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A characteristic of the motion of a resonant atom in the field of a standing light wave is the 
existence of two trajectories of motion. The Landau-Zener transitions from one trajectory to the 
other lead to interference among the states of the translational motion. In the paper the dispersion 
law for an atom in a standing-wave field is found with allowance for the Landau-Zener transi- 
tions. In the above-barrier motion the interference effects lead to density-of-states oscillations 
with the Doppler frequency. In the subbarrier energy region strong mixing of the states of the 
continuous and discrete spectra occurs which manifests itself in anomalous behavior of the al- 
lowed (forbidden) band widths in the quasiclassical region. The physical manifestations of these 
effects are discussed. 

PACS numbers: 32.80. - t, 41.70. + t 

INTRODUCTION 

A characteristic of the motion of atoms in a resonant 
light field is the strong coupling between the internal and 
translational degrees of motion. This coupling depends on 
the parameters of the external field, and determines the spec- 
tral (optical) and dispersion (mechanical) properties of the 
atom. The mixing of the optical and mechanical characteris- 
tics of the atom is the most noticeable in an inhomogeneous 
field. 

In contrast to a traveling wave, which mixes only the 
two states of the translational motion with momenta p and 
p + k (Ref. I), a standing wave allows the occurrence of 
many-photon processes that intermix groups of states with 
different momenta. 

The motion of an atom in an inhomogeneous field can 
be described with the aid of an effective potential determined 
by the interaction of the induced dipole moment with this 
atom. A two-level atom possesses two potentials in accor- 
dance with the two possible signs of the dipole moment. At 
exact resonance the dipole moment is a constant quantity 
equal to the transition matrix element, and the equations of 
motion split up strictly into two independent scalar Schro- 
dinger equations with resonant potentials + V(x). At large 
detunings of the external field frequency the dipole moment 
adiabatically follows the field, and the equations of motion 
in the quasiclassical approximation split up into two scalar 
equations with nonresonant potentials f U(x) (Refs. 2 and 
-. 

states of the translational motion. This interference mani- 
fests itself, in particular, in oscillations of the density of 
states during the above-barrier motion. In the subbarrier en- 
ergy region the LZ transitions lead to the intermixing of the 
states to the continuous and discrete spectra corresponding 
to the nonresonant potentials. As a result, the allowed (for- 
bidden) band widths are not exponentially small in the quasi- 
classical parameter, in contrast to the case of a scalar particle 
(i.e., one without internal degrees of freedom) moving in a 
definite potential. 

The questions touched upon in the present paper are 
directly related to the theory of gas lasers operating on nar- 
row transitions, to the spectroscopy of weak-signal absorp- 
tion in the presence of a high-intensity standing wave, and to 
the problem of atomic scattering by a standing light wave. 

Let us note that a similar physical picture connected 
with LZ transitions arises in the magnetic-breakdown prob- 
lem,4 as well as in the case of electron transitions in semicon- 
ductors in the field of a standing wave.5 

EQUATIONS OF MOTION 

In the field of a standing wave 

E (x) e- iAt ,  E (x) =Eo sin kx, 

having a small detuning A relative to an atomic transition 
frequency, the Hamiltonian of a two-level atom has the form 

3 ) .  (f i  = 1): 
In the region of convergence of the + U ( x )  terms (near 

the nodes of the standing wave), the adiabatic character of fi=---- 1 d2 A 
V ( x ) 0 3  + - O f ,  

the motion can be destroyed, and, as a result of a Landau- 2m dx2 2 
Zener (LZ) transition, the atom is found in a state that is a 
superposition of adiabatic states. In this case we can only 

V (x) = V, sin kx, V,=dEo, speak of the probability of the atom's having a definite po- (1) 
tential and a definite trajectory of motion. In the present 
paper we study atomic dispersion in the field of a standing where o,,, are the Pauli matrices. In this representation the 
light wave with allowance for the LZ transition. amplitudes of the probability for finding the atom in the 

The motion of an atom in two potentials (i.e., along two ground and excited states are equal to ($+ $-)d. We 
trajectories) at the same time leads to interference among the shall, bearing in mind the case of narrow atomic resonances, 
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neglect the damping of the states. We are interested in the 
stationary states 

satisfying the quasiperiodicity condition 

wherep is the quasimomentum. Such a formulation of this 
condition is possible because of the invariance of the Hamil- 
tonian under a shift by half a period n-/k of the field with 
simultaneous interchange of the spinor  component^.^.' 

