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Superradiant properties of an extended uniformly excited medium, whose length exceeds the 
cooperative length, are examined. Numerical solution of the Maxwell-Bloch equations is used to 
show that there is a certain characteristic length that determines a new superradiant state. It takes 
the form of irregular oscillations and is characterized by a quadratic dependence of the intensity 
on the density of excited atoms. It is shown that a superradiant medium excited uniformly over 
some portion of it acts as a source of nondecaying On- pulses. 

PACS numbers: 42.50. + q 

1. INTRODUCTION 

Superradiance (SR), i.e., the coherent spontaneous de- 
cay of a system of excited radiators, is interesting not only as 
a possible means of producing a nonlaser source of strong 
coherent radiation, but also as a nontrivial physical pheno- 
menon. This is the reason for the increased attention that SR 
has attracted in recent years.' 

The appearance of a superradiant collective state is due 
to the phasing of the individual radiators during the initial 
noncoherent spontaneous decay. A quantum-mechanical 
description of field and medium is essential for a rigorous 
analysis of the initial stage of SR.' However, the basic fea- 
tures and characteristics of SR can be reproduced by consid- 
ering the interaction between a classical electromagnetic 
field and quantum-mechanical oscillators (the quasiclassical 
approach) if a particular model of the initial stage of the 
process is chosen. This model cannot be chosen unambi- 
guously and, depending on the parameters of the excited 
resonant medium and the method used to pump it,it can take 
the form of a source of polarized noise, an effective external 
field, or the initial angle of deflection of the Bloch 
The quasiclassical description also enables us to take into 
account the influence of the spatial inhomogeneity of the 
emission and excitation on the emission kinetics and the 
shape and parameters of the SR pulse. 

Different SR regimes appear, depending on the ratio of 
the length of a one-dimensional excited medium to its char- 
acteristic lengths 1, ,I, [see (6)  and (8) below]. They include 
the single-pulse state, the regularly ~scillating,~ the Arecchi- 
Courtens  oscillation^,^,^ and the state of irregular oscilla- 
tion. Karnyukhin and Kuz'min7 have analyzed the proper- 
ties of SR systems of length comparable with the emission 
wavelength A. In the present paper we examine the kinetics 
of SR in a uniformly excited medium whose length exceeds 
the length characteristic for regular oscillations and also dis- 
cuss the kinetics ofan SR medium a part of which is uniform- 
ly excited. 

2. IRREGULAR SUPERRADIATION OSCILLATIONS 

Superradiation by a uniform extended inverted medium 
of length I can be described approximately within the frame- 
work of the Bonifacio-Lugiato4 mean-field theory which ig- 

nores the spatial homogeneity of the field during the emis- 
sion process, if the initial conditions are homogeneous. This 
means that one can go over from the truncated Maxwell 
equation for the complex amplitudes to the simpler pendu- 
lum-type equation, for which the escape of the field from the 
medium is looked upon as effective damping. The properties 
of SR states are detqmined by the characteristic time 
T = (T, T ~ ) " ~ ,  for the effective energy exchange between the 
field and the medium, the collective decay time4 T, , and the 
time rD = 1 /C taken by a photon to traverse the medium. 

When TP,,, the system emits a single field pulse after a delay 

where the area under this pulse is 0 (t = t,) = n- and the de- 
flection of the Bloch vector is 

f , 
d is the matrix element of the atomic dipole moment, and t, 
and t, are the time limits of the pulse. 

When T, )T + T, and the functions 0 (x,t = 0) and 
E (x,t = 0) are initially homogeneous there is an appreciable 
volume within which the atoms will radiate simultaneously. 
In the single-mode case, the process can be satisfactorily de- 
scribed by the equation for the undamped pendulum in the 
mean-field theory up to t = 7,. The solution takes the form 
of a series of identical pulses whose shape is close to the 
hyperbolic secant, so that this SR state can be referred to as 
an undamped regular oscillation. The length of each pulse is 
then determined not by the time T, but by T, and is indepen- 
dent of I. The period of the field oscillations is equal to the 
period of the pendulum solution. The oscillating state is re- 
lated to the periodic energy exchange between the field and 
the medium (Burnham-Chiao oscillations8). The restricted 
size of the region in which coherent decay takes place has 
been examined by Arecchi and Courtenss and, in this case, 
leads to a random phase of the pulses. 

