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Induced transition radiation produced by relativistic electrons crossing the interface between two 
different dielectric media irradiated by a strong electromagnetic wave is considered. Expressions 
for the probability of emission (absorption) of an arbitrary number of field quanta are obtained 
within the framework of a quantum-mechanical description of the behavior of an electron in the 
field of a strong wave. Numerical estimates that demonstrate the feasibility of light-wave amplifi- 
cation are presented. 

PACS numbers: 6 1.80.Fe, 68.48. + f, 77.90. + k 

1. INTRODUCTION 

Transition radiation arises when a uniformly traveling 
charged particle crosses the interface between optically dif- 
ferent media. The phenomenon has been extensively studied 
both theoretically and experimentally.'-3 Whenever the in- 
terface between two transparent media is irradiated by an 
external electromagnetic wave, the transition-radiation 
characteristics change. First, as has been previously demon- 
~ t r a t e d , ~  when a particle emits an electromagnetic-field 
quantum not identical to the wave quanta the angular and 
spectral distributions of the radiation are changed. In parti- 
cular, the radiation becomes polarized owing to the polariza- 
tion of the external electromagnetic wave. Second, the tran- 
sition radiation may become induced radiation if the photon 
emitted or absorbed by the particle is identical to the exter- 
nal wave quanta. This phenomenon is of interest both for 
acceleration of charged particles by means of an electromag- 
netic field as well as for amplification of a light wave. 

Induced single-photon processes with participation of 
nonrelativistic particles have been considered5 in first-order 
perturbation theory in terms of the external electromagnetic 
field. Multiphoton induced transition radiation of relativis- 
tic particles has also been considered6 without making use of 
perturbation theory. However, the wave function derived in 
that reference for an electron in an electromagnetic-wave 
field, with account taken of the interface, does not go over in 
the limit of optically identical media to the well-known solu- 
tion.' 

In the present article we obtain expressions for the pro- 
babilities of induced transition radiation (absorption) in a 
strong electromagnetic-wave field for relativistic charged 
particles (for the sake of definiteness, we consider electrons). 
These probabilities are computed within the framework of a 
quantum-mechanical description of the behavior of elec- 
trons in a given classical field. The wave field is taken into 
account in all orders of perturbation theory when finding the 
Y-function of the electrons (we assume satisfaction of the 
strong-field condition 

energy and momentum of the electrons incident on the inter- 
face between the media: f i  = c = 1). 

2. BASIC EQUATIONS 

The interface between two transparent dielectric media 
with refractive indices n, and n, is aligned with the plane 
z = 0, the z-axis being directed towards the dielectric with 
the refractive index n,. Let this interface be irradiated by a 
plane monochromatic electromagnetic wave incident in the 
xz-plane at an angle 8, to the normal to the interface. Using 
the classical description of the wave field, we write the com- 
ponents of the vector potential of the wave field in the form 

In (1) we have introduced the following notation: A, is the 
amplitude of the vector potential of the incident wave: 

the alternating part of the phase of the corresponding waves; 
w is the wave frequency; k,, k,, and k, are the wave vectors of 
the incident and reflected waves and of the wave that crossed 
the interface, respectively; 

O(z) =1 if z>O, O (z) =O if z<0, 

a, and p, are the proportionality factors between the wave 
amplitudes given by Fresnel's formulas,' and j = x, y, z. 

We direct the electron flux at an arbitrary angle to the 
interface, aligning its incidence with the xz plane. We as- 
sume, as usual, that the particles themselves do not interact 
with the medium, i.e., move uniformly in the absence of an 
electromagnetic wave. Neglecting small spin corrections, we 
may use the Klein-Gordon equation as our basic equation, in 
which we incorporate the wave field (1): 

e ( A , p ) / e o B I ,  
where Ap = (0,A) is the four-potential of the wave field. 

where A,, is the maximum amplitude of the vector potential In accordance with the nature of the electromagnetic 
of the wave field; w is the wave frequency; and E and p are the field, we seek the solutions of Eqs. (2) in the form 
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. - 
p (z < 0) e - ipx Fp (A, )  + Bne-ipUF~ t iA-=)  7 

'4 (z>0) = Cne-*nsFpn (A , ) ,  

where A, and A, are the vector potentials of the field for 
z < 0 and z > 0, respectively; in (3), we have used the standard 
notation for the scalar product of four-vectors: 
p x ~ l p x )  = ~t - per. 

