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We obtain the excitation threshold, growth rate, and spatial properties of a growing magnetic 
field in a conducting medium with a prescribed random motion that is reflection-invariant on the 
average and is also isotopic and instantaneously correlated. The propagation velocity of an initial- 
ly localized field is found. The behavior of the field in the subthreshold regime and the limits of 
applicability of the model are discussed. 
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1. INTRODUCTION We introduce also the correlation function f (r) 
Kazantsev' has proposed a model of magnetic-field <v i ( r , ,  t )  v i ( r , ,  t ')  )=lvf ( r ) g ( t - t ' ) .  

generation in an instantaneously correlated isotropic reflec- Obviously, 
tively invariant average random velocity field. The problem 
was reduced to solution of a second-order Schrodinger equa- f=-- 1 d 
tion for the correlation function of the magnetic field. Bound 3 f  dr ( f F ) .  

states correspond in this equation to dynamo solutions that 
increase exponentially with time. Some generalizations of 
the Kazantsev models were obtained in Refs. 2-4. 

The existence of bound states (of self-excitation) at large 
magnetic Reynolds numbers was noted in Ref. 1. Direct nu- 
merical calculations for a more realistically specified veloc- 
ity field (without instantaneous correlation and with 
allowance for the reaction of the magnetic field on the mo- 
tion) confirms the presence of self-e~citation.~ 

The excitation threshold was first estimated in Ref. 6 
and was later obtained in Ref. 4 using a different model. In 
this paper we refine and generalize the results of Ref. 6 con- 
cerning the excitation threshold, obtain the dependences of 
the growth rate and of the spatial form of the solution on the 
magnetic Reynolds number, and determine the propagation 
velocity of an initially localized field. 

2. EQUATION FOR THE CORRELATION FUNCTION 

The assumptions that the velocity field of an incom- 
pressible liquid is isotropic and has mirror symmetry mean 
that its correlation tensor can be represented in the form (see, 
e.g., Ref. 7). 

r=Irf-r21, i , j = l , 2 , 3 ,  (1) 
where the dimensional factor is separated, /is the correlation 
length, v is the characteristic velocity, and the angle brackets 
denote averaging over the ensemble of the realizations of the 
field velocity. The longitudinal correlation function F ( r )  is 
dimensionless, so that F(0)  = 1. It has a positive Fourier 
transform and satisfies the usual requirement F ( r ) 4  as 
r--t co .' Let, for the sake of argument, 

co 

In the instantaneous correlations approximation we have 
g(t - t ') = 2S(t - t '). In the problem of the turbulent kine- 
matic dynamo the function F (r) [or f (r)] is assumed specified. 
We shall consider below the characteristic forms of this 
function. 

We examine first in detail the evolution of an initially 
homogeneous distribution of a magnetic field with zero 
mean value. In Sec. 4 we shall discuss how to describe the 
behavior of an inhomogeneous (localized) initial distribution 
of the magnetic energy. 

We seek the equal-time correlation tensor of a diver- 
gence-free magnetic field in a form similar to (1): 

The determination for the longitudinal correlation function 
W(r,t ) reduces to solution of a Schrodinger type equation 
with variable mass but without a complex factor in front of 
the time derivative1 

and with a potential 

The time and the coordinate are measured here in units of 
A J2/u and A fi, where 

and we have introduced the notation 
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where R, = Iu/Y, is the magnetic Reynolds number and 
Y ,  is the magnetic-diffusion coefficient. We introduce also a 
correlation function analogous to f (r)  

(Hi(r,, t) Hi(r2, t )  >=w (r, t ) .  

Then 

The smooth decrease of F(r)  guarantees a decrease of the 
potential U at infinity. In accord with the dynamo-problem 
requirement that there be no external sources, we assume 
that w(r,t ) at least does not increase as space becomes infi- 
nite. 

We note that the substitutions dp = (2m)'I2dr and 
p = (2m)'I4+ reduce (3)  to an equation with constant mass. 
The potential U, however, is then expressed in terms ofp not 
explicitly but parametrically. 

3. CALCULATION OF THE EXCITATION THRESHOLD AND OF 
THE GROWTH RATE 

Since the coefficients of Eq. (3)  do not depend on the 
time, a growing solution can be sought in the form 

$(r,  t )  =eZitR(r),  

where y is the magnetic-field growth rate. This reduces the 
problem to finding the eigenvalues and the eigenfunctions 
for one variable 

d2R/drZ+2m (E- U) R=O, (6)  
where E = - y. 

