 
sorption (see the latest experiments on ultrasound absorp- 
tion in the A and B phases of 3He in Refs. 3 and 4). In the B 
phase the collective modes are classified5 in terms of the 
magnitude J o f  the angular momentum, taking the values 0, 
1,2, its projection J, , and the parity with respect to complex 
conjugation. As far as we know, in theA phase there does not 
exist a satisfactory classification of the modes in terms of 
quantum numbers, although these modes are grouped into 
different "clapping" and "flapping" modes.' 

We carry out a group-theoretical classification of the 
collective modes of the order parameter, expanding them in 
terms of irreducible representations of the symmetry group 
H of the vacuum, since it is this group which determines the 
symmetry of the dynamical equations which yield the spec- 
trum of the collective modes. Those variables SAia which are 
transformed among themselves under an irreducible repre- 
sentation ofthe group H have the same oscillation spectrum, 
and the multiplicity (degree of degeneracy) of this spectrum 
coincides with the dimension of this representation.6 

In Section I1 we define the quantum numbers which 
characterize the various irreducible representations. In Sec- 
tion I11 we consider the splitting of the mode spectrum under 
a lowering of the symmetry by the spin-orbit (dipole) interac- 
tion and the magnetic field. In Section IV we consider the 
additional degeneracy of the mode spectrum which arises in 

the so-called weak coupling approximation, when the sym- 
metry H of the state becomes higher. We note that we do not 
need to investigate the dynamical equations, since all the 
required information about their symmetries is contained in 
the group H. 

11. COLLECTIVE MODES AND IRREDUCIBLE 
REPRESENTATIONS OF THE SYMMETRY GROUP OF THE 
VACUUM 

The symmetry of the dynamical equations which de- 
scribe the collective oscillations of the order parameter 
around one of its equilibrium values A, O is determined by 
the symmetry H of the vacuum state A, O. The group H is a 
subgroup of the general group G describing the "symmetry 
of the laws of physics," i.e., the symmetry group of liquid 
3He in its normal state. The latter group has the form 

G=SO/* XSO~~PXU(I) xzZ. (1) 

Here SO yb is the group of three-dimensional rotations of 
coordinate space, under which the matrix A, transforms as 
a vector in the first (orbital) index. Under the action of the 
group SO ;p of rotation of the three-dimensional spin space 
the matrix A, transforms as a vector in the second (spin) 
index. The group U(1) of gauge transformations takes A, 
into Aiaeiq. Finally, the group 2, consists of the two ele- 
ments 1 and T(TT = 1) where T is the operation of time re- 
versal, which in addition to t-t ' - t subjects the matrix to a 
complex conjugation CA, + A, *. 

We select the vacuum state of the A phase in the follow- 
ing form: 

Aiao=ia ( & + i ~ ; ) ,  (2) 

where %,9,2 are the unit vectors of a Cartesian coordinate 
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system. The subgroup H of the group G leaving this state 
invariant is 

H=UL (I) XU2 (1) XZz'XZz2. (3) 

Here U '(I) denotes the rotations of the spin space around the 
z axis; this group is generated by the spin angular momentum 
operator S, , and U '(1) is a combination of a rotation of the 
orbital space around thez axis by an arbitrary angle p, com- 
bined with a simultaneous multiplication of the order pa- 
rameter by the phase factor exp(ip ). The generation Q of this 
transformation has the following expression in terms of the 
angular momentum operator L and the gauge transforma- 
tion operator I: Q = I - L, . The discrete subgroups Z,' and 
2,' consist of two elements each, to wit: 1 and P ' (P 'P ' = 1) 
and 1 andP ' (P 'P = 1). TheoperationP 'isacombinationof 
a spin rotation by a around thex (ory) axis with a rotation by 
a around the z axis of orbital space. We write this in the 
form: P ' = S, (a)LZ (a). Each of the rotationsS,, (r) and L, (a) 
changes the sign ofA,, O, so that together they leave it invar- 
iant. The element P ' = L, ( r ) T  is a combination of time re- 
versal T with an orbital rotation by a around the x axis. 