Because of the space-time periodicity of the interaction 
term in (2), the state of the incident particles with the four- 
momentum p = (E,P) is related in (3) to the states with the 
four-momenta p,, (reflected electron wave) and p, (wave 
which has crossed the interface). Here 

Below, we will use for the functions F introduced in (3) the 
notation F, (A , ) = Fp (po)Fp (p,) and Fpn (A , ) = Fpn(p2), the 
meaning of which is self-evident. 

Substituting (3) in (2), we obtain an equation for F(p ): 

[in (4), we have omitted the inessential indices for the func- 
tions Fas well as for the four-vectorsp, k, and A 1. In deriving 
equations (4), we made a number of approximations, for ex- 
ample, we have omitted small terms such as e(Ak )F', terms 
containing second derivatives of F, as well as terms -(eA )2 

quadratic in the field. These terms are small whenever 

I Sir 
e l-nt ,z(p/c))  cos Q pk I = I ~ - n ~ , , ( ~ l a )  cos 9. p k ~  

a 1, 

( 5 )  

where the dimensionless parameter { = eA,/m character- 
izes the intensity of the interaction between the electron and 
wave, and y = d m .  Obviously, condition (5) imposes con- 
straints on the feasible angles between the directions of prop- 
agation of the electrons and the electromagnetic waves. 

We assume that (5) holds. Then the solutions of (4) may 
be written in the form 

Fp (A,)  = exp [- i  t 

Fp (A, )  =exp -zP '2 ( A  ( c p z ) ~ )  

[ J (pk,)  d,q2]  . 
The coefficients B, and C, of the expansions in (3) will 

be found from the continuity and smoothness conditions of 
the Y-function in the planez = 0. From these conditions, we 
obtain the system of equations 

= ~ c . e x p { i ( o t - k a ) n } F p n  ( A , ) .  
n 

(7) 

x Fptn ( A < ) =  z c n p n z  e x p { i n ( w t - k z ) } F p n  ( A , ) .  
n 

In deriving (7), we used the condition n ~ w . ( ~ ; ,  as well as the 
inequality 

eAo kzlpz I 7 I-ni,2 ( p l e )  cos .T pk 
1 -c 1, 

which in the general case coincides with condition (5). 
The solution of the system of equations (7) may be great- 

ly simplified if the criterion 

n o  1 I l - r ~ , , ~  ( P I E )  cos .T pk I a l  
and the conditionp, - Ip,,, I -p,, are satisfied, since in this 
case it is possible to disregard the dependence on n in the 
functions FPIn and Fpn. 

Assuming that all the above conditions hold, we present 
the explicit form for the functions F: 

sin rpO + a A o z p z + a z ~ ~ z ~ z  
F. (A,)  =exp,[ie (- sin T I  ) ] 

(pk t )  

In (8), we have introduced the notation 
n, cos O,-ni cos 0 

&=-v -, Us=-&, 
n, cos Oo+nI cos 0 

2n1 cos 0 2n12 cos 00 (9) 
px = , PIE. n, cos Oo+nt cos 0 nz(nz cos Oo+nl cos 0 )  ' 

where 8 is the angle of refraction, related to the angle of 
incidence of the wave by the well-known law n ,  sine, 
= n,  sine. 

Solving the system of equations (7) under our assump- 
tions we find 

OD 

- 

= F ~ ( A , ) I F ~ ( A , )  = Jn ( A )  exp{in(ot-k#)  ), 
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where J,  are Bessel functions of order n of the argument 

Aoxpx+Ao*~z + ~ P ~ x ~ x + a z A o z p z  BPoxpx+ BzAozpz ~ = e  [- - 
(Pko) (Pki) (pk2) 

(11) 
Finally, from (3), (6) ,  and (10) we obtain 

Y ( x )  = = ~ - ~ p ~ { 8  (-z) exp i sin ( ~ t -  k=z-kozz) 

+ e  ~ A o ~ p ~  uz or + A s in(o t -kg+kozz )  
(Pki) 
~ B ~ ~ p ~ + $ ~ A o ~ p ~  

I 
+8 (z) exp i [ e sin (ot-kxx-k,,z) 

(Pk2) I 

It is easily verified that the function (12) turns into the 
well-known solution for the wave function of an electron in 
an electromagnetic wave field propagating in a homogen- 
eous medium (for the limiting case of optically identical me- 
dia, i.e., n ,  = n,).' 