The boundary condition R (0) = 0 follows directly from 
the definition of + (see (5)) and from the fact that 
w(0,t ) = lezY' (i.e., R -3, r-0). For E < 0 ( y  > 0)  the equa- 
tion has solutions that grow or decrease exponentially (like 
exp[ f (2mIE 1)1'2r]) as r-m. But since the condition that 
w(r,t ) decreaseas r-t w means that R (r)  cannot increase more 
rapidly than ?, only solutions R (r)  that decrease exponen- 
tially at infinity need be considered. It follows therefore, in 
particular, that for the solution that increases with time we 
have - 

0 

i.e., w(r) is of alternating sign. The condition (7)  means6 that 
in a growing solution the spectrum of the magnetic energy 
(H 2 ) / 2  = $ M (k  )dk takes at small wave numbers the form 
M (k  ) - k 4 ,  as it should for solenoidal fields.' 

The problem ( 6 )  was solved numerically by reverse iter- 
a t i o n ~ . ~ . ~  The eigenvalues and eigenfunctions at each step 
s = 1,2, ... of the iterations were calculated from the equa- 
tions 

1 a(#)(r.) E"+L'-E'".f - 
2m(r.) R(*+I) (r.) ' 

note that at each step R (" + 'I increases in inverse proportion 
to the difference E - E(") ,  but by normalizing the function 
R ("I [i.e., by transforming to 3 (s)]  we avoid large numbers in 
the calculations, and three or four iterations suffice to obtain 
a normalized eigenfun~tion.~ The second equation was ap- 
proximated by using a three-point scheme on a grid uniform 
in r'12. The obtained difference equations were solved by the 
run-through method. In the course of the solution we used 
the asymptotic forms of (6)  at zero and at infinity: 

E+ l  
r ' ) ,  r+O 

R (r)  = 

For R 'O' and E 'O' we can use in (8), for example, the quasiclas- 
sical approximation. 

Since the equation for the Fourier transform w(k,t ) is 
self-adjoint in 3, space, with a certain the Four- 
ier transform w(k,t ), which corresponds to the ground state, 
is positive. Taking into account the boundary condition at 
r = 0 ,  we conclude that the w(r, t )  corresponding to the 
ground state is the correlation function of the field. 

As the spatial correlation function of the velocity we 
consider two characteristic forms: 

F,=exp (-Slrf), F2=exp (-3/552), (10) 

where 

The factor + in (10) was chosen to make f (r)  - 1 - ? at small 
r. It can be shown that it does not matter whether < ( r )  is 
smooth or not at the point x .  These functions satisfy the 
necessary conditions F (0)  = 1 ,  F ( m ) = 0, have positive 
Fourier transforms, and are normalized by the condition 
f "(0) = - 2. The function F, has one characteristic scale, 
say I .  The function F2 has two characteristic scales, 
x = Re-'I4 and 1-Re'12, which simulate the Kolmogorov 
and the basic energy-carrying scales of hydrodynamic turbu- 
lence with Reynolds number Re. We recall that our length is 
measured in units of the so-called Taylor scale R (Ref. 7 )  
multiplied by a. This scale is not connected with any parti- 
cular characteristic point of the spectrum of the motions, 
and determines f "(0),  i.e., the slope of the pulsational veloc- 
ity near small r [see Fig. 1 ,  where ( (r)  -&I.  

The form of the potential U (r) for F,(r) and for four dif- 
ferent values of R ,  is shown in Fig. 2. Obviously, at small 
R, there are no discrete levels. The first level appears at 

Here r* is the value ofR at which JR (" + ' I  I is a maximum. We FIG. 1. Plot of the function ( r )  that simulates the functional velocity. 
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FIG. 2. Potential for F, = exp( - 3?/5), R m  = 4 (a), 25 (b ), 53, (c) 104 (d ). 

The correlation function w(r,t )/w(O,t ) for two values of 
R, is shown in Fig. 3. It "hugs" the ordinate axis with in- 
creasing R, , but there is always a tail with w(r) < 0. To find 
the limiting form of w(r) it is convenient to use the substitu- 
tion dp = d r G  (see Sec. 2). In the limit of large R, we 
obtain for $( p)  an equation that does not contain R, . Such a 
form of the correlation indicates that although the field be- 
comes concentrated to small scales -R ; "* with increasing 
magnetic Reynolds number, there is always an anticorrela- 
tion tail in the large scales. Thus, as the magnetic lines ap- 
proach one another they turn and add up. Consideration of 
fields in small scales only is therefore insufficient. An analy- 
sis of the results demonstrates by the same token the pres- 
ence of large-scale magnetic structures (of the same scale as 
the velocity field). The smallness of the amplitude of the w(r) 
tail, however, is evidence that these structures occupy a 
small volume (alternation). 

