
Scattering of light by light in crystals 
Yu. D. Zavorotnev and L. N. Ovander 

Physicorechnical Institute, Academy of Sciences of the Ukrainian SSR, Donetsk 
(Submitted 28 October 1982) 
Zh. Eksp. Teor. Fiz. 85, 819-829 (September 1983) 

The probability of the effect is found for a molecular crystal and, in contrast to a previous 
publication on this topic [V. L. ~trizhevskii and V. V. ~bukhovskg, Sov. Phys. JETP 31, 500 
(1970)], allowance is made for anharmonism in the Coulomb subsystem and for the kinematic 
interaction between the excitons. It is shown that the contribution of these factors is not small in 
comparison with the factors taken into account by ~trizhevskii and ~bukhovskg. It can be isolat- 
ed by measurements of the scattered intensity as a function of frequency and polarization. It  is 
shown that the excitation spectrum should contain a peak whose position can be used to deter- 
mine the bound-state energy. 

PACS numbers: 78.20.Bh, 71.35. + z, 42.65. - k 

INTRODUCTION 

Elementary light-by-light scattering (LLS) constitutes 
the disappearance of two photons of frequency a, and w2 and 
the appearance of two other photons of frequency w, and w,. 
The cross section for this effect in vacuum is cm2, 
which lies outside the range of modem experiments (see, for 
example, Ref. 1). However, in condensed media, the interac- 
tion between the electromagnetic field and the charges of 
particles that are the constituents of the medium ensures 
that the cross section is u- cmZ, which can be detected 
with modern equipment. 

As far as we know, the first publication2 on the observa- 
tion of LLS was concerned with the study of this effect in a 
CdS crystal for which radiation was observed at the frequen- 
cy w, = w, + w, - w,, where w,(w, + w,, w, -a,, and the 
intensity of this radiation was a rapidly-varying function of 
the scattering angle. This variation was used as a basis for the 
conclusion that it was LLS and not some other effect that 
was observed. Similar experiments were subsequently de- 
scribed in a number of publications, in which the specimens 
were calcite crystals3 and water., Measurements of LLS in 
gases of different density have also been reported.' It is clear 
that the LLS intensity in a gas is lower as compared with a 
condensed medium because of the lower density of scatter- 
ing particles (atoms or molecules). The effect can then be 
enhanced by ensuring that the frequency of the primary radi- 
ation is close to the electron transition frequency. This idea 
was implemented in Ref. 6, where potassium vapor was used 
as the scattering medium. 

The situation where fi(w, + w,) lies in the neighborhood 
of the energy of diexciton states was investigated in Ref. 7, 
where a study was reported of small-angle hyper-Raman 
scattering under conditions where it was essentially identical 
with LLS. The scattered intensity is then found to increase as 
w, + w, approaches the band of bound states, and it was 
shown that this effect could be exploited to investigate the 
polariton spectrum. 

The first theoretical paper devoted to LLS appears to be 
Ref. 8, in which the probability of the effect and the scattered 
intensity were determined. The zero-order Hamiltonian in 
Ref. 8 describes the behavior of photons and electrons that 

do not interact with one another, and the perturbation is 
provided by the operator for the interactions between the 
photons and the electrons. The author of this paper also 
notes the possible interpretation of LLS as two successive 
three-photon processes, and shows that the intensity of this 
type of cascade process exceeds the LLS intensity by a factor 
of about 100. We note, however, that a suitable choice of the 
geometry of the experiment will exclude the contribution 
due to cascade processes because these two effects obey dif- 
ferent laws of wave-vector conservation (phase matching 
conditions). 

Another feature of LLS is that the differential LLS in- 
tensity per unit spectral and angular intervals is a quadratic 
function of the scattering v01ume.~ The integrated power of 
the scattered radiation, on the other hand, is determined by 
the simple noncoherent sum of contributions due to all 
points within the scattering volume. 

The spectral shape of LLS was investigated in Refs. 9 
and 10. It depends on the absorption coefficient for the scat- 
tered and primary waves and on the spectral and amplitude 
distributions of the latter. 