Below we shall consider the case of a strong field, when 
the atom traverses over a period of the Rabi oscillations a 
distance u/V, that is small compared to the wavelength of 
the light: 

Then we can use the quasiclassical solutions to the Schro- 
dinger equation: 

The quantities + U (x) play the role of effective poten- 
tials for the atom in the case of finite detunings. At exact 
resonance (i.e., for A = 0) the atom has, according to (I), the 
potentials + V(x). These potentials are shown in Fig. 1. Let 
us emphasize that the picture reduces to motion of the parti- 
cle in a definite potential only at exact resonance. For finite 
detunings the atom possesses a definite nonresonant poten- 
tial + U (x) or - U (x) only until the quasiclassical character 

FIG. 1. Nonresonant potentials + U ( x )  (continuous curves) and resonant 
potentials + V ( x )  (dashed curves). 

is destroyed and the atom goes over, as a result of the LZ 
effect, from one trajectory to the other. The probability for 
such transitions attains its highest value near the field nodes, 
where the distance between the + U (x) terms is smallest and 
equal to A. This occurs in the region of distances Sx near the 
field nodes of the order of ax -A /V,k( l/k. If the reciprocal 
transit time of the atom through this region is comparable to 
the term separation, i.e., if u/Sx -A, then the probability for 
a LZ transition is of the order of unity. Hence we define the 
characteristic frequency A, of the LZ transition as 

The frequency A, depends on the particle energy, and is 
the boundary between two characteristic frequency regions. 
For A)A, the LZ-transition probabilities are exponentially 
small, and the atom possesses a definite (nonresonant) poten- 
tial U (x) or - U (x). For small detunings, i.e., for A(A,, the 
transition probability is close to unity, and the atom pos- 
sesses resonant potentials + V(x). For A -A, the particle 
does not possess a definite potential, and the effects of the 
interference of the motions in the various potentials manifest 
themselves most strongly. 

ABOVE-BARRIER ENERGIES 

Let us consider the region of energies E > V, corre- 
sponding to the above-barrier motion. If the particle energy 
is not too close to V,, we can neglect the above-barrier reflec- 
tion, which leads to exponentially small mixing of the states 

and $:, $, and $:. The LZ transitions mix the states $, 
and $, ($7 and $:); therefore, the general solution for parti- 
cles traveling in the positive direction has the form 

In the neighborhood of a node of the standing wave we can 
linearize the potential, i.e., set V(x)= Vokx, lower the order 
of the equations, assuming the velocity to be constant and 
equal to u = ( 2 ~ / m ) ' / ~ ,  and reduce them to the standard 
form 

The solutions to $is equation determine the unitary LZ- 
transition matrix T, which gives the transformation of the 
coefficients of the general solution on going through a field 
node: 

Using the quasiperiodicity condition (2), we obtain the fol- 
lowing dispersion equation: 

sin(np/k-So) =* (4-R2)'" sin S, 
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The two signs in (7) ensure the periodicity of the energy: 
E(P + k )  =E(P). 

In the limiting case of large detunings, i.e., for A)Ao, 
the two dispersion branches p = kS ,,, /T + nk correspond 
to independent motions ofthe atom in the potentials + U (x). 
For small detunings, i.e., for A4Ao, we obtain the following 
dispersion equation: 

The first term on the right-hand side of this relation deter- 
mines the dispersion in the resonant potentials + V(x)," 
when the particle energy is doubly degenerate (for each sign 
ofp). The second term, which is proportional to A, lifts this 
degeneracy. 