Figure 4 shows the dependence of the growth rate 
y(R,) on the magnetic Reynolds number for F,. We note 

FIG. 3. Correlation function of magnetic field for two values, R ,  = 10' 
and lo4, (indicated in the figure) and E;(r). 

FIG. 4. Rate of exponential growth of magnetic field as a function of the 
magnetic Reynolds number for F, and F, with different values of Re. 

that as at the intercept with the abscissa axis (y = 0) the 
y(R, ) curve has a finite derivative. This is due to the pres- 
ence of potential barrier similar to the centrifugal one, inas- 
much as at large r we have according to (4) 

For the same reason, the y(R, ) curve is uninterruptedly con- 
tinued into the subcritical region R, < (R, ),, (dashed in 
Fig. 4), where it has the meaning of the real part of the com- 
plex energy (quasistationary states). Obviously, d Im y/ 
dR, -0, R, +(R, ),, . This agrees with the known quan- 
tum-mechanical analysis of the spectrum of the Schrodinger 
equation. 'O 

At R, a 1 the field growth rate, in dimensional units, is 

where yo z 0.7 according to numerical calculations (see Fig. 
4). 

In the case described by the correlation function 
E;;(r,Re), the parameter Re appears in addition to R, . Of 
practical interest in our problem is the situation with R, ) 1 
and Re, 1. A potential well apears only at R, > 100 Re and 
is located at small r (of the order of the scale R I/'). Its 
maximum depth (as R, + co ) does not depend on Re and is 
again equal to - 3. On the (Re,R, ) plane of Fig. 5, the 
straight line (at Re > 10) 

FIG. 5. The region of self-excitation of the magnetic field in the F,(r,ReJ 
model lies above the straight line (single-hatched). The region where the 
model is realistic ( y  < v/l) is cross-hatched). 
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FIG. 6. Effective mass (which is the inverse of the turbulent-diffusion 
coefficient) as a function of r. 

separates the region of self-excitation of the field (on the left). 
The field growth rate is in this case much faster than (12): 
y- (u/l )RellZ, since I / A  - Re1/'. 

To conclude this section we note that the results can be 
qualitatively understood by using the quasiclassical approxi- 
mation. Although the use of this approximation is not veri- 
fied formally (in particular, the eigenfunction is not at all 
similar to the quasiclassical one), it does yield the depen- 
dence of the excitation condition on the parameters of the 
problem. This is possible because at large R, the quasiclassi- 
cal integral J J 2 m ( ~  - U) dr tends, albeit weakly (as In R, ) 
to infinity because of the growth of the effective mass (see 
Fig. 6) .  The estimate obtained6 for the threshold in the quasi- 
classical approximation differs from the value (1 1) calculat- 
ed above by not more than 20%. 

4. GROWTH OF THE FIELD WITH TIME IN THE ABSENCE OF 
SELF-EXCITATION 

When the magnetic Reynolds number is lower than the 
critical value there is no self-excitation and the spectrum is 
continuous and positive. However, as first noted in Ref. 11 
with two-dimensional turbulence as the example, at suffi- 
ciently large R, (but smaller than critical) the evolution of 
the initial field does not reduce to a smooth damping, and the 
magnetic energy can increase with time. In the two-dimen- 
sional case the effect is explained as follows. 

Imagine a magnetic field of very large scale. This field 
hardly diffuses initially, and only becomes tangled under the 
influence of turbulent diffusion, with the scale decreasing 
and the single-component vector potential conserved. 
Therefore the magnetic-energy density, which is proportion- 
al to the square of the vector-potential gradient, increases 
until ohmic dissipation comes into play. 

In the two-dimensional case the potential U (r) is always 
positive (see the Appendix) and takes the form of a centrifu- 
gal potential 2m U = 3/43, i.e., there is no potential barrier. 
the spectrum is therefore real and positive at all R, . The 
increase of the magnetic energy with time in a two-dimen- 
sional isotropic turbulence was demonstrated by numerical 

experiments by Pouquet12 and by Orszag and Tang,13 who 
specified at the initial instant a smooth field distribution 
with an energy spectrum of the type k exp( - k ). 