A more detailed and complete description of LLS can 
be achieved once an expression for the scattering probability 
is obtained within the framework of a microtheory. Such a 
theory was put forward in Ref. 11, in which the LLS tensor 
was evaluated explicitly for a model of a molecular crystal. 
The polaritons were treated as quasiparticles describing the 
propagation of radiation in the crystal, and it was shown 
that, when one of the polaritons appearing during the LLS 
process lies on the lower branch, it enters the exciton part of 
the spectrum for large scattering angles, and LLS becomes 
identical with hyper-Raman scattering (HRS) of light. The 
latter phenomenon differs from LLS by several important 
features. For example, the differential intensity of secondary 
radiation depends on the first power of the volume, and the 
radiation frequency in the case of HRS is not an oscillating 
function of the scattering angle. 

It is essential to analyze Ref. 1 1 in greater detail because 
the present paper is also based on the idea of the polariton, 
and it is necessary to elucidate the difference between the 
present paper and Ref. 11. 
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The Hamiltonian for a crystal and radiation interacting 
with it was written in Ref. 11 in the form 

where H, contains second-order terms in the creation and 
annihilation operators, and W is an operator containing 
higher-order terms (only third-order terms in Ref. 11). The 
operator can be written in the form 

where E , ,  is the energy of the exciton in the band p with 
wave vector k, j labels the photon polarization, a$, a, j ,  

B &, B,, are Bose operators for the creation and annihila- 
tion of a photon and Coulomb exciton, respectively, e(kj) is a 
unit vector representing the polarization of the field, the in- 
dex r assumes the values x, y, z, w, is the plasma frequency, 
and the explicit form of the coefficient g(kp) depends on the 
model of the crystal that is being used. 

The third-order terms examined in Ref. 11 were due to 
the interaction between charges in the crystal and the field of 
transverse photons. Their structure is 
Q,(a + a+)B +B-H y ) .  However, the operator describing 
the interaction between the polaritons, which may contri- 
bute to the LLS probability, was not fully taken into account 
in Ref. 11. It is well known1, that there are also third-order 
terms H y)  that are due to the Coulomb interaction between 
excitons (anharmonism in the Coulomb subsystem, in the 
terminology of Ref. 12). In addition, the contribution of 
fourth-order terms to the probability of the effect leads to 
terms of the same order in the creation and annihilation op- 
erators, and these were not taken into account in Ref. 11. 
These terms arise from the operator describing the interac- 
tion between particles in the crystal and the radiation field, 
and anharmonism in the Coulomb subsystem during the 
transition from Pauli to Bose operators.13 We shall denote 
them by H y)  and H  f ) ,  respectively. Moreover, fourth-order 
terms arise from the operator describing the Coulomb inter- 
action V between excitons even when the kinematic interac- 
tion is not taken into account. They will be represented by 
H a ) .  Fourth-order terms will also arise because of the pres- 
ence in the Hamiltonian of a term that is quadratic in the 
vector potential of the field. However, it can be shown that 
these terms are small in the optical frequency band and will 
therefore be ignored here. Finally, fourth-order terms arise 
from the operator describing the behavior of a set of nonin- 
teracting molecules because of the presence of the kinematic 
interaction. They will be represented by H $'). 

The third- and fourth-order terms discussed above were 
isolated in Refs. 14 and 15 which were concerned with the 
theory of HRS. It is clear that, as in the case of HRS, the 
third-order terms contribute to LLS in the second order of 
perturbation theory, whereas fourth-order terms contribute 

in the first order. There are thus seven distinct schemes 
along which LLS can proceed: the operator H y )  in second- 
order perturbation theory, the operator H r) in second-order 
perturbation theory, combined effect of the operators H  \') 
and H r), and four schemes involving H $') (n = 1-4). With 
these schemes we can associate seven scattering tensors a'") 
which are labeled in accordance with the foregoing discus- 
sion, but it is not clear a priori which of them provides the 
greatest contribution to the effect. Since Ref. 11 was con- 
fined (in our notation) to the tensor a'", it will be useful to 
investigate the other six terms. This constitutes our first ob- 
jective. At first sight, it would appear that these seven ten- 
sors cannot be separated. However, it will be shown below 
that they have different frequency dependence and different 
form. Consequently, frequency and polarization measure- 
ments on LLS can be used to separate contributions due to 
different scattering mechanisms. 

In accordance with the foregoing, anharmonic terms of 
order three and four in the the exciton operators, which are 
related to the presence of interactions between excitons, 
should contribute to the LLS intensity. It will therefore be 
useful to find the connection between the potential energy of 
interaction between two excitons and the LLS parameters. 
This constitutes our second objective. 