The operators L, S and I act on the variable SA,, 
= U,, + iv,, according to the formulas 

The variables u, and via are the basis of an 18-dimensional 
representation of the group H which has to be decomposed 

TABLE I. 

into irreducible representations of this group. The group His  
nonabelian, since Q does not commute with P ' and S, does 
not commute with P '. Therefore the group has representa- 
tions of dimension higher than one, i.e., the collective-oscil- 
lation spectrum will be degenerate. 

The table on the next page lists a classification of the 
modes in terms of the quantum numbers of the irreducible 
representations of the group H. Each nondegenerate repre- 
sentation is characterized by a single set of quantum 
numbers Q, S, , P ', P2,  or by several, if it is degenerate (the 
second column of the table). The first column indicates the 
basis of the representation. The subscripts 1,2,3 denotex, y, 
z, respectively. Since SA, is a vector both in spin and in 
orbital space, it transforms according to the representations 
with S = 1 and L = 1. Therefore S, and L, can take on the 
values 0 and + 1. Since the operator I has the eigenvalues 
+ 1 the operator Q = I - L, will have the eigenvalues 0, 
+ 1, i- 2. 

The table permits one to elucidate the character of the 
collective-mode spectrum w(q) for qllf. The case of q not 
parallel to the orbital axis requires separate consideration, 
since it violates the symmetry with respect to rotations 
around the z axis and the charge Q is no longer conserved. 
Thus, the 18-dimensional representation of SA, decom- 
poses into two one-dimensional representations, four two- 
dimensional representations, and two four-dimensional re- 
presentations. Accordingly, for q((& there are a total of eight 
branches of the spectrum w(q) of which four are two-fold 
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Modes Variables 

Quantum Numbers 

Sound I u 2 3 - U l 3  ( 0 1 - 1 1  o I + l (  0 I -1 0 1  -1 1 +I  

1 

In the absence of 
d~pole interaction 
and magnetic field 

Q I p z I ; I p l  

1 0  

*I 

1 0  

Spin waves 

Taking into account 
dipole interaction 

6 I i2 

In magnetic field 

a l p .  1 PI 

*2 

~ l l + u z l ,  

u t z + v z z  

0 

"Clapping" modes 

In weak 
coupling 

a / a 

u 1 3 - u 2 3  Ii2r 1 O I + i )  *2 1 - 1 * 2 1  
irl I - 

- I i l I  
*2 I - I + I  

u11-u21 ,  ~ 1 1 - ~ ~ 2 1 + ~ 2 2 + u 1 2 ,  u l l - ~ z l ,  
U % + ~ L I ,  &2 - *I - -- u z i + u i l - u l z + ~ z z  u z r + u i l  1 
u12 -uz2 ,  *3 I - *2 1 - I -1  

U l l -U21-U22-u l2 ,  u12 -u22 ,  
I I L ~ + U , ?  ~ 1 2 1 + ~ 1 1 + ~ 1 2 - ~ 2 2  n z z + u i z  

+ I  

Orbital modes 1 u33 ,  u 3 3  I *I ( - ( 0 - I (  *I I - ) * I (  - I - 1 

*I 

-- 

Pseudosound I u 1 3 + ~ 2 3  I O 1'1 

Spin-orbit modes 

O IflI O I +I  I I +l ] +I  

- 

- 

0 1 - 1  I + I  
U11-u21 Pseudospinmodes 1 ( 1 -  1 "  1 - 1 * I - 1 0  1 I 
u 2 2 - u 1 2  