We expand the electron Y-function (12) in series in four- 
momentum eigenfunctions. The coefficients of the expan- 
sion are determined by the expression 

up*.= J e b r s  Y ( x )  d4s .  (13) 

The integrations in (13) with respect to time as well as in the 
interface plane between the media may be performed within 
infinite limits, and in computing the integrals with respect to 
z we use the well-known formula 

OD 

i I e ( e ~ ) e - ~ q ~ d z =  ?, Y++O. 
-m 

* q+ rr 
The integration with respect to z in (13) is actually cut off at 
the length L, of attenuation of the electron wave in the mat- 
ter or at the layer thickness I (in the case of layered media). 
The amplitudes of the emission (absorption) processes of 
quanta of light waves incident on, reflected by, or transmit- 
ted by the interface interfere whenever Id k, ILg 1, where L is 
the path of integration (the smaller of L, or 1 may be taken as 
L ), anddk, is thespread (with respect to thez-component) of 
the wave vector in the incident wave, due, for example, to the 
finiteness of the wave train. 

Let us assume that the condition of interference of the 
amplitudes of the processes holds true. We then find for the 
coefficients a,., 

where p, and p: are the tangential components of the mo- 
mentum of the initial and final state of the particle, respec- 
tively, and k, is the tangential component of the wave vec- 
tors. In (14) we have used the usual normalization of the 
wave function of a free particle relative to a single particle in 
a volume V and introduced the notation 

Note that terms proportional to 8@; 
-pZ + (n - nl)k, )and8 @,. -p,, + n'k,, ), whichlead2 to 

Cherenkov emission processes in the first and second media, 
have been omitted from (15). In the present article, these 
effects will not be considered, and we accordingly assume 
that (pk,) ~ ( p k , )  z @~,)zEo. 

Comparison of (14) with the S-matrix representation7 
leads to a correspondence between the amplitudes a,,, and 
the elements of the S-matrix S,., : 

The latter equation holds, as can be easily verified by pertur- 
bation theory, for the case of a weak enough external electro- 
magnetic wave: 

eAp/ ( p k )  < 9. 

According to the usual procedure of S-matrix theory, 
the probability that induced emission (absorption) of an arbi- 
trary numbers of photons will occur when a particle crosses 
the interface between two media is given by the expression 

d ~ ,  = 8 (d - 8 + so) 6" 
~ V E E  

where n + n' = s and v is the initial velocity of the particles. 
As a result of integration with respect to the tangential com- 
ponent of the momentum of the scattered electron, we find 
from (1 8) that 

To carry out the succeeding integration in (19) with re- 
spect to dpi, it is necessary to introduce explicitly into the 
argument a delta function that yields conservation laws for 
the system energy and for the z-component of the particle 
momentum. This may be done by means of the known proce- 
dure 

Substituting (20) in (19) and integrating next with respect to 
dp; we find for the total probability of emission (s> 0) or 
absorption (s < 0) the following: 
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&a2 w, =- 1 w n , s - n  (Po)  l2  
4vlpol 

It can be easily shown that in the weak-external-field 
limit (A,, A,, As (I), by expanding Wn,,-, in a series in the 
small parameters Ai and limiting ourselves to single-photon 
approximation, we may obtain from (2 1) the corresponding 
expression obtain in Ref. 5 in first-order perturbation the- 
ory. For this reason, the case of a weak field will not be 
considered here. 

The statement of the problem can be given a more phys- 
ical interpretation if we consider instead of the emission or 
absorption probability the total increment of the electron 
energy 

Substituting (21) and (15) in (22), we find that the mean num- 
ber of emitted quanta is given as follows (when nw/&( 1): 

In (23) we have introduced the notation 

The summation in (23) may be performed analytically, 
using the fact that terms quadratic ins are small (a compara- 
tive estimate of the terms is Bs/A-nw/&(l). As a result of 
the computations we find from (23) that 

In the case of a strong electromagnetic field, there are 
two special cases of interest: (1) all the parameters Ai are 
large (A,, A,, A,, A) 1); (2) two of the parameters are large, 
and the other two are small (for example, A,, A < 1 and A,, 
A, ) 1). Let us consider both cases in turn, starting with the 
comparatively simpler case (2). 