It is also important to recall Refs. 16 and 17, which 
reported a determination of nonlinear polarizability tensors 
or rank 3 and 4. The latter of these is directly related to the 
LLS amplitude. It was shown that these tensors had poles as 
fi(wl + w,) approached the diexciton band energy. Never- 
theless, it is interesting to examine in greater detail the possi- 
bility of studying bound states by LLS, and this is the third 
objective of the present paper. By analogy with the proce- 
dure employed in Ref. 18, we use a model Hamiltonian to 
investigate a system consisting of intramolecular crystal vi- 
brations (vibrational excitons) and photon fields. It will be 
shown that LLS can be used to determine the energy of the 
bound states of two dipolar excitons. 

§I. MOLECULAR CRYSTALS 

Consider the Hamiltonian for a system consisting of a 
molecular crystal and a radiation field. As we have already 
noted, it will be written to within the fourth-order terms in 
the creation and annihilation operators. Second-order terms 
in operators describing photons and dipolar excitons, and 
forming the zero-order Hamiltonian, can be represented by 
(2). After diagonalization by the Bogolyubov-Tyablikov 
method, they assume the form 

where k is the wave vector, p is the number of the polariton 
branch, and E, (k )is the polariton spectrum. The third-order 
terms are equal to the sum H y )  + H y). The operator H y )  
was examined above, and H y) is due to the presence of the 
Coulomb interaction between charges in the crystal and con- 
tains terms having the structure QB + BB. The latter operator 
was written in a similar form in Ref. 12. The fourth-order 
terms were taken from Ref. 15 and have the form 
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Q2(a + a+)B +BB + Q3B +B +BB. Thus, the complete Ha- 
miltonian for the system takes the form of the sum of second- 
and higher-order terms in the creation and annihilation op- 
erators. In accordance with the ideas exploited in the de- 
scription of the system by approximate second quantization 
(see, for example, Ref. 19), this means that the Hamiltonian 
for the system has been expanded in powers of nN - I ,  where 
n, is the number of quasiparticles in the crystal and N is the 
number of unit cells in it. 

If we use the explicit form of H,, H,, which can be bor- 
rowed from Refs. 12, 15, and 20, we obtain the following 
expression for the flux of radiation scattered within the solid 
angle d o  and spectral interval between o, and w, + dw,: 

d 2S -- 
dodo 

-BZJZ 1 e l  (hi&) em (k3j3) en (k2j2) e p  ( k l j l )  a,mnp 1 ' ,  
l n ~ n p  

(4) 
where 

A k = k, + k, - k, - k,, 1, m, n,p independently assume the 
values x, y, z, Ii (i = 1,2) are the pump intensities (it is as- 
sumed that the crystal is illuminated by an infinitesimally 
narrow line), Vis the scattering volume, w,,o, are the pump 
frequencies, w,, w, are the scattered radiation frequencies, v, 
is the volume of the unit cell of the crystal, ni , ki (i = 1,2,3,4) 
are the refractive index and wave vector of the polariton 
mode of frequency wi, respectively, and a,,, is the LLS 
tensor. It has been assumed in the derivation of (4) that the 
crystal is in the form of a parallelepiped with edges L, , L, , 
L, parallel to the x, y, z axes, and k, is parallel to the z axis. 

If we take all seven mechanisms described in the Intro- 
duction into account, we can write the LLS tensor in the 
form 

'I 

Since, as we have already noted, the complete expression for 
the tensor a is exceedingly cumbersome, and in order to give 
it a more manageable form, we shall confine our attention to 
those terms that are important when w,, a,, w,, w, approach 
the frequencies of exciton absorption bands. Moreover, we 
shall assume that the crystal has a center of inversion and the 
unit cell contains a single molecule. The formulas for a('), 
obtained under these simplifying assumptions, are given in 
the Appendix. It is important to note that vanishes in 
crystals with a center of inversion because it contains as a 
factor a tensor of rank three, which is similar to the tensor 
corresponding to the generation of the second harmonic. 
The term a@) will therefore be omitted. 