The effect of the growth of the magnetic energy with 
time can be understood also with the aid of Eq. (3). This 
equation, obtained assuming homogeneity and isotropy in 
the mean, is of course not suitable for the description of the 
behavior of the initial homogeneous field. It is possible, how- 
ever, to consider a field whose characteristic scale is still 
large enough (of the order of the characteristic length I of the 
velocity field) and its distribution can at the same time be 
regarded as isotropic. 

We are dealing here with a nonstationary problem de- 
scribed by Eq. (3) with initial condition $,, = ,  = $,(r). By 
virtue of the conditions imposed on w(r), the initial function 
$,(r) should vanish at r-+ cc and r = 0. Inasmuch as in the 
region r 5 R ; "' the potential U (r) takes the form of the 
"wall" 2/R, r2, the function $(r,t ) can be taken in this region 
to be the parabola r2w(0,t ), where w(0,t ) is the magnetic ener- 
gy. It suffices therefore to show that $(r,t ) increases at the 
point r, R , By the same token, we are interested in the 
solution of an equation of the heat-conduction type at the 
point r, . The presence of a centrifugal potential at large r 
can, as usual, be taken into account by changing the phase of 
the $-function. 

Let us specify the initial function $,,(r) in the form of a 
distribution with a maximum at r = r ,  - 1. This distribution 
begins to spread out towards larger and smaller r. The 
spreading over large distances is determined by the turbulent 
coefficient of diffusion and is rapid, as t - 'I2 exp( - r2/4v,t ). 
On going from r, to smaller distances, however, the diffusion 
coefficient Y ,  = (2m)-' decreases and tends to v, as r-0. 

The magnetic energy (which is proportional to $[r, ,t)] 
thus increases with time because of the exponential spread- 
ing of the initial distribution $,(r) which is concentrated at 
large r. Since the diffusion coefficient (the mass m) is vari- 
able, this growth is lengthened. Estimates show that the 
characteristic growth time depends logarithmically on the 
magnetic Reynolds number. After reaching the maximum 
the energy decreases in power-law fashion. 

We note that a scalar quantity, say temperature, cannot 
increase with time, since there is no "potential wall" here 
and the maximum of the correlator of the scalar proportion- 
al to $(r,t ) is located at r = 0, i.e., it can only decrease on 
spreading. 

In the three-dimensional case, at sufficiently large mag- 
netic Reynolds numbers, but lower than critical, the magnet- 
ic energy can likewise increase with time. The arguments 
presented above are by themselves sufficient to prove this 
statement. In contrast to the two-dimensional case, there is a 
potential barrier in the three-dimensional one. Therefore at 
certain R, close to critical an additional growth of the $- 
function is possible not only in the region of the viscous 
scale, but also in the velocity-field scale. This growth is due 
to the onset of a quasistationary state. Indeed, since Eq. (3)  
coincides with the Schrodinger equation when the substitu- 
tion t-+it is made, the quantum-mechanical behavior of 
$-exp(iEt ), E = E, - i r / 2  (Ref. 14) corresponds to 
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p e x p  (-2Et) sin (I't+8), 

i.e.,at the appropriate phase $ can increase with time be- 
cause of the initial increase of the sine function. 

5. EVOLUTION OF LOCALIZED DISTRIBUTION UPON SELF- 
EXCITATION 

So far we have assumed that the distribution of the ini- 
tial magnetic energy is uniform, and we were interested in 
the behavior of the correlation function w(r,t ), which de- 
pends only on the distance between the points r, and r, at 
which the values of the field are chosen. Let us discuss (as 
suggested by Ya. B. Zel'dovich) the evolution of an initially 
inhomogeneous distribution of the magnetic field. The spec- 
trum of this problem is always continuous: its upper bound is 
determined by the growth rate y. 

At a uniform distribution of the velocity, the change of 
the magnetic energy at a given point of space ?: = r, = r, 

is determined by the growth of the field on account of the 
dynamo process, and by its transport by the turbulent (and 
ohmic) diffusion. Over sufficiently long times, therefore, 
when the characteristic dimension of the inhomogeneities 
becomes larger than the magnetic-field correlation length, 
we have 

An equation of this type (with the nonlinearity taken into 
account) was first studied by Kolmogorov, Petrovskii, and 
Piskunov, and is widely used in combustion theory. 15.16 The 
principal feature of the solutions of Eq. (13) is that the sur- 
faces 2Y(F,t ) = const propagate with a velocity determined 
by D and y. It is known [IS] that this velocity is equal (in our 
notation) to 2(2yD )'I2. This is easiest shown by starting with 
a 6-localized energy distribution X(?:,O) = T J ( T ) .  We seek 
asolutionintheform2Y = n(7,t )exp(2yt ). Weobtainthenfor 
n simply the diffusion equation. Consequently 

1 
8 (P, t) = 

(4nDt) " 
The argument of the exponential can be represented in the 
form 

whence it is seen in fact that the surface 2Y = const propa- 
gates at a velocity 2(2yD )'I2. We note that the result remains 
the same when account is taken of the nonlinearity, which 
merely limits the growth of the amplitude. 