If A,, A < 1, we may limit the summations in (25) with 
respect ton to terms with n = s, s + 1 in the terms containing 
J, _ (A, ), and to n = 0, + 1 in the terms containing Jn (A ). 
As a result, we have after simple algebra, using a well-known 
formula9 

and obtain (the summation includes an approximation that 
uses the condition s) 1) 

In (26) we have used the notation 

where 

From the standpoint of experimental measurements, it 
is also of interest to study the energy spread of the electron 
beam, which is characterized by the mean square variation 
of the number of quanta of the external electromagnetic 
wave: 

After substituting (21) and (15) in (29) and carrying out the 
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indicated transformations, we obtain for the particular case 
considered (A,, A < 1 and A,, A, ) 1) the expression 

in which the function @ is given by (27) and (28). 
In the other particular case of a strong external wave 

(A,, A,, A, and A,l), summation in (25), using the com- 
pleteness condition for the Bessel functions, leads to the 
limiting value 

The dispersion of the electron energy in the field of a 
strong wave will be analogously determined by the limiting 
value 

em2 
lim <sZ> = - 1 

Zvp, 

3. CONCLUSION. DISCUSSION OF APPROXIMATIONS AND 
RESULTS 

In this section we will discuss in more detail the phys- 
ical interpretation of the approximations made in the paper. 
The external electromagnetic field (1) is treated classically, 
since it is assumed that the number of quanta in the given 
field mode is much greater than 1. For the usual field 
strengths E, = lo4 W/cm, the mean number of quanta in a 
single laser mode with energy w = 1 eV is about 10'. Thus, 
the probability of induced transition radiation into this field 
mode with this number of quanta is greater than that of non- 
induced (spontaneous) radiation and the latter can therefore 
be ignored. If the strength of the external electromagnetic 
field decreases to such an extent that the number of quanta in 
the mode turns out to be on the order of 1, the classical 
expression (1) for the vector potential must be replaced by a 
quantum expression similar to that given in Ref. 2. In this 
case, we obtain well-known results for the probability of 
spontaneous transition r ad i a t i~n .~  

The solution (6) of the Klein-Gordon equation is found 
in an approximation given in the form of an inequality (5). 
From the physical standpoint, this inequality asserts that 
conditions for Cherenkov emission are not satisfied in media 
in the presence of an external electromagnetic field: 

Note that satisfaction of condition (5) does not mean that the 
external field is weak (i.e., is comparable with the spontane- 
ous field). As was shown above, the strength of an electro- 
magnetic field is determined by the values of the parameters 
A, in (16). It follows from (16) that the strong field conditions 
A, ) 1 orfm/w,l do not contradict (5) (cos < pk( 1, 6 /y( 1). 
Thus, the amplitude of the vector potential of the external 
electromagnetic field may vary in the range 

which is a rather broad range of variation ofA, for the case of 
relativistic electrons. 

In the expressions (14) and (15) for the matrix element 
we have omitted terms proportional to the 6-functions of the 
z-components of the particle momenta. Therefore, in the 
limiting case, when there is no interface between the media, 
i.e., nl = n, (A, =A = 0, As =A,) and the transition radi- 
ation vanishes,' there is in general no radiation, since the 
conditions under which Cherenkov radiation may appear 
are not satisfied in our statement of the problem. 

In this paper we considered the influence of the medium 
on the electromagnetic-field quanta (in non-absorbing media 
this leads to a change of the momentum and does not alter 
the photon energy1). The presence of two media with differ- 
ent optical properties leads to inhomogeneity of the external 
wave and, consequently, to the appearance of 
The basic results of the paper were obtained under the usual 
assumption that the electrons themselves do not interact 
with the medium. In fact, because of the existence of an in- 
terface the electron wave experience~ in general reflection 
and refraction. For relativistic particles, these effects are 
negligibly small and, if taken into account, lead to correc- 
tions on the order U,/E- lo-', where U, is the difference 
between the potential energies of the electrons in the two 
media. Note that the presence of an external wave likewise 
does not cause the relativistic electrons to be reflected from 
the boundary, since the amplitude of the reflected electron 
wave is proportional to the parameter Aw/p, -6/y( 1. 

We have not taken into account in the field of the strong 
electromagnetic wave the electron-mass renormalization7 
that can be as great as 6 = (eAdm)2. For the fields that we 
have considered (E, = lo2 W/cm and w = 0.1 eV), this cor- 
rection is on the order of lo-". 