We also note that the LLS effect can, in general, com- 
pete with a sequence of two processes. The first is photon 
absorption with the creation of an exciton, and the second is 
the decay of this exciton into two photons. This two-step 
process occurs when the total energy of the two photons is 
equal to the energy of the exciton. We shall confine our at- 

tention in this paper to the situation where this sum differs 
from the energy of the exciton. Consequently, the conditions 
under which LLS is examined in this paper preclude the 
possibility of its being treated as a two-step process. 

Since the LLS tensor consists of a series of terms, we 
must now estimate their relative importance. 

Let us begin by considering the contribution due to' 
fourth-order terms in the polariton operator. For the sake of 
simplicity, we shall suppose that the crystal contains only 
two exciton bands of excited states, and we shall also suppose 
that w, = w, = w and take into account only the first terms 
in (A. 1)-(A.6). As a result, we obtain 

wherex,,, is the oscillator strength, e, m are the charge and 
mass of the electron, and Vis the intermolecular interaction. 

The approximate formulas given by (7)-(9) show that it 
is essential to take into account all the terms of the LLS 
tensor and that they can be separated on the basis of the 
dependence of intensity on the frequencies wi (i = 1-4). We 
have used these expressions to analyze the following situa- 
tions that appear to us to be most interesting: (a) the frequen- 
cies w and 2w are well separated from the absorption bands, 
(b) the frequencies w and 2w are close to the dipole-allowed 
exciton band, and (c) the frequency 2w is close to the dipole- 
forbidden exciton band. The terms a"', a',', a"' are important 
for case (a). The terms a"' and a"' predominate in cases (b) 
and (c), respectively. 

Thus, for a molecular crystal, we must, in general, take 
into account all seven terms a(') (i = 1-7) rather than confine 
our attention to a"', as was done in Ref. 11. 

We now turn to the form of the tensors a(') (i = 2-7). 
The first of these need not be investigated because the corre- 
sponding tables are given in Ref. 2 1. We therefore begin with 
the tensor a'7', which is simplest to analyze. It is clear from 
(A.6) that it constitutes a Kronecker product of two tensors 
of rank two, whose form is identical with that of the Ray- 
leigh scattering tensor for which tables are available in the 
literature (see, for example, Ref. 12). This enables us to find 
the form of a'7' without difficulty. The form of the tensors 
given by (A.2)-(A.6) can be examined by analogy. For exam- 
ple, (A. lo), which appears as a factor in (A.6), has the same 
form as the Raman scattering tensor, and (A.ll) has the 
same form as the tensor describing the generation of the sec- 
ond harmonic. The form of these tensors can also be taken 
from Ref. 12. By performing the appropriate multiplication 
of (A.7)-(A. 12), and using the lattice sums given in Ref. 22, 
we obtain the form of the tensors given by (A.2)-(A.6). 

By applying the above procedure to all five tensors, we 
can generate tables similar to those given in Ref. 21. How- 
ever, these tables are very cumbersome and the procedure 
for finding the tensors reduces to a simple multiplication of 
expressions available in the literature. There is therefore lit- 
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tle point in reproducing the corresponding results here. Nev- 
ertheless, a number of general remarks will not be out of 
place. All components of tensors with n = 2,3,5 are nonzero. 
This is so because they contain as factors the lattice sums 
that are tensors of rank two, and all components of these 
tensors are different from zero. Tensors with n = 4 or 7 do 
not contribute new nonzero components as compared with 
a"'. Consequently, these tensors can be separated experi- 
mentally for a number of crystal classes by suitably choosing 
the geometry of the experiment. 

For example, it is desirable to isolate the situation 
where terms with n = 2,3,5, due to the presence of the inter- 
molecular interaction, provide a contribution to the effect. It 
follows from the foregoing and the tables given in Ref. 21 
that, for example, this idea can be implemented for crystals 
belonging to the groups 0, T,, T, C,, , D,, D3, , D,, C,, , D, 
under the following geometry of the experiment: sl(O,O,l), 
s2(1,0,0), s4(0, LO), e,(1,0,0), e2(0,1,0), e4(0,0, 11, s = k/lkl, 
where e is the polarization vector. However, for crystals be- 
longing to the groups C,, , C,, C,, C,, e,, e,,, D3, C3,, D ,, , 
C,, , the isolation of the intermolecular interaction by polar- 
ization measurements turns out to be difficult. 