The case rP k T is described in mean-field theory by the 
equation for the damped pendulum, and its solution takes 
the form of damped regular oscillations. This description of 
SR is in qualitative agreement with experimental results (see, 
for example, Ref. 9) but, even in this case, satisfactory quan- 
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titative description must rely on allowance for the spatial 
inhomogeneity of the field amplitude and of the excitation of 
the medium and, consequently, on the solution of the com- 
plete set of Maxwell-Bloch  equation^.^.'^ It will be shown 
later that a rearrangement of the spatial structure of the field 
during the emission process in an extended medium leads to 
a new SR regime, namely, irregular oscillations (IQ). 

Consider SR in a continuous medium consisting of ex- 
cited two-level atoms. The medium is in the shape of a rod, 
and a plane electromagnetic wave propagates in the direc- 
tion of its axis. The influence of the wave traveling in the 
opposite direction will be negle~ted.~ The quasiclassical 
Maxwell-Bloch equations for this system have the form 

nt=-Re (PQ*) -T,-' ( n f l ) ,  ( 2 ~ )  

where L? = (d /fi)E (x,t ), E (x,t ), and P (x,t ) are the slowly- 
varying complex amplitudes of the electric field and atomic 
polarization density, n(x,t ) is the inverted population of the 
atoms, TI and T2 are the inversion and polarization relaxa- 
tion times of the individual atoms; a = 472d 2cno/.lz/Z = T - ~ ,  
no is the density of the resonant atoms, and the subscripts x 
and t indicate the corresponding derivatives. 

Equations (2b) and (2c) describe the motion of the Bloch 
vector R (pseudospin) under the influence of the field E. The 
components of this vector are normalized so that, initially, 
R2 = 1 P J f n2 = 1. When the processes in which we are in- 
terested occupy a time interval At(Tl,T2, the modulus of R 
is conserved, and the solution can be sought in the form 

P (x, t) =sin 0 (x, t )  eiT, n (x, t) =cos 0 (x, t )  , (3)  
where0 (x,t )and y(x,t )areslowly varyingfunctions. Thesim- 
ple relationship (1) between the angle of deviation of the 
Bloch vector and the field is valid in the case of exact reso- 
nance in the absence of dephasing between the dipoles and 
the field, i.e., when y(x,t ) = 0. Equation (2) then assumes the 
simpler form 

~ .~SC- '~~~=UC- '  sin 0. (4) 

SR by a uniformly excited medium is of considerable 
interest as a way of producing short, powerful pulses. It is 
precisely uniform pumping that can concentrate maximum 
energy in the system. The corresponding initial conditions 
are 

0 (x ,  0 )  =8,, O t  (x, 0) =0, (5) 

where 8, = 2N - ' I2  and Nis the total number of collectively 
radiating atoms. We note that we cannot then use the tradi- 
tional transformation to retarded time (as in, for example, 
Ref. 10) in order to simplify (4), because the initial conditions 
(5) will then no longer be homogeneous in the retarded time. 

Numerical integration of the equations was performed 
for parameter values corresponding to A = 1 pm, no = 1012 
~ m - ~ ,  and TI = 10 ns, since most of the experimental obser- 
vations of SR were performed in gaseous media, using atom- 
ic transitions in the infrared range. However, it is clear that 

FIG. 1 .  Amplitude of emitted SR field for a medium of length 
1 = 1, + 435-TC for the following parameters: 0, = lo-', rc = 0.7 cm, and 
I, = 3.2 cm. 

the SR regimes are determined only by the relative values of 
the characteristic parameters of the process, and these will 
be indicated in what follows. 

Figure 1 shows a graph of the escaping field as a func- 
tion of time. It was obtained by numerical solution of (4), 
subject to the initial conditions given by (5). The specimen 
was assumed to be long enough to ensure that all the above 
SR states were realized. Apart from undamped and damped 
regular oscillations at the beginning and end of the emission 
process, the graph also shows the presence of sharp, irregu- 
lar-oscillation peaks with irregular positions and large am- 
plitudes. We emphasize that the condition y(x,t ) = 0 im- 
posed above exludes the Arecchi-Courtens random 
oscillations. On the one hand, this enables us to propose for 
the random oscillations a mechanism that is not related to 
the dephasing of radiation emitted by different portions of 
the medium and, on the other, it enables us to investigate this 
process in its "pure form." 

Let us now examine systematically the evolution of the 
I 0  regime. The important parameter here is the cooperative 
length 

which determines the size of the region in which the coupled 
(coherent) decay of different atoms takes place.6 The transit 
time I,/c is equal to the SR delay time, so that a system of 
length 1 ~ 1 ,  will radiate coherently. The minimum value of I ,  
is equal to TC and is reached for systems in an initial Dicke 
state Oozn-/2, in which all the atoms decay simultaneously. 
When 0,g 1, there is an increase in the cooperative length I , ,  

but the decay of the different portions of the specimen does 
not occur simultaneously. The resulting spatial inhomoge- 
neity of the field is irregular in character and is also deter- 
mined by the reabsorption condition T, > T .  This state corre- 
sponds to damped regular oscillations of the emitted 
radiation (Fig. 2). 

