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A relativistic theory of the spectral line shape is developed that is a generalization of the well- 
known results for one-electron atoms. The theory is based on the Gell-Mann and Low formalism 
for the evolution operator. The familiar Lorentz contour is obtained in the resonance approxima- 
tion by taking into account the self-energy corrections to the electron line of the initial state to the 
emission diagram for a single photon. It is shown that diagrams with self-energy corrections to the 
final state electron lines make contributions to the probability only if the width of the final state 
vanishes. To obtain the probability formula in the case of a decay final state, the specific decay 
channels of the latter must be taken into account (e.g., the single-quantum decay channel) and the 
emission diagram for two photons must be considered. In this diagram, it is necessary to take into 
account the electron self-energy corrections to the inner electron line. Then integration over the 
frequency of one of the photons leads to a Lorentz contour with a width equal to the sum of the 
single-quantum widths of the initial and final states. In the case of two-electron atoms, in addition 
to the self-energy corrections to the electron lines, it is necessary to take into account ladder 
corrections that describe the electron interaction. This yields the frequency shift due to the 
interaction. 

PACS numbers: 32.70.52, 3 1.30.J~ 

1. INTRODUCTION 

The problem of the natural width and shape of the spec- 
tral lines corresponding to transitions between the levels of a 
nonrelativistic atom'' has been solved, as is well known, in 
general terms with the use of quantum mechanics.' One can 
thus obtain the Lorentz shape of the spectral lines, for exam- 
ple. A rigorous theory of the shape of spectral lines can be 
developed, however, only on the basis of quantum electrody- 
namics. Such a theory has been constructed by Low2 for the 
one-electron atom. 

In Sec. 2 of the present paper, the basic premises of the 
adiabatic approach are formulated. In Sec. 3, the expressions 
obtained previously for the natural single-quantum width of 
the level of a relativistic atom are put down. Equations for 
the contour of the line of a single-quantum transition in a 
one-electron atom are obtained in Secs. 4 6  with the help of 
the adiabatic method. Finally, in Sec. 7, on the basis of calcu- 
lations carried out in the previous sections, an expression is 
obtained for the contour of the line of the single-quantum 
transition in a two-electron relativistic atom. 

In quantum electrodynamics, in contrast to quantum 
mechanics, the transition from the one-electron atom to the 

2. ADIABATIC FORMALISM 

many-electron atom is not trivial and requires special meth- We shall consider the multi-electron atom as a set of 
ads. Therefore, the problem of the shape of spectral lines in electrons interacting with one another through the electro- 

the case of a relativistic atom with several electrons must be magnetic field and moving in the Coulomb field of the nu- 

looked at a new. This is especially important for the study of cleus (the Furry picture). The EIamiltonian of the atom in the 

the spectra of multiply charged ions, which has important second-quantization representation has the form 

practical applications (diagnostics of high-temperature plas- 
ma). Multiply charged ions constitute a very clearly ex- 
pressed case of the relativistic atom since, in view of the 
small screening, the effective charge of the nucleus in them 
Z, Z Z  ( Z  is the actual charge of the nucleus) and at suffi- 
ciently large values ofZ, all the electrons become relativistic. 

In the present work, the problem considered above is 
solved with the help of the adiabatic formalism of Gell- 
Mann and This formalism turns out to be extremely 
useful for the construction of the perturbation theory in non- 
relativistic quantum mechanim4 In the relativistic theory of 
the atom it is used for the calculation of the level shift under 
the action of the interelectron interaction and for the calcu- 
lation of the width of the  level^.^.^ At the present time, there 
is an extensive literature on the application of this formalism 
both in nonrelativistic and in relativistic theories of the 
atom. 

h 

yhere H, corresponds to the noninteracting electrons and 
Hi,, is the interaction with the electromagnetic field. In the 
zeroth approximation, the energy of the N-electron atom is 
equal to 

N 

5-1 

where E~ are the one-electron energies, determined by the 
Dirac equation 

(x) cpi (x) =~icpi(x), 
k (x)  = a p + p - e ~  (x). 