Moreover, the experimental separation of the above 
tensors can be achieved by measuring the LLS excitation 
spectra because (A. 1)-(A.6) have different frequency depen- 
dence. 

It will now be useful to examine the possibility of find- 
ing the potential energy of interaction V(R) between two ex- 
citons by measuring the LLS parameters. We shall consider 
one of the simplest situations in which only one nondegener- 
ate exciton level is important, and the operator for the inter- 
action between the polaritons reduces to H y'. When the level 
just mentioned lies well away from other levels, and the in- 
termolecular interaction is small, the coefficients of the 
transformation from molecular variables to exciton varia- 
bles uf, can be set equal to unity in the Heitler-London ap- 
p ro~ ima t ion .~~  When the above assumptions are valid, the 
corresponding anharmonic constant Q4(kl,k,,k3) 
= Q4(k1 - k,) depends on a single argument. The potential 

energy of the interaction between the two excitons in which 
we are interested is then given by 

where the integration with respect to the vector k is per- 
formed within the limits of the Brillouin zone, and the values 
of Q,(k) must be known for the entire zone before V(R) can be 
found. 

We shall suppose that w, = w, = w, = w and bring w 
close to o, = E,fi-'. The intensity is then given by (7), in 
which the role of the LLS tensor is played by the quantity 

a l m n p = Q w t p  (ki-ks) 

It is clear from (4) and (1 1) that the sign of Q,,,,, , which 
would enable us to settle the question as to whether the exci- 
tons attract or repel, cannot be determined and, moreover, it 

is difficult to reach the region of large values of k because the 
wave vectors k, and k, in (1 1) lie in the optical part of the 
spectrum. Thus, even in the simple case determined above, it 
is difficult to formulate an experimental procedure that 
would enable us to find V(R). Still greater difficulties are 
encountered in the analysis of more complicated interac- 
tions between the excitons. Nevertheless, the presence of at- 
traction or repulsion can be judged by examining effects in 
the LLS spectrum that are due to bound states of two exci- 
tons, and such considerations support the presence of attrac- 
tion. This question is examined in the next section. 

92. BOUND STATES 

We shall now examine the possibility of using LLS to 
determine the energy of the bound state formed by two exci- 
tons. Following Ref. 18, we shall consider excitons generat- 
ed by internal dipole-active vibrations of the molecules con- 
stituting the crystal. The anharmonic interaction operator, 
which ensures the presence of both bound states and the LLS 
effect, will be written in the form 

n 

where Q is the anharmonic constant and B 2 ,  B, are opera- 
tors describing creation and annihilation of the vibrational 
excitation of the n-th molecule. It is assumed in (12) that the 
unit cell of the crystal contains only one molecule which 
supports only one nondegenerate vibration. 

The operator given by (12) must be written in terms of 
polariton creation and annihilation operators. Several sim- 
plifying assumptions are made during the transformation 
from them to the operators B ,+, B, . 

First, we confine our attention to the Heitler-London 
approximation and, secondly, we assume that the frequen- 
cies wi (i = 1-4) lie close to the frequency fi- 'E, of the above 
vibration. The operator (12) can then be writen in the form 

W=~A*(K,~)A(K,P)E+(K-P)I+(P)E(K-P)E(P). (13) 
K P ~  

where 

A (K, p) =u (p) u (K-p) ( Q I N )  '", ( 14) 

N is the number of unit cells in the periodic volume of the 
crystal, and u(p) are the coefficients of the transformation 
from the exciton to the polariton operators. The subscript 
labeling the exciton band is omitted because there is only one 
such band; the index of the polariton branch is also omitted 
because, under the above assumptions, only one such branch 
is important. The coefficients of the transformation from the 
states of isolated molecules to the exciton states do not ap- 
pear in (13) because they are all equal to unity in this case. 

Instead of the transition k,, k, -+ k,, k,, which is exam- 
ined in the last section, we consider Kp + Kq, where 
K = k, + k,, p = k, - k,, q = k, - k,, and the matrix ele- 
ment of this transition, including the infinite number of per- 
turbation theory terms, can be written in the formz3 

U(K, p, q) =A (K, p)A' (K, q) +A (K, P) 

476 Sov. Phys. JETP 58 (3), September 1983 Yu. D. Zavorotnev and L. N. Ovander 476 



In this expression, E, = fiw, + fiw, is the energy of the initial 
state of the system and 

D (E ,  K, r, s )  

-i J e f ~ ~ a r ( o ~ ~ g  (r, r )  t (K-r, r) l+ (s, 0) I+ (K-s, 0) 10) 

(16) 
is the Fourier transform of the two-particle polariton Green 
function. The energy parameter E is omitted from (15) and 
(16) but, in the final expressions, the E-dependence of the 
various quantities must be borne in mind. 