u 2 3 + ~ 1 3 t  

*I 

0 I -1 
u 3 1 + u 3 ~  

0 I + I  
u31 -u32  

*2 I - 
u 3 ~ f  ~ 3 1 ,  U31-U32 

U3Lr 0 3 1  

u32 ,  0 3 2  

* / I  - I + I  

IL32, U32 

* I [ - 1 - 1  
u 3 1 ,  U31 

*I 

* i - 

0 \ +I  I +I  
u l l + u z l  

0 1 + I  1 -1 
L L I ~ + U Z Z  



degenerate, and two are four-fold degenerate. Among these 
branches there are Goldstone bosons with w(0) = 0. These 
correspond to the variables 6A,  which are obtained from 
A, O through the action of elements of the group G. We enu- 
merate these modes, starting with the Goldstone modes. 

Sound. A nondegenerate Goldstone mode with charges 
Q = 0, S, = 0, which at low temperatures has the spectrum 
w, = cq where c is the speed of sound. 

Spinwaves. Two-fold degenerate Goldstone modes with 
charges Q = 0, S, = + 1. The degneracy is related to the 
fact that the symmetry P ' takes the state with S, = + 1 

$+l=~zl+ u1,-i ( u , ,+u~~) ,  

into the state with S, = - 1, 

$ - , = u ~ ~ + u ~ ~ +  ( U ~ , + V , ~ ) ,  

and vice versa: P I $ + ,  = $- ,, P I$- ,  = $+ ,. Therefore the 
waves have identical spectra w2,3 = csPq, where csP is the 
speed of spin waves (Ref. 7). 

Orbial modes. These are Goldstone modes with charges 
S, = 0, Q = + 1 which for high temperatures have a difus- 
sive character, and for low temperatures acquire a wave 
character (see, e.g., Ref. 7). In general there is no degeneracy, 
since the operator P2 includes the replacement t+ - t. 
Therefore P2 takes the states with Q = + 1 into states with 
Q = - 1, but with frequency of opposite sign; as a result of 
this wQ= + , #wQ = - 1. There is, however, degeneracy if 
we neglect the very small asymmetry between quasiparticles 
and holes near the Fermi surface. In this case, above the 
transition the system is symmetric under complex conjuga- 
tion C: A ,  + A ,  *, and below the transition it is symmetric 
with respect to P = L, (T)C. Now P does not contain the 
substitution t--t - t, and the orbital modes with Q = + 1 
and Q = - 1 have the same spectrum, which for T-0 has 
the form w*, = coTb Iq, I .  If we take into account the asym- 
metry between quasiparticles and holes the spectrum splits 
and for 9 4  has the form 

Here x,, is the orbital susceptibility, Lo-$(A / E ~ ) '  is the 
magnitude of the spontaneous orbital angular momentum in 
the A phase, arising from the particle-hole asymmetry (see 
the review6). 

Spin-orbit modes. The modes with the charges 
Q = * 1 ,  Sz  = + 1,  which are four-fold degenerate if the 
asymmetry between quasiparticles and holes is neglected. 
The modes have identical gaps in the spectrum, gaps which 
vanish in the so-called weak-coupling limit on account of the 
hidden symmetry (see Section IV). In this limit their spec- 
trum coincides with the spectrum of the orbital waves 
WG9 = corb 1 q, 1 . 

The remaining modes always have a gap in the spec- 
trum. The nondegeneratepseudosound mode and the doubly 
degenerate pseudospin mode have quantum numbers differ- 
ing from those of the sound and spin modes only in the P2 
parity. Moreover, there are the "clapping" modes-two- 
fold degenerate modes with Q = + 2, S, = + 1. 

We call attention to the fact that all representations are 
different, i.e., are labelled by different quantum numbers, 

and therefore for qlJ2 the collective modes are not pinned to 
one another. Mode-pinning and splitting of the spectrum 
occur when the symmetry H i s  broken, a topic we consider 
next. 

The magnitude of the splitting of modes with differing 
signs of Q on account of the particle-hole asymmetry is de- 
termined by the parameter (A /E~) ' .  