6. REMARKS ON THE REALlZABlLlTY OF THE CONSIDERED 
VELOCITY-FIELD MODEL 

Let us discuss the degree to which the foregoing results 
can be applied to real turbulent flows of a conducting liquid. 

For flows with a longitudinal correlation close to F,(r), 
i.e., containing in fact a single characteristic scale, the model 
studied above can be readily used to determine the excitation 
threshold and the growth rate, inasmuch as even the limit 
y-'>Z/U. 

The situation becomes considerably more complicated 
when we consider a correlator F,(r,Re) with two greatly diff- 
fering scales. In this case the model is self-consistent only 
near the excitation threshold, since Rey (R, ,Re) increases 
with Re as Re1/'. The self-consistency region y < u/l of the 
6-correlated model is cross-hatched in Fig. 5. These conclu- 
sions depend very strongly on the form of the function < (r) in 
the region x 5 r < 1. If it is assumed that f is proportional not 
to r1I3 but, say, to r"I2, i.e., F(r)=: 1 - A P ,  the field self- 
excitation conditions at a 2 1.3 (Ref. 1) turn out in the model 
considered to be independent of the relation between Re and 
13 
A\, . 

It is natural to expect that allowance for the finite char- 
acter of the correlation times of the velocity field leads to an 
integral equation for w(r,t ), and this equation goes over into 
the differential equation (3) only in the limit of short correla- 
tion times. Actually, certain model forms of such an equa- 
tion were used in Refs. 2 and 4. In the model of Ref. 4, the 
field self-excitation conditions turned out to be independent 
of the relations between1' Re and R, . The generation pic- 
ture is close to that obtained for the case of F,(r). It can be 
assumed that an effective "averaging" of the correlation 
function F2(r,Re) takes place in the integral equation, so that 
this function acts in fact like F,(r). We note that the choice of 
the exponential form of F,, see Eq. (lo), is not essential in 
principle. Calculations with the decreasing power-law func- 
tion (1 + ?)-I  and with the alternating-sign function 
(1 - ?/2) exp( - ?/2) show that the deviation from 
F, = exp( - 3?/5) is only quantitative (the threshold value 
of the magnetic Reynolds number changes somewhat). 

We have assumed that the spatial annd temporal varia- 
bles in the velocity correlator (1) are separable. We note that 
this separability is not obligatory as, e.g., in the Chandrasek- 
har turbulence theory (see Ref. 7). 

Summarizing, we can conclude that a reflection-invar- 
iant random velocity field is capable of acting as a hydro- 
magnetic dynamo at relatively small Reynolds numbers, at- 
tainable not only under astrophysical but also under 
laboratory conditions. 

We thank Ya. B. Zel'dovich and A. P. Kazantsev for 
discussions and helpful remarks. 

APPENDIX 

The correlation tensors of a two-dimensional isotropic 
divergence-free velocity field and of a magnetic field are of 
the form (cf. Refs. 1 and 2) 

dw rirh 
( i )  i.k=172; 

Here and below we retain the three-dimensional notation. 
It can be shown, proceeding just as in the three-dimen- 

sional case, that 
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1 ' 6R,-'+3F(O) +F ( r )  -4 f ( r )  dr r" 
$ = ~ e x ~ { ~ J l  -) = , W, 

2R,-'+F (0) -F ( r )  r 
t o  

U-3/(4Rm ?) as r-0 and U-3/8? as r-oo . If R ,  --too, 
then U-t3/16 as r-tO, i.e., unlike in the three-dimensional 
case the potential is everywhere nonnegative. 

''To avoid misunderstandings when results of different studies are com- 
pared, it must be borne in mind that the definitions of the magnetic 
Reynolds number vary. In Ref. 5, for example, the magnetic Reynolds 
number differs from that calculated by us for F,(r) by a factor 2/n, and in 
Ref. 6 the results are given for a magnetic number 2"*/iu/ 
v,,, = R,,,(2"2/i 11). 
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