The Green function (16) satisfies the following Dyson 
equation: 

D(K, r, s)  =D(") (K, r) [ I 5  (r, s )  4-15 (r, K-s) ] +2D(') (K, r) 

where the zeroth Green function is given by 

and E (r) is the polariton spectrum of the lower branch. 
Multiplying (17) from the left by A *(K,r) and from the 

right by A (K,s), and summing over r and s, we obtain 

(D=2(Do+2(D,(D, (19) 

where 

@,,= x A* (K, r) D(O) (K, r) A (K, r), (20) 

In view of (19)-(21), the matrix element (15) assumes the 
form 

U(pq) =A(K, p)A8(K, q) (1-2Qo)-'. (22) 

The quantity A (p) is known and it is required to find a,. The 
sum (20) is dominated by values of the wave vector that lie 
well within the Brillouin zone. The function U (q) for these 
values can be regarded as independent of q and can be set 
equal to unity since, for high values of the wave vector, the 
lower-branch polariton states can be aproximated by exciton 
states with sufficient degree of precision. For the same rea- 
son, the polariton energy spectrum can be approximately 
replaced by the exciton spectrum. Thus, with relative preci- 
sion of the order of (aA where a is the lattice constant 
and A the wavelength of light, we find that 

It is important to note that the dependence of w, on k was 
neglected in the derivation of (23). 

The formulas given by (22) and (23) determine the tran- 
sition matrix element and, once this element is known, we 
can proceed by analogy with the last section to obtain equa- 
tion (4) for the scattered intensity, where the scattering ten- 
sor is given by 

This tensor has a pole for w ,  + w ,  + E,, where 
E, = 2w, + 2Q. When Q < 0, which corresponds to attrac- 
tion between the excitons, E, is the energy of the diexciton 
formed from the two dipolar vibrational states of the mole- 
cule. This pole is due to the fact that we have ignored the 
finite lifetime of the diexciton state. An imaginary compo- 
nent appears when this is taken into account. The final result 
is that the LLS excitation spectrum contains a peak whose 
position enables us to determine the energy of the bound 
state of the two excitons. 

Thus, when the anharmonic interaction can be repre- 
sented by (13), the problem of finding the connection 
between the LLS excitation spectrum and the bound state 
energy has the above accurate solution. 

A similar procedure can be used to find the solution 
when the anharmonic operator is a generalization of (13): 

where a, fl, y, T assume independently the values corre- 
sponding to the numbers of the polariton branches. 

To investigate the bound state formed by the two di- 
pole-free excitons, we must assume the presence of an anhar- 
monic interaction between the two dipole-free vibrations 
and the vibration having a dipole moment. Although an ex- 
act solution cannot be obtained for this case, it is, neverthe- 
less, possible to introduce certain specific assumptions and 
hence conclude that there is a peak on the LLS excitation 
spectrum whose position can be used to determine the ener- 
gy of the bound state of the two dipole-free excitons. 

The entire foregoing discussion was concerned with the 
case where anharmonism in the isolated molecule plays a 
dominant role. However, it is clear that situations in which 
other interactions between polaritons play a dominant role 
are of no lesser interest. 

The authors are indebted to V. M. Agranovich for dis- 
cussions and several valuable suggestions, and to L. I. Ste- 
fanovich for assistance in the computations. 

APPENDIX 

The components of the LLS tensor have the form 
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( 7 )  almnp=b:;) (mi, b:: (az,m3) +: . . , ('4.6) 
where 

(A. 10) 

The index labels the exciton ground state, P,, p2 is the matrix 
element of the exciton dipole moment operator of the mole- 
cule for transition between a statep, to a state p,, 

Iron I = (xin + yin  + zin ) ' I 2  is the separation between the ze- 
roth unit cell at the origin and the n-th cell, and repeated dots 
represent the remaining resonance terms that have a similar 
structure and have been omitted for the sake of simplicity. 
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