In the general case, when A -Ao, the quantity R - 1, 
and the mixing of the trajectories is the most appreciable. 
The dispersion equation (7) has two branches, which no 
longer correspond to motions in definite potentials. The den- 
sities of states corresponding to these branches have the form 

n dp  - dSo* (1 -RZ)  '" cos S d S  ---- 
k de de  (cos2 S+RZ sinZ 8)'" dE 

Here we have taken into account the fact that the quasiclassi- 
cal phases So and S are large and that, as functions of E, they 
vary more rapidly than R. It is easy to verify that the group 
velocity d ~ / d p  is always positive. 

The density of states of each branch oscillates about the 
quantity d S d d ~ ,  which corresponds to the density of states 
in the resonant potential (see Fig. 2). These oscillations are 
due to the interference of the states during the motion along 
the different trajectories in the potentials + U(x), and are 
determined by the difference between the phases S, and S,. 
The number of oscillations coincides with the number of ze- 
ros of cos S, and, since S (E) decreases monotonically with 
energy, it is equal to 

The relative amplitude of the oscillations is of the order of 
unity if R - 1. In particular, for energies of the order of the 
barrier height, i.e., for E -  Vo, these characteristics manifest 
themselves at detuning values A - Vo(k '/m v,)'/~, which, in 
essence, does not differ very much from V,. The characteris- 
tic period of the oscillations coincides with the Doppler fre- 

FIG. 2. The density of states for the two dispersion branches at above- 
barrier energies E > V,,. 

quency kv. The density-of-states oscillations do not occur at 
high particle energies, when kv 2 Vo. 

It is noteworthy that the effective particle mass 

as a function of the energy is an alternating-sign quantity in 
the region of the density-of-states oscillations. And wherev- 
er the phase S is a multiple of T, the effective mass becomes 
infinite, which leads to a sharp reduction in the rate of 
spreading of the wave packet. 

In the high-energy limit, E) Vo, the problem can be con- 
sidered in the prescribed-motion approximation at all co- 
ordinates (and not just in the neighborhoods of the standing- 
wave nodes). Then the correction SE = E - p2/2m to the 
free-particle energy is the quasienergy of a two-level system 
with level spacing A in the periodic field Vo sin kvt, where 
v = (k/m)'l2. In this case SE depends on the Doppler fre- 
quency kv, and coincides with the results of Refs. 6,7, and 9. 

The effect of the density-of-states oscillation can be 
measured directly from the shape of the absorption line for a 
weak test signal in a gas of resonant atoms located in the field 
of a high-intensity standing wave, since the dependence of 
the absorption coefficient on the frequency is largely deter- 
mined by the densities of the states between which the transi- 
tion occurs, while the matrix elements depend weakly on the 
frequency. A resonance structure with characteristic energy 
scale kv ("dopplerons") has been experimentally observed by 
Oka et aI.lO~ll in a standing wave. Theoretically, these ques- 
tions for the case of weak fields and large detunings are dis- 
cussed in Ref. 12. In our paper we study the other limiting 
case, namely, the case of small detunings and strong fields 
[the condition ( 5 ) ] .  