In (4), a and B are Dirac matrices, U (x) is the Coulomb po- 
tential of the nucleus, priV. We use the relativistic units 
f i = c = m = l .  
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For the calculation of the shift in the energy level under 
the effect of interaction of the electrons, we can use the equa- 
tion of Gell-Mann and for which there are several 
equivalent representations: 

a 
= lim ihe<@0i5,(0,-m) 1 @o)-i<@o(Bl(~,O)- B,(O,-m) I Do) 

?.-+a de 

A 

Here S, (t,t ') is the adiabatic evolution operator determined 
by perturbation theory: - 

n-1 

i in-i 

S?' (t, tf)  = (i) "en JfIint(tl) e-'~~Jdt~, . . . , 5 Bint(tn) e-'lin1dt., 
t '  1' 

(7) 
h h 

Hint (t ) is the operator Hint in the interaction representation, 
@ O is the wave function of the atom in the zeroth approxima- 
tion, A is the parameter of adiabatic turning-on of the inter- 
action. Equations (5) are applicable both for nondegenerate 
states and also for those degenerate states in which the cor- 
rect linear combinations of the wave functions of zeroth ap- 
proximation are determined by symmetry conditions (in real 
systems-atoms, multiply charged ions-such states are in 
the majority). 

In some cases, a much simpler formula is obtained $r 
the level shift. If the considered matrix element of the S, 
operator is such that the initial state @ O is not encountered as 
an intermediate state, we shall call it irreducible. The contri- 
bution to the energy shift from the sum of irreducible matrix 
elements in nth order perturbation theory is equal to7 

AEUn= lim ihn(@"sFb(m, -m) @">.= lim ihn 
A-0 A - t O  

( nh (n) 
x(@OISA (0, -m) l@o>i,r= lim ihn((DOIS~ (m, 0) l @o)ir,, 

A-0 

(8) 

where the subscript "irr" of the matrix elements indicates 
their irreducibility. 

3. NATURAL WIDTH OF THE LEVELS 

For the calculation of the corrections of different orders 
by Eqs. (5) and (8), we can use the usual Feynman diagram 
technique in all the Furry representation. The electrons are 
pictured in the diagrams by solid vertical lines, with the ini- 
tial state at the bottom. The photons are pictured by wavy 
lines. The external electron lines of the diagram correspond 
to the wave functions pA (x) = pA (x)exp( - i ~ ,  t ), where 
pa (x), ( x r x ,  it ) are determined by Eq. (3). The internal 
electron lines correspond to the propagatorZ 

1 " 
S(x1x2) = Z;; J do exp io (ti-t2) r, Cp, (xi) gn (XZ) 

&,(I-i0) +o ' (9) 

where q,, is the Dirac conjugate to the function p,. The 
external photon lines correspond to the potentials 

in the case of absorption of a quantum, and to (A LksS)(x))* in 
the case of emission; etl (Y = 0,1,2,3) is the polarization vec- 
tor. Internal photon lines in the Feynman gauge correspond 
to the propagator8 

where r12= lx, - x, 1. It is convenient to use such a gauge for 
the photon lines that begin and end on the same electron line. 
In the case of photon lines that begin and end on different 
electron lines, it is expedient to distinguish between Cou- 
lomb and transverse photons. This can be done, since the 
each photon line is independently gauge invariant. The Cou- 
lomb photons (Coulomb interaction) is shown in the diagram 
by dashed lines. The internal Coulomb and transverse pho- 
ton lines correspond to the propagators7 

do exp [io (ti-&) f i l  o 1 r,,] 
- m 

The vertices of the diagrams correspond to the factors 
y,exp( - A  It I), where y, are the Dirac matrices. Finally, 
the factor ( - l)"en is set in correspondence to the entire dia- 
gram. 

We first consider a one-electron atom. In lowest order 
in the coupling constant, the imaginary increments to the 
energy appear first in the self-energy diagram of the electron 
(diagram 1). These increments yield the single-quantum ra- 
diation width connected with the emission of a single pho- 
ton. Diagram 1 is irreducible, and we can use Eq. (8) for the 
calculation of the level shift. Substituting the expressions for 
the propagators (9) and (10a) in the matrix element, integrat- 
ing over the times and calculating the limit 2 4  in (8), we 
obtain for the level shift of an atom in the state pA 

eZ l-ala~2 i 
A E ~  =-z (-znA(rS2)) = ~ E A - - ~ A ,  (11) 

2n z rlz AnnA 2 
n 

where 
m 

exp (il o I r,,) do 
(12) 