When I, is constant, a change in the length of the speci- 
men leads to a change in the area 7, under the first SR peak. 
For I g ~ c ,  the area is 0, = n, but it increases to 2n- when the 
length reaches a certain characteristic value I =  I ,  [see 
(8)l.The increase in 6, can be followed directly in Fig. 2 by 
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FIG. 2. Time dependence of field (a) and inversion (b) at x = 1 for different 
1 < I, (regular damped oscillations): 1 )  1 = rc; 2) 1 = I,. The values of the 
parameters O,, T and I ,  are the same as in Fig. 1.  

inspecting the curves showing the inversion of the atoms at 
the edge of the specimen. At the time at which the peak 
emerges, the inversion is n(x = I ,  t = t,) = cos8,. We note 
that when I = I,, we have cos 8, < 1, so that this length is 
insufficient for the formation of a pulse of area 2a  and maxi- 
mum amplitude (compare this with Ref. 6). 

Further increase in I > I ,  leads to the appearance of an 
extended region I,=: I - I ,  of simultaneous homogeneous de- 
cay (Fig. 3) which, as follows from (4), can be described by 
the undamped-pendulum equation 

B l t = ~ - '  sin 8. (7) 

It is clear from Figs. 1 and 3 that regular undamped oscilla- 
tions are, in fct, observed only for a time 
O(t(lJc + T, = I /c. They are 2a  pulses and have a repeti- 
tion period that is a function of 8, and is equal to half the 

FIG. 3. Spatial distribution of the field (a) and inversion (b) in a medium 
with homogeneously pumped region x<l = 41, and unexcited region x > 1 
at different times: 1 )  t = r, + rr ,  2) t = I,/& 3 )  2 = 7,. 

period of the pendulum (7). The halfwidth of the peaks is 
then a minimum, given by T = (8aTl/cnJ 2)''2. TO provide a 
clearer illustration of the soliton properties of the pendulum 
solution, Fig. 3 shows the behavior of the emerging SR 
pulses in an identical resonance medium. As can be seen, the 
pulses propagate without change of shape and without ab- 
sorption. This process may also be looked upon as decay of 
the initial excitation into solitons in the extended medium. 

The restriction on the interval of time within which un- 
damped oscillations exist occurs because the trailing edge of 
the uniform-field region moves with velocity c. On the other 
hand, the rate of energy escape from the system is deter- 
mined by the pulse propagation velocity v < c in the absorb- 
ing resonant medium (see Ref. 1 1, p. 99 of transition). For the 
values of the medium parameters that we have used, 
v = 0.5c, so that a substantial fraction of the energy remains 
in the specimen after the end of the pendulum regime. It is 
clear from Fig. 1 that it is precisely at this time that the 
irregular oscillations appear, so that the reason for them is 
the residual excitation of the medium. Figure 3 shows the 
evolution of the strong spatial inhomogeneity of the residual 
field and excitation. The displacement of the homogeneous 
inversion region occurs more slowly than the motion of the 
field envelope. Amplification of the residual inhomogeneous 
field in the medium is possible because of secondary inver- 
sion of atoms, and this amplification is a maximum under 
complete inversion, i.e., when at least the first emitted peak 
is a 2a  pulse. Thus, in the problem with homogeneous initial 
excitation, the irregular oscillations appear only when the 
length of the emitted pulses T,,, is short enough, or when the 
length I ,  is long enough to ensure that the 2a  pulse succeeds 
in developing as a result of the complete decay of a portion of 
the homogeneous field. Numerical analysis of (4) shows that, 
with good accuracy, T,,, ~2r r . r .  The condition for the pres- 
ence of irregular oscillations is then written in the form 

When I < I,, only damped regular oscillations are observed 
(see Fig. 2). 

Figure 1 illustrates the case I = I, + 2 a ~ c ,  so that the 
irregular oscillations follow the two 27  pulses. The damped 
oscillations at the end of the emission are due to the decay of 
a small excited region at the left-hand edge of the specimen 
(see lower curves in Fig. 3). 

Numerical analysis of the I 0  pulses has shown that 
their intensity is a quadratic function of no, whereas the fact 
that the area and width of the 237 pulses are constant shows 
that their amplitude is proportional to T-', i.e., the intensity 
is a linear function of no. The number of 1 0  peaks and their 
amplitudes depend on the order of the inequality given by 
(8). The search for an accurate analytic expression for the I 0  
pulses is greatly complicated by the fact that they evolve in a 
highly perturbing amplifying medium and do not succeed in 
reaching a stationary state (see last section, below). 