Now let us discuss the basic results. As follows from 
(22), the possibility of amplifying an external electromagnet- 
ic wave through induced electron transition radiation is de- 
termined by the sign of the mean number of emitted quanta 
( s ) .  To estimate ( s ) ,  we limit ourselves to the simplest case 
of normal incidence of electrons on the interface between the 
media: p, = 0, p, = p. The angle of incidence of the wave 
here must be great enough so that the conditionpk-~w used 
in deriving the formulas be satisfied. In the case of two large 
and two small parameters Ai, that is, A, A, < 1 and A,, 
A,, 1, we obtain from (26) for this geometry the expression 

It is of interest to compare the total energy emitted by 
the electron as a result of a single pass across the interface 
between two media in the limiting cases of weak (A&,.,) and 
strong (AE,,~) external fields. A comparative estimate of 
these energies is given by the ratio -A $,f < I ,  
where A,,, = e(A,,,.p)/(pk ) is the small parameter of pertur- 
bation theory for the case of a weak wave with vector poten- 
tial A,,, . This estimate shows that a strong light wave stimu- 
lates transition-radiation processes, and thereby seems to 
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effectively increase the inhomogeneity of the optical proper- 
ties of the media. 

In the other even case of high values of all the param- 
eters (A, A,, A,, A, > I), Eq. (3 1) leads to 

lim ( S ) Z ~ / ~ E ,  (34) 

which in the general case leads to an estimate of the same 
order as (33). Note that in Eqs. (33) and (34) for (s), satura- 
tion in the external wave occurs relative to the field strength. 

Using (34), we now present an expression for the density 
of the power lost by an electron beam upon crossing the 
interface between two media (in standard units): 

where j is the current density of the electrons. A numerical 
estimate of P, for the following parameters of the electron 
beam and light wave (j = 5 kA/cm2; E = 1 MeV; n, = 1.0 
and n2 = 1.2; fw = 0.12 eV; Eo = lo4 W/cm; 0, = 80") leads 
to the result P, = 0.4.10-4 W/cm2. 

Though the effect of amplification by one interface is 
small, it can be greatly increased (by several orders of magni- 
tude) by using a transparent layered dielectric. Computa- 
tions6 have shown that the power lost by electrons increases 
in proportion to the number N of interfaces they have 
crossed. The thickness I of an individual layer must satisfy 
the condition l/Ak, )I2 L, , where L, is the path ofthe tran- 
sition radiation. The symbolic expression that follows from 
the integrals in (13) may serve as an estimate of L, : 

L, - [p,-p,+ (2n-sj k,,] -'-pklse, 

where A is the wavelength of the radiation and 

e Aop s -A  = - 
pk 

is the effective number of emitted quanta. For the param- 
eters we have used, L, - w/eEo - 0.1 pm. 

To obtain amplification of an external light wave, the 
number N of layers in the dielectric must be such that the 
total power emitted by the electron beam exceeds the dissi- 
pated power in the cavity. 

In conclusion, we wish to express our appreciation to D. 
F. Zaretskii for numerous helpful discussions of the paper. 

'V. L. Ginzburg and I. M. Frank, Zh. Eksp. Teor. Fiz. 16, 15 (1946). 
'G. M. Garibyan, Zh. Eksp. Teor. Fiz. 39, 1630 (1960) [Sov. Phys. JETP 
12, 1138 (1961)l. 
3M. L. Ter-Mikaelyan, Vliyanie sredy na elektromagnitnye protsessy pri 
vysokikh energiyakh (Influence of Medium on High-Energy Electromag- 
netic Processes), Erevan, Izd. AN Arm. SSR (1961). 

41. G. Ivanter and V. V. Lomonosov, Zh. Eksp. Teor. Fiz. 80,879 (1981) 
[Sov. Phys. JETP 53,447 (1981)l. 
5D. F. Zaretskii, V. V. Lomonosov, and E. A. Nersesov, Kvantovaya 
Elektron. (Moscow) 7, 2367 (1980) [Sov. J. Quantum Electron. 10, 1379 
(1980)l. 

6V. M. Arutyunyan and S. G. Oganesyan, Zh. Eksp. Teor. Fiz. 72, 466 
(1977) [Sov. Phys. JETP 45,244 (1977)l. 

'V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quan- 
tum Theory, Part 1, Pergamon, 1971. 

'L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 
Pergamon (1959). 

91. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and 
Products, Academic, 1965. 

Translated by Robert H. Silverman 

484 Sov. Phys. JETP 58 (3), September 1983 lvanter eta/. 484 