- Ca 
a,,, are the Dirac matrices acting on the various one-elec- 
tron wave functions. The real part of Eq. (1 I), SEA, diverges 
and is subject to regularization. In the case of a relativistic 
atom, the regularized quantity 6,  EA (the Lamb shift) was 
calculated in Refs. 9 and 10. The imaginary part of the shift 
(1 I), which determines the single-quantum radiative width 
of the level, is finite and, after calculation of the integral (12), 

504 Sov. Phys. JETP 58 (3), September 1983 L. N. Labzovskil 504 



reduces to the expression 

1-aia2 rA=-a 8 (en) 0 (bnA) ( - n ~ i )  (13) 
ri2 AnnA 

n 

wherep,, = E, - E, ,t9 ( x )  is the Heaviside step function. In 
the nonrelativistic limit at aZ( 1, the usual expression for 
the single-quantum level width of a hydrogen-like atom fol- 
lows from (1 3). 

4. SINGLE-QUANTUM TRANSITION: RADIATIVE SHIFT AND 
WIDTH OF THE UPPER LEVEL 

The amplitude of the single-quantum transition from 
level A to level B is determined in the lowest order in the 
coupling constant by diagram 2. In this case, when we are 
speaking of the decay of a quasiktationary state, it is natural 
to use the evolution operator S,(w,O), assuming that the 
state is produced at the time t = 0. The transition amplitude, 
calculated from the correspondence rules set forth in Sec. 3, 
is then equal to 

(i) (@BoISn (w, 0 )  I @Ao>=UsA/(~,-es-o,h-ih), (14) 

u B A = ~ ( $ ) '  [ (aem)exp (-kPhx) lBA (I5) 

where Ik,, I = wPh;wph is the frequency of the emitted quan- 
tum. 

We now consider diagram 3 of the third order in the 
coupling constant. Substitution of the propagators [(9) and 
(10a)l lead to the equation 

uBnr[rGi (1-a,a2) exp (il o l r12) ln ,n ,n ,~  
(16) 

n! nz 

We carry out integration in (16) over the times t,, t,, t,, and 
then integrate over the complex plane w,,  w,. The results of 
such integration turn out to be different for positive and neg- 
ative-frequency terms of the sums over n ,  and n, in (16). In 
what follows, we shall consider the contour of the spectral 
line in the resonance approximation, to which corresponds 
retention of only the single term n ,  = A in the sum over n ,  in 
(16). The nonresonant terms n , #A can be taken into account 
later as small increments by means of perturbation theory. 
Then 

In Eq. (17) we can also set A = 0 since, as will be shown 
below, the final result is finite for any value of the photon 

A 
c2 Cl c2 Cf cz Cl 

lNIUIlCl C- - - j -  \---A : , - - -1 lo , - - - ,- :D 
9 

4 d l  cz 'n' 
c2 A1 

DIAGRAMS: 1 through 11 

frequency w,,. Setting E, + w,, = E, in the nonresonant 
denominators in (17), and taking into account the definition 
(1 1) of AE,, we can write down (17) in the form 

( @ B O I & ( ~ ' ( ~ ,  0)  I @ao>,,=-UBaAEAl ( E ~ - E ~ - W , ~ ) ~ .  (18) 

Carrying out similar calculations, we can show that 
allowance for the nonresonant terms in all diagrams of type 4 
leads to the following expression for the transition ampli- 
tude: 

<@B"&(W, 0)  I @A0) ,,, 

Summing the resultant progression, we obtain 

Thus as A-0 Eq. (20) has a finite limit also at the point of 
resonance w,, = E ,  - E,, at which each of the Eqs. (14), 
(18), etc., diverges. Equation (20) is the analytic continuation 
of the expansion (19) over the entire complex w,, plane. 

Allowance of the infinite series of diagrams 4 deter- 
mines at the same time more accurately the location of the 
resonance and its width under the condition that the final 
state B has no width. We note that Eq. (20) is obtained direct- 
ly from (14) if we replace &, in the wave function of the initial 
state by E, + AE, . This is the usual procedure of determin- 
ing the line shape in quantum mechanics. 