SUBBARRIER ENERGIES 

In the subbarrier region E < Vo we can distinguish sever- 
al characteristic energy intervals. For positive and not too 
low energies the passage through the field nodes can be con- 
sidered in the prescribed-motion approximation, which sig- 
nificantly simplifies the problem. In this case the particle 
moves above the potential barrier - U (x), and can be found 
in the potential wells corresponding to the potential U (x). In 
the absence of transitions from one potential to the other, we 
should have either bounded motion with a discrete spectrum 
in the field + U(x), or unbounded motion with a continuous 
spectrum in the field - U(x) (up to the exponentially small 
quasiclassical effects of the subbarrier crossing and above- 
barrier reflection). Allowance for the LZ transitions and the 
reflections at the turning points x, during the motion in 
the potential U (x) leads to a situation in which the solution is 
a superposition of all the four functions (4). In this case $, 
and $: intermix at the points f x,, while, as before, $, and 
$,, $7 and $: intermix in the neighborhood of a field node. 
These processes can be considered separately if the turning 
points are located sufficiently far away from the field nodes, 
so that x, -E/~V,>SX-A /kVo, i.e., &%A. This inequality 
guarantees also the constancy of the particle velocity in the 
LZ transition region. Furthermore, the above-barrier reflec- 
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tion in the potential - U (x) can be neglected if the quasiclas- 
sicality condition for the motion near a field node is fulfilled, 
i.e., if l/mv - l / ( m ~ ) ' / ~ g 6 x .  Thus, the quasiclassicality con- 
dition for the motion and the condition for the constancy of 
the particle velocity near a field node are fulfilled at energy 
and detuning values satisfying the inequalities 

In this case the resonance detuning A can be either higher or 
lower than the characteristic LZ transition frequency A,(&), 
( 5 ) .  

For this region of the parameters the dispersion equa- 
tion has the form 

The phase q,, corresponds to quasiclassical motion in the 
potential U (x) between the turning points. The phase S, cor- 
responds to motion in the potential - U(x) between the 
points (O,?r/k ). The phase S + q, corresponds to motion in 
the resonant potential. 

For A (A, we have 

and the motion of the atom reduces to oscillations in the 
resonant potential. In the zeroth approximation in A /A, the 
quasiclassical energy levels are defined in the usual manner: 

In the next order in A these levels smear into bands with 
dispersion 

Heren = ?rd~/d (S + q, )is theclassicaloscillation frequency 
ofa particle with energy E, in the potential well V(x), and, in 
order of magnitude, R - kv- k ( ~ , / m ) ' / ~ .  

Notice that the widths of the bands are determined not 
by the exponentially small tunneling probability, but by the 
fact that the wave functions of a particle with energy E > 0 
moving in the potentials V(x) and - V(x) strongly overlap. 
The frequency of the transition between the degenerate 
states in the two neighboring wells [the coefficient of cos(?rp/ 
k ) in (1 I)] is the matrix element of the interaction energy A. 
The band widths 6 ~ ,  are much smaller than the level spacing 
R. The formula (1 1) is in accord with perturbation theory in 
terms of A (Ref. 13). 

In the quasiclassical limit R and A, do not change when 
n is changed by unity, but the phase P(E, ) changes signifi- 
cantly. This leads to an irregular variation of the band 
widths. In particular, for q, close to a(n + 1/2) we have 
SE, -0, and then we must take the next corrections in A / A ,  

into consideration. Such a situation obtains when the levels 
in the potentials V(x) and ( V(x)( coincide. 

For A >A, we have R ( 1, and Eq. (10) assumes the form 

If lcos S 1 is not too close to unity and tan q, is finite, then 
p =:kS/a + nk, which corresponds to motion of the particle 
in the nonresonant potential - U (x). At energies for which 
S (E, ) = m?r, there arise forbidden bands whose width is (if 
R tan q,( 1) equal to 

6 ~ ~ = Q ( - ) R ~ l n  I cos cp I ,  (13) 

where a(- '  = ?rd~/dS is the classical frequency for the 
above-barrier motion in the potential - U(x). Thus, for 
large detunings the forbidden-band widths are exponentially 
small in the parameter (A and do not depend on the 
phaseq, of the motion in the potential U (x). Forbidden bands 
arise under the condition q, (E, ) = ?r(n + 1/2) as well. These 
energy values correspond to the discrete levels in the poten- 
tial U (x) in the absence of LZ transitions. As to the widths of 
these forbidden bands, they are given by the formula (13) 
w i tha ( - '  replacedbyn(+) = ad~/dq,  and cow by l/sin S. 
In the particular cases in which cos q, and sin Svanish simul- 
taneously, the forbidden band has a width that is proportion- 
al to the first power of R: 

In the general case A -A, we have R - 1, and the spec- 
trum consists of allowed and forbidden bands having the 
same order of magnitude f2. By varying the field frequency 
we can reconstruct the spectrum from the discrete spectrum 
for small detunings to the superposition of the continuous 
and the discrete spectra in the limit of large detunings. 