Thus, the SR regime examined above differs from the 
Arecchi-Courtens oscillations and is not directly related to 
noncoherent (unphased) decay of different portions of the 
specimen, so that both mechanisms of formation of random 

500 Sov. Phys. JETP 58 (3), September 1983 Mantsyzov et a/. 500 



oscillations must be taken into account in the analysis of 
superradiance. Spatial inhomogeneities of the field and exci- 
tation of the medium are important for 10, so that the equa- 
tions of the mean-field theory cannot, in principle, describe 
the evolution of this SR regime. 

3. SUPERRADIATION BY AN INHOMOGENEOUSLY EXCITED 
MEDIUM 

The traditional approach to the theoretical analysis of 
SR is to consider the properties of the radiation produced by 
the fully excited medium (excitation by homogeneous or pro- 
gressive pump). On the other hand, in practice, it is also 
possible to achieve sufficient excitation in a portion of the 
medium. The resulting SR pulse will then traverse a region 
of resonant absorption before it escapes from the specimen. 
Let us denote the length of the excited region by I, and that of 
the unexcited region by I,. It then follows from the last sec- 
tion that pulses of undamped regular oscillations, which are 
2a  pulses, do not vary even for I, > rc (Fig. 3). However, 
when 1 <Ip, the area under the pulses is less than 2a  in the 
damped-oscillation regime, so that they undergo appreciable 
transformation over the length I,. 

Numerical solution of (4) for SR in a medium of length 
I + I, was performed for quasihomogeneous initial condi- 
tions [condition (5) with 19, = a within I,]. Figure 4 shows 
the field and inversion (broken curves) as functions of time at 
different points in the unexcited medium for 1 = 1.5 1, < I,. 
As expected, the shape of the oscillations changes very sub- 
stantially over the length I, -rc. The subsequent evolution 
of the field leads to the appearance of a stable localized pulse 
whose shape gradually changes at constant total energy and 
constant velocity of the center of mass. It is clear that the 
pulse of medium perturbation has the same features. The 
total area under the field envelope is zero. These properties 

are characteristic for a decaying Lamb O a  pulse.12.13 It is 
readily verified that our solution is identical to the O a  pulse, 
for which an analytic expression is available. In fact, if we 
substitute &(t - 2x/c)+,&t-tp, we find that (4) becomes 
identical with the canonical sine-Gordon equation 

This has two types of stable asymptotic solution, namely, 
kink ("loop") and breather ("breathing solution").'" 

The kink solution is 

(where u = 1 - 2v/c, and v is the velocity of the center of 
mass) and corresponds to the stationary 2 a  pulse examined 
in the last section. The breather has the form 

0=4 arctg {tg v sin [p cos v] sch [ (E-up) sin v] } , (9) 

where the parameter 0 < v < 7~/2 determines the characteris- 
tic width and amplitude of the breather. Direct comparison 
of the function O,(v,u;x,t ), obtained with the aid of (9), with 
the field amplitude shown in Fig. 4 enables us to conclude 
that, under the above conditions, the pulse of regular SR 
oscillations evolves toward a stable O a  pulse with v z  1. 

Numerical analysis of systems with different 1 and, con- 
sequently, different areas Oi under the ith oscillation bursts 
has shown that the evolution toward the O a  pulse is possible 
for I R rc (the corresponding areas are 0, k 3a/2, O2 5 - a/ 
2). An increase in I leads to an increase in the amplitude and 
energy of the peaks, and the resulting breather is described 
by (9) with large v and high velocity v. Moreover, the charac- 
teristic length for the transformation of the regular oscilla- 
tions into the 0 a  pulse increases from rc to 3rc. The latter 
value corresponds to the condition IeI,, for which two On- 
pulses with different velocities are formed. Finally, the evo- 
lution of the I 0  pulses for I,,rc leads to the formation of a 
chain of coupled nondecaying O a  pulses. 

Thus, the SR pulse from an inhomogeneously excited 
medium in which 1,1,R rc  is a stable O a  pulse (or a set of O a  
pulses) that propagates through the identical absorbing reso- 
nance medium without attenuation. The O a  pulse of SR can 
be observed, for example, in an experiment such as that re- 
ported by Gibbs et al.15 if the cell containing the cesium 
vapor is oriented in the exciting laser beam in such a way that 
only a portion of the volume is pumped. 

The authors are indebted to A. V. Karnyukhin for use- 
ful discussions. 
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