The approach used here permits us to take into account 

505 Sov. Phys. JETP 58 (3), September 1983 L. N. Labzovskil 505 



(for relativistic atoms) those terms which determine the line 
contour far from resonance [the discarded terms of the sum 
over n , in (17).] In the first place, these terms contain a single 
resonant denominator, in which we must replace E, by 

+ AEA . This substitution corresponds to the fact that the 
entire equation (17) can be regarded as a correction to the 
emission amplitude, and for this correction we can again 
take into account the entire sequence of self-energy inser- 
tions in the electron line of the initial state. Second, the terms 
in (17) that we have mentioned contain a more complicated 
dependence on up, and, in particular, yield resonances also 
at oph = E, - ~ ~ ( n  #A ) i.e., at frequencies that are far re- 
moved from the center of the considered line. Here it is also 
necessary to take into account the self-energy insertion AE, 
in the internal electron line in diagram 3. For a nonrelativis- 
tic atom, frequence regions so far from the center of the line 
are not of interest. However, this can be important in the 
case of multiply charged ions, whose natural line widths are 
relatively large and whose individual line contours can over- 
lap. 

5. SINGLE-QUANTUM APPROACH: RADIATIVE SHIFT OF THE 
LOWER (GROUND) LEVEL 

Allowance for the radiative shift of the lower level is 
somewhat more complicated in the adiabatic theory. In this 
case, the diagrams which must be summed have singularities 
in the adiabatic parameter A. We begin with the calculation 
of the diagram 5. In place of Eq. (1 6), we now have 

Carrying out integration over the times and the frequencies 
w ,  and o,, retaining in the sum over n, only the singular 
term, n, = B and putting2 = 0 in the nonsingular and non- 
resonant factors, we obtain 

I [ r , i l  ( I - a I a 2 )  exp ( i I  o I r 1 2 )  IBn‘ntBUBA x - f d o z ,  ( - 2 i h )  
E,,  ( I - i O )  -EB-o 

n~ 
(22) 

Again using the definition (1 I), we write down (22) in the 
form 

Similar calculations in the higher-order perturbation 
theory (diagram 6) with account of only singular terms give 

(@,"I  I&(-, 0 )  I @ n o )  sing 

Setting R = 0 in the nonsingular factor in (24), we arrive at 
the equation 

However, we need to take it into account that expansion 
of the nonsingular factor of (24) in powers of R results in 
terms that do not depend on A and give a nonzero contribu- 
tion to (24). We expand the nonsingular factor in a series: 

and substitute initially the first term of the series (26) in (24) 
at k = 1 [at k = 0 the zeroth term yields (25)]. We obtain 

ih iAEB } ( ) (27) 
=----. -- I ,  +1 exp -- 

( E ~ - E ~ - O  )' 
ph 

The term of series (26) at k = 2, after substitution in (24), 
gives 

- ( i h )  

( E A - E B - ~ ~ ~  n=o 

Continuing these calculations and gathering the terms that 
differ from zero as R = 0, we obtain 

- - UBA exp ( - i A E B / 2 h )  
E ~ - E ~ - A E ~ - o  ph 

We now take simultaneous account of the contributions 
of the resonant terms in diagrams 4 and of the singular terms 
in diagrams 6. According to (20), it suffices here to replace 
E ~ ,  in (29) by E, + AEA , since we can assume that the calcu- 
lations in (29) are carried out from the very beginning with 
the corresponding wave function. 

We now write down the transition probability defined 
by the equation 

where k,, and e are the momentum and polarization of the 
emitted photon. When substituting (29) in (30) it is necessary 
to distinguish between two cases. In the first case, B is the 
ground state. Then rB = 0, AE, = S,EB and 
Jexp( - iAE,/U ) 1' = 1. Equation (30) in this case gives the 
usual Lorentz contour (after summation over the polariza- 
tion and integration over the directions of emission of the 
photon v=kDh /oDh ): 
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where 

is the partial width of state A, connected with transition to 
state N; w,, = E, + SR EA - E~ - SR EB is the distance 
between the levels with account of the Lamb shift for the 
upper and lower states. We note that although we have con- 
sidered the diagram of the self-energy of the electron in low- 
est-order perturbation theory, everything that has been said 
above applies to any irreducible insertion in the external 
electron lines and in particular to the vacuum-polarization 
diagram. To obtain regularized equations, it suffices to ex- 
pand these insertions in powers of the field, generated by the 
nucleus, and to single out the first few terms of the expan- 
sion, which are divergent. The diverging terms are regular- 
ized according to standard rules without fundamental diffi- 
culty.= 