The atomic dispersion corresponding to Eq. (12) is de- 
picted in Fig. 3. The branches I and 4 correspond to the case 
when tan q, is finite. The density of states here varies basical- 
ly like d S / d ~ ,  and has the usual square-root singularities at 
the band edges. The bands 2 and 3 correspond to the case 
when cos q, in this energy range passes through zero. In this 
case there occurs, as it were, a splitting of one band with 
characteristic width kv into two bands with the same overall 
width. The dispersion branches 2 and 3 have in the small R 

FIG. 3. Characteristics of the dispersion and the density of states in the 
subbarrier energy region A /2 < E < V,. 
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region sections with very small slopes ( -  vR 2), which results 
in a high density of states. Evidently, this is a manifestation 
of the discrete spectrum of the particle in the potential U (x) 
in a background of the continuous spectrum in the potential 
- U(x). 

Let us consider the energies E lying in the interval 
( - A /2, A /2), when the particle executes above-barrier mo- 
tion in the potential - U (x). For sufficiently large detun- 
ings, i.e., ford )A ,, the spectrum is continuous, if we neglect 
the exponentially narrow forbidden bands due to the above- 
barrier reflection. Thus, the width of the forbidden bands for 
E close to zero is of the order of 

9'-) exp [-const (AIA,)']. 

The detuning function in the argument of the exponential 
function is the result of the square-root behavior of the po- 
tential barrier in the vicinity of a field node: - U (x) z [A 2/ 

4 + ( ~ ~ k x ) ~ ] " ~ .  We see that, as the detuning decreases, the 
forbidden-band widths increase and attain a value of the or- 
der of 0. 

Finally, at energies E < - A /2 the particle possesses a 
discrete spectrum that is broadened as a result of the tunnel- 
ing. The strong dependence of the tunneling probability on 
the frequency is noteworthy. For A = 0 the particle passes 
under the barrier V(x), while in the case of small, but finite 
detunings a barrier - I V (x) I of significantly smaller width 
and height has to be surmounted. 

Certain characteristics of the spectrum of an atom in 
the field of a standing wave have been numerically analyzed 
by Letokhov and Minogin.I4 

THE CASE OF SMALL DETUNINGS 

When J E (  ( Vo and lA I (A ,, it may turn out that the ve- 
locity of the atom is not constant in the neighborhood of an 
LZ transition; in particular, the turning points may be close 
to a field node (see Fig. 1). Such a situation can be considered 
with the aid of perturbation theory in terms of A /A ,. 

In the momentum representation the equations (1') with 
the potential linearized in the neighborhood of a field node 
reduce to a system of two first-order differential equations. 
For A = 0 these equations are independent, and their solu- 
tion is elementary. For small A the solutions can be con- 
structed with the aid of perturbation theory in terms of A / 
A ,. Matching them with the quasiclassical solutions (4) out- 
side the field nodes, and imposing the quasiperiodicity con- 
dition (2), we obtain the following dispersion relation: 

Here p is the quasiclassical phase in the resonant potential 
between the turning points and CD is the Airy function, which 
in the present case is the overlap integral of the wave func- 
tions of the degenerate states in the resonance potentials 
+ V(x). When &)A ,, the formulas (10) and (14) coincide. 

From (14) we obtain the following expression for the 
atomic dispersion E, + SE, (P) in the form 

For positive energies the overlap integral oscillates, while for 
E, < 0 and IE, I )A, it decreases exponentially: 

@ ( 2  1 E, I/&) = ( 2  1 e, I /Al)-"* exp [-'/,(2 1 En 1 /A*)'] 

This is the subbarrier transmission coefficient in the poten- 
tial - I V(x)l. 