Ill. THE SPLllTlNG OF THE COLLECTIVE-MODE SPECTRUM 
ON ACCOUNT OF THE SPIN-ORBIT INTERACTION AND THE 
MAGNETIC FIELD 

The spin-orbit interaction (also known as the dipole in- 
teraction) lowers the symmetry G and consequently also H. 
In the group G the separate rotations of the orbital and spin 
spaces disappear, and only the joint rotation generated by 
the total angular momentum operator J = L + S survives: 

The order parameters A,' at equilibrium is given by the 
previous formula (2), since the minimum of the dipole energy 
is realized when the spin axis d and the orbital axis I coincide 
(in Eq. (2) h = i = &).8 The subgroup H of G leaving this state 
invariant became smaller compared to Eq. (3): 

Ii=U(1) XZ,. (6)  

Here U (1) is a one-parameter group defined by the generator 
Q = I  - J,, and Z2 is the group consisting of the two ele- 
ments 1 and P (i) 'P = I), where P = I  (r)J, (T) T, I  (T) de- 
notes multiplication by exp(i?r), J, (T) is a joint rotation by T 

around the x axis of the orbital and spin space. 
The splitting of the collective-mode spectrum on ac- 

count of the lowering of symmetry is shown in the third 
column of the table. If one takes into account the weak asym- 
metry between quasiparticles and holes then the splitting 
becomes complete, since states with opposite signs of the 
charge Q have different spectra. We have neglected this ef- 
fect in the table compared to the dipole splitting, and consid- 
ered these states as belonging to one doublet. 

It can be seen from the table that there are different 
modes transforming according to the same representations, 
which signifies that there is pinning between these modes. 
Thus, sound is coupled (pinned) to a spin-orbit wave having 
the same quantum numbers Q = 0, i) = - 1. It is possible 
that pinning is the reason for the recently observed9 en- 
hanced damping of ultrasound at low pressures, when the 
gap in the spectrum of the spin-orbit waves, a gap due to 
strong-coupling effects, becomes small. Similarly, there oc- 
curs a pinning between spin and orbital waves with identical 
charges Q = + 1 or Q = - 1. This halves the number of 
Goldstone modes. 

The magnitude of the dipole splitting is determined by 
the parameter 0, /A, where 0, is the Leggett frequency.' 

The magneticfield. The fourth column of the table lists 
the mode splitting scheme in a magnetic field without taking 
into account the dipole interactions and neglecting the 
asymmetry between quasiparticles and holes. The magnetic 
field H is directed along they axis so that the vacuum state 
(2) should correspond to equilibrium in the magnetic field 
(the spin axis dlli at equilibrium must be perpendicular to H, 
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Ref. 8). In the absence of dipole interaction and quasiparti- 
cle-hole asymmetry the symmetry group G in a magnetic 
field is 

G = S O ~ O ' ~  XU"P ( I )  X U ( I )  X Z Z ,  (7) 
where UP (1) denotes the rotations around they axis in spin 
space and Z2 consists of the identity and the complex conju- 
gation operator C. The subgroup H of this group describing 
the symmetry of the vacuum state (2) differs from (3)  by the 
absence of the rotations U '(1) of spin space around thez axis: 

Therefore the representations are described by the three 
quantum numbers: Q, P2 ,  and P '. 

We call attention to the fact that near the transition 
point into the A ,  phase the order parameter differs from Eq. 
(2), namely: 

AiaO= (a,+ihf,) ( f i + i y i ) ,  

where the coefficient A 4  far from the A ,  phase andA = 1 in 
the A, phase. This order parameter does not exhibit the P 
symmetry, and as a result of this only two quantum numbers 
Q and P ' are conserved. In this case sound and one of the spin 
waves, namely the one without a gap, have identical quan- 
tum numbers:Q = 0, P ' = + 1. This indicates the possibil- 
ity that they are pinned in a magnetic field near the transition 
into theA , phase. This pinning was first described in Ref. 10; 
it leads to an increase of the speed of second sound near the 
transition point into the A, phase.'1 The magnitude of the 
splitting of the mode spectrum in a magnetic field is deter- 
mined by the parameter fl,/A, where 0, is the Larmor 
frequency. 