Allowance of all possible irreducible insertions in the 
external lines leads to the result that the initial wave func- 
tions of the initial and final states (the solutions of the Dirac 
equation (3)) are replaced by solutions of a Schrodinger equa- 
tion that contains the exact mass operator.2 

A different result is obtained if the lower state B itself 
has width. In this situation, lexp( - i A E B / U  )I2 
= exp( - / U  ). As A 4 ,  this quantity is exponentially 

small, i.e., the contributions of all the resonant terms vanish. 
The contributions of all remaining terms that stem from the 
nonsingular terms in (22) and also from the nonresonant 
terms in (17) also vanish. Actually, as has been mentioned 
previously, such terms can be regarded as corrections to the 
emission amplitude and we can again take account of the 
sequence of diagrams 6, which leads to the appearance of the 
exponential exp( - r B / U  ). Thus, the diagrams 4 and 6 do 
not describe the evolution of the Lorentzian line contour at 
rB #O. Such a result for the decay state B is connected with 
the fact that we have not taken into account explicitly the 

dynamics of its decay. In fact, the decay of the states A and B 
can be considered simultaneously," as will be done in the 
next section. 

6. SINGLE-QUANTUM APPROACH: ALLOWANCE FOR THE 
WIDTH OF THE LOWER LEVEL 

We now particularize the problem by assuming, as in 
Ref. 11, that the lower level B can in turn go over to the 
ground state C via single-quantum decay. We consider the 
diagram 7, which describes the transition of the atom from 
state A to state Cwith the emission of two quanta. The corre- 
sponding amplitude is 

( @ C o 1 s ? )  (00, 0) 1 @Ao) 

In the sum over n in (33) we are interested in the term reso- 
nant at n = B: 

UCBUBA 
( @ c o ~ ~ ? )  (00,o) i(I)Ao) les = - 

[ ~ . ~ - e ~ - a ~ h - a p ; l l  [eB-eC-aI);II 

(we have set A = 0). 
(34) 

Taking into account the results of the previous sections, 
we can state that the summation of the self-energy insertions 
with resonant terms into the lowest electron line on diagram 
7 leads to the replacement of E, by E,  + AE, in (34). The 
summation of self-energy insertions in the upper electron 
line in diagram 7 leads, when account is taken of the fact that 
C is the ground state, to replacement of E, by E,  + 6, Ec. 
Thus, there remains to be taken into account only the self- 
energy insertion in the internal electron line of diagram 7, 
i.e., the radiative shift of the state B. 

We consider diagram 8 with this in mind. The substitu- 
tion of the expressions for the propagators and integration 
over the times and frequencies leads, after elimination of the 
resonant terms n, = n, = B, to the equation (we set A = 0 
here) 

or, with account taken of (1 I), to <(ocoIk(-, 0) I(DA0> ,, 

A ( L )  UcBUsaAEB - - UcBUBA exp (-i6REc/2A) 
(@c0lS, (-, 0) I@,">,, = 

[ E A - E C - O ~ - O ~ ~ ~  [sB-EC-o ph12 ' [ E ~ ~ A E ~ - E ~ - G & ~ - ~ ~ ~ - O & ]  [ea-ec-GREc-oj] 

Summing all the self-energy insertions with the resonant 
- - UcBUBA exp (-i6,EClW) 

terms in the internal line on diagram 8, and also taking into 
[ 0 ~ ~ - 0 ~ ~ - ~ ~ ~ - i r ~ / 2 ]  [oBC-O~;-~~B/~] ' 

(37) 
account the results of summation of such insertions for the 
external lines, we obtain Transforming from amplitude to probability by the for- 
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integrating over the directions of the photon emission and 
summing over the polarizations, we get 

rcBrBA daphdwp; 
d W a B , B c  = 

[ ( o A C - O ~ ~ - O $ ) ~ +  ' / & r A 2 ]  [ ( o B C - O ~ ; ~ ) ~ + ' / & ~ B ~ ]  ' 

(39) 
Equation (39) is the well-known formula for the resonance 
contour of the two-quantum-transition line." As has al- 
ready been noted, our method makes it also possible to con- 
sider the nonresonant part of this contour. 