Let us emphasize that the widths of the levels with nega- 
tive energy very critically depend on A. Indeed, ford = 0 the 
level width is determined by the tunneling of the particle 
through the barrier V(x). In this case the barrier height is 
k Vo and the width is k r /k ,  so that the transmission coeffi- 
cient is - exp[ - const(m VJk 2)'12]. We see that the index of 
the exponential function contains, in comparison with the 
case of finite detunings, the additional large factor (Vo/ 
l E  1 1312. 

DISCUSSION 

A characteristic of the motion of a two-level atom in a 
standing wave is the presence of two trajectories of motion. 
The transitions from one trajectory to the other lead to inter- 
ference between the states of the translational motion. 

In the region of above-barrier energies this manifests 
itself in density-of-states oscillations with the Doppler fre- 
quency (the formula (8)). In the subbarrier energy region A / 
2 < E < Vo there occurs a strong intermixing of the states of 
the continuous and discrete spectra. In the case of large A 
this intermixing manifests itself in the fact that there occur in 
the background of a relatively smooth behavior of the den- 
sity of states spikes corresponding to quasidiscrete energy 
levels. At negative energies the possibility of the atom's mov- 
ing in the different potentials causes the level width to de- 
pend very critically on the detuning. 

In a strong field such a picture is described by the quasi- 
classical approximation. Far from the standing-wave nodes, 
where the field is strong and varies slowly, the atoms are in a 
superposition of states corresponding to definite trajector- 
ies. Near the field nodes the LZ transition intermixes these 
states. In this way we can describe the particle dispersion in a 
broad range of values of the parameters of the problem. Two 
regions of energy and detuning values are an exception. For 
&-A -A , the particle motion in the vicinity of a node is not 
quasiclassical. It can be shown that in this case the transition 
matrix is determined by a scalar Schrodinger equation with 
an effective potential in the form of a polynomial of the 
fourth degree. In the other range A - Vo - kv of the param- 
eters of the problem the LZ transition region essentially co- 
incides with the wavelength of the field. Since the motion of 
the atom at such high energies can be considered to be pre- 
scribed, the problem reduces to the solution of the standard 
equations for a two-level system in a monochromatic field 
with frequency kv. 

The frequency A,(&) separates the small and large de- 
tunings, so that for A <A, the atom moves primarily in the 
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resonant potentials rfr V ( x ) ,  while for A > A o  it moves pri- 
marily in the nonresonant potentials + U (x). 

As can be seen from (1 I), for A < A o  the perturbation of 
the spectrum of the resonant potential is small compared to 
the level spacing L!. The spectrum of an atom in a standing 
wave in the case of small detunings was recently considered 
by Compagno et ~ 1 . ~  in the strong-coupling approximation. 
To determine the boundary of the resonance region, the per- 
turbation of the spectrum was compared not with the level 
spacing, but with the level width, which in a strong field 
(Vo > k */2m) is exponentially small. Such a determination of 
the boundary of the resonance region is artificial. 

In conclusion, let us note that the interference effects 
considered by us can manifest themselves under different 
physical conditions. Besides the above-noted density-of- 
states oscillation effect, which is important in the problems 
of slow-atom spectroscopy, they manifest themselves in the 
bipotential scattering of an atomic beam by the field of a 
standing light wave. l5 

"Strictly speaking, the phase So corresponds to the motion of a particle in 
a potential composed of segments of nonresonant potentials with jumps 
of magnitude A at the field nodess [the segments (ab ) and (cd ) in Fig. 11. 
For A(Ao allowance for the dependence of So on A yields spectral cor- 
rections of the order of (A /Ao)', which are insignificant in comparison 
with the contribution of the resonant potential V ( x ) .  
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