IV. COLLECTIVE MODES IN THE WEAK-COUPLING 
APPROXIMATION 

An experimental investigation of the jump in heat ca- 
pacity at the transition point to the superfluid state1' shows 
that for low pressures one may neglect the strong coupling 
effects. In these conditions the A phase at equilibrium ac- 
quires additional degrees of freedomI3 leading to four addi- 
tional Goldstone  mode^.'^,'^ The spectra of all 18 collective 
modes have been obtained in the weak coupling approxima- 
tion by Brusov and Popov16 by means of the functional inte- 
gration method. We are interested in classifying these modes 
in terms of their quantum numbers by using symmetry con- 
siderations, without deriving dynamical equations. 

The weak-coupling approximation consists in assuming 
that the pairings in the two types of quasiparticle (with spin 
up and with spin down) are independent. In these conditions 
the order parameter of the A phase may be written at equilib- 
rium in the following general formI3: 

( 2 )  A ~ ~ ~ = ~ / ~  (eael!')+ea8ei ) , (9) 

where e, e(", and e(2) are three complex vectors, each of 
which satisfies the following (scalar product) equalities 

The order parameter (9) describes two subsystems. The Coo- 
per pairs of the first subsystem have spin fis, where 
s = e* xe/2i is a unit vector, and orbital momentum fiI('), 

where I(') = e*") x e(I1/2i. The pairs of the other subsystem 
have the opposite spin - h and orbital momentum +iI('). If 
the interaction between the subsystems (i.e., strong coupling) 
is taken into account, the orbital angular momenta at equi- 
librium become parallel, 1") = I(2), SO that the order param- 
eter (9) at equilibrium takes on its ordinary form. Indeed, 
setting 

,. ,. ,. - A 

1'1 '=1'2 '=2  e(')- ( 2 ) -  , -e -xi- iy ,  e = z f  i ( y  cos p-x sin p ) ,  
we obtain the expression (2) for arbitrary angle p. 

In this section we neglect the interaction between sub- 
systems, which corresponds to the weak-coupling approxi- 
mation. We will, however, consider the oscillations of the 
order parameter about the vacuum (2), to be able to include 
strong coupling effects. On account of the indeterminacy of 
the angles p ,  i.e., of the direction of the spin axis 
s = % cosp + 9 sinp, this vacuum belongs to a singular sub- 
manifold of the eight-dimensional region over which the or- 
der parameter varies (see Refs. 15, 17). This manifests itself, 
in particular, in the fact that the vacuum (2) has, as will be 
seen nine Goldstone modes, whereas the vacuum with 
1'') has only eight such modes,'' corresponding to the 
eight degrees of freedom of the order parameter (9). Owing to 
this singularity, the dynamical-equations symmetry group 
describing the transformations of the collective modes does 
not generally coincide with the symmetry group of the vacu- 
um, and we shall look for this group by means of other sym- 
metry considerations. 

We fix the s axis, prescribing an anglep, e.g.,p = 0. We 
thus distinguish between two types of Cooper pairs, with 
spins and - a. We first consider oscillations of the or- 
der parameter which do not mix the pairs of the two kinds. In 
this case the pairs of each kind have their own order param- 
eter, a complex vector + such that 

Aia='/2 (ea ( p = 0 )  gr'"+ea' (CL=O) $1') ) . (10) 

The variations S$(') and S$(') near equilibrium yield 12 col- 
lective modes, and on account of the independence of the 
subsystems, the Lagrangian which describes the dynamics of 
the S$(') and S$ decomposes into a sum of two identical 
Lagrangians: 

9=52( (6g:I ) )  +k (6$? ) . (11) 
In order to find the dependence of 9 on all 18 modes 

SA, in terms of the S$('v2) : 

Since the Lagrangian 2 (1 1) is always quadratic in SA, , it 
can be rewritten as a sum of independent Lagrangians for 
SA,, and SA, : 

9 = 2 2  (6Ai3)  + 2 g ( - i 6 ~ ~ ~ ) .  