Integrating (39) over w;, and assuming that the partial 
width rcB is identical with the total width TB of level B, we 
obtain the expression for the line contour of a single-quan- 
tum transition from state A to state B with account of the 
width rB : 

7. RADIATIVE TRANSITIONS IN A TWO-ELECTRON ATOM 

In two-electron atoms, in addition to the radiative cor- 
rections to diagram 2, it is necessary to take into account the 
interelectron interaction. This problem can also be solved 
using the adiabatic formalism. For simplicity, we limit our- 
selves to such states of the two-electron atom in which only 
one electron is excited. We first consider diagrams 9, which 
describe the transition from the excited state C J ,  to the 
ground state C,C, with account taken of the Coulomb inter- 
action of the electrons in the initial state. Using Eq. (lob) for 
the Coulomb propagator and summing the resonant contri- 
butions in a manner similar to what was done in Sec. 4, we 
arrive at an equation of the form 

Here AE EL, is the first-order perturbation-theory correc- 
tion, for the interelectron interaction, to the energy of the 
ground state: 

The second term in (42) arises from the exchange diagrams, 
which are obtained from diagram 9 by the exchange of the 
subscripts A,-C,. 

Considering diagrams 10, which describe the Coulomb 
interaction of the electrons in the final state, and using the 
same methods as in Sec. 5 (summation of the contributions of 
the singular terms), we find that Eq. (41) must be replaced by 

The contributions of both diagrams 9 and 10 are taken into 
account in (43). It is also clear from the results of the calcula- 
tions in Secs. 4 and 5 that the self-energy insertions in dia- 
grams 9 and 10 lead to the appearance of additions to the 

denominator of Eq. (43). The Lamb shift can, however, be 
neglected in comparison with the correction to the Coulomb 
interaction of the electrons. Then the addition to the de- 
nominator reduces to 1/2 iT,, where the quantity TA is de- 
termined by Eq. (13). 

It remains to consider the contribution of the trans- 
verse-photon exchange diagram 11. With account taken of 
all the previous calculations, we can state that allowance for 
the principal terms in the sequence of diagrams 11 leads to 
the appearance in the denominator of (43) of the increment 
AE gA, - AE gc , ,  where AE % is the correction to the en- 
ergy levels of the two-electron atom for the Breit interaction. 
A expression for this correction is obtained by substituting 
the transverse photon propagator (10c) in the corresponding 
matrix element. We shall only take into account the contri- 
butionAE % to the level width, neglecting for simplicity the 
real part of the Breit correction (although, at aZ - 1, the 
Breit and Coulomb interactions are of the same order of 
magnitude). Then an increment 1/2 irC2,, arises in the de- 
nominator of (43), where7 

I-ccia2 rc2A.=-a [---- sin t i3AtCr%2) ] 
Ti2 C ~ A I A ~ C ~  

(the minus sign in (44) is explained by the fact that the incre- 
ment arises from the exchange diagram, since the entire con- 
tribution of the direct diagram is real). The increment Tc2A, 
to FA, has a simple physical meaning: it cancels that term in 
Eq. (13) for FA, which corresponds to the transition to the 
state C, (which is occupied in the two-electron atom). 

Finally, we obtain for the transition probability an 
equation similar to (3 1): 

where wA,c2c,c2 is the transition frequency with account tak- 
en of corrections of the first-order perturbation-theory in the 
Coulomb interaction of the electrons, rA,(=,, 
= rA, - rCzA,. Thus, we can take into account in Eq. (45) 

the Coulomb interaction of the electrons in second and high- 
er order perturbation theories. 

In conclusion, we note that we could dispense com- 
pletely with Eqs. (5) and (8) for the energy shift. The ap- 
proach developed in this work allows us to find right away 
the dependence of the radiation intensity on the frequency of 
the photon, i.e., on a measurable quantity, without first cal- 
culating either the correction to the energy level or the tran- 
sition probabilities per unit time. Furthermore, since the 
nonresonant terms distort the shape of the Lorentz contour, 
calculation of the energy levels and transition probabilities 
(i.e., the location of the resonance and its width) have mean- 
ing only with the same accuracy with which we take into 
account the contribution of the nonresonant terms. 

''We can tentatively call the atom nonrelativistic if the inequality 
?/czaZ, 4 1, is satisfied, where B is the mean speed of the electron in the 
atom, c is the speed of light, a=ez/hcz 1/137 is the fine structure con- 
stant, e is the charge of the electron, f i  is Planck's constant, and 2, is the 
effective charge of the nucleus. 
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