The dependence of 2 on the remaining 6 modes SA,, can be 
uniquely reconstructed ifthe symmetry of 2 with respect to 
rotations around the spin z axis is taken into account: 

9 = 2 2  (6Ai3)  +&(-i6Ai2) + 2 2  ( - i6Ai , ) .  (12) 
It is clear that to the symmetry group (3), which is valid 

also in the presence of interaction between the subsystems, 

554 Sov. Phys. JETP 58 (3), September 1983 G. E. Volovik and M. V. Khazan 554 



additional symmetry elements are added, and these are dic- 
tated by the form of the Lagrangian 2 (12). These are qua- 
sirotations around the x and y spin axes, constructed in the 
following manner. Under a pseudorotation by an angle a, 
around the x axis the collective variables transform accord- 
ing to: 

6Ais+6Ai3 cos -+i6Aiz sin a., 

8A,z+-i6Ai3 sin % H A i 2  cos %. (13) 

The operators of these transformations are: S, = IS,, 
and .$, = IS,, where I is the generator of the gauge transfor- 
mations. Since I = 1 the operators IS, and IS, together 
with the operator S, form the three-dimensional group of 
pseudorotations s = (IS,, IS,, S, ), so that the effective sym- 
metry H in the weak coupling approximation has the form 

Since P2  does not commute with the components of s the 
collective modes have only the two quantum numbers Q and 
.$. Due to the pairing with spin 1 the quantum number 5 can 
only take on the value .$ = 1. 

The classification of modes in terms of the quantum 
numbers is given in the fifth column of the table. According 
to the table there are two three-dimensional and two six- 
dimensional representations. Sound and spin waves belong 
to one representation with .$ = 1 and Q = 0. In the gas ap- 
proximation they have the same spectrum w = vFq/v'3. 

The orbital and spin-orbit waves also belong to one six- 
dimensional representation with .$ = 1 and Q = + 1, and 
therefore the spectrum of the spin-orbit waves has no gap in 
the weak coupling approximation, i.e., the number of Gold- 
stone modes is effectively increased by 4, becoming equal to 
9. In the gas approximation the spectrum of all six modes is 
identical: w = vFlq, The Fermi-liquid corrections 
split the spectrum for q#O, since dynamically, i.e., for w # O  
they couple subsystems with different spins. The number of 
additional Goldstone modes does not change. 

Pseudosound and pseudospin waves with .$ = 1 and 
Q = 0 also form one representation. Owing to Landau 
damping their spectrum is not real.I6 The six-fold degener- 
ate modes 3 = 1 and 1 Q I = 2 have in the gas approximation 
the spectrum w = A.I6 

Strong coupling effects split the mode spectrum (the 
splitting scheme is indicated in the second column of the 

table). The spin-orbital waves acquire a gap proportional to 
the strong-coupling parameter.I5 

CONCLUSION 

The classification of the collective modes in terms of 
quantum numbers of the irreducible representations of the 
symmetry group of the vacuum allows one to determine the 
multiplicity of the degeneracy of the mode spectrum and its 
splitting under the influence of various symmetry-breaking 
interactions, without solving the dynamical equations. It 
also allows one to indicate necessary conditions for coupling 
of modes to one another. 

The classification can be extended to the A, phase. 
Here, as in the A phase, the collective modes are character- 
ized by two charges: Q, = I - L, and Q, = I - s,, each of 
which can take on the values 0, + 1, + 2. 
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