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Spherically symmetric singular solutions of general relativity theory in a comoving T-system, or 
T-models of the sphere, are considered; the range of solutions is broader than in previous articles 
[V. A. Ruban, a) Sov. Phys. JETP 39, 1027 (1969); b) JETP Lett. 8,414 (1968); c) LIYF Preprint 
412 (1978)l. The solutions are characterized by an infinite gravitational mass defect. The proper- 
ties and dynamics of the solutions are discussed in relation to the problem of quantum "explo- 
sion" of white holes [Ya. B. Zel'dovich, I. D. Novikov, and A. A. Starobinskii, Sov. Phys. JETP 
39,933 (1974)l. T-models of a sphere are a modification of the T-regions of Schwarzschild- 
Reisner-Nordstrem (SRN) fields filled with an unlimited quantity of gravitationally totally bound 
matter. This matter alters substantially the global structure of V4 and precludes the existence of 
external R-regions. Generalizations of the SRN vacuum T-metrics in different versions of scalar- 
tensor theories are found and it is shown that these generalizations lack zero-horizons of the 
Schwarzschild-sphere type. 

PACS numbers: 04.20.Jb 

INTRODUCTION spheres and to correctly determine their total mass-energy 

The so-called spherically symmetric T-models of zero- 
pressure dust matter (P = 0) were previously defined and 
discussed in Refs. l a  and lb. They are singular solutions of 
general relativity theory in a synchronously comoving T- 
system24 with metric of the form '-' 

-ds2=-d~'+e""* x)dX2+r2 ( 7 )  [dfi2+sinZ fidq~'1. (1) 
The T-models are distinguished by the fact that the radii 
x = const of all the Lagrangian distribution spheres of mat- 
ter are the same if r = const and that the spatial cross sec- 
tions in the comoving T-system (1) form an unbounded hy- 
percylinder V, = (S, X R ,) of infinite volume containing an 
infinite quantity of matter but lacking a Euclidean "center" 
( - w < X  < w ). T-models have no classical analog and cor- 
respond to a special physically interesting case of T-regions 
of V4 filled with matter at rest relative to the T- 
system, this matter turns out to be gravitationally totally 
bound in such a maximally strong Einstein gravitational 
field. 

The purpose of the present article is to study the most 
general group of T-models of a sphere for different type 
sources of matter (chiefly of an ideal liquid with P # 0, as well 
as of a free electromagnetic or scalar field) so as to extend the 
physical interpretation and basic results of Ref. 1 to these T- 
models. 

T-models of a sphere may be interpreted as a modifica- 
tion of vacuum T-regions of a Schwarzschild-Kruskal 
field24 filled with an infinite quantity of totally bound mat- 
ter all of whose rest energy is exactly compensated by the 
gravitational mass defect for each spherical layer. As a re- 
sult, the active mass of the T-distribution-its total energy 
equivalent-remains unchanged as the layers with infinite 
mass are added without limit in the hypercylindrical V, 
(r = const). Though cosmological T-models (1) are causally 
complete V4 and as if closed in themselves, as in the closed 
Friedmann it is possible to construct bounded T- 

- - 
integral E = McZ > 0 by directly splicing their semi-infinite 
parts ( - w <x<O) to the external Schwarzschild field in 
space. The total mass-energy integral is a purely field-depen- 
dent geometrodynamic "massless mass" (due to the initial 
singularity) of the initial vacuum T-regions by means which 
it is possible to construct T-models of the sphere, which 
models these regions also resemble to a considerable extent. - 
Consequently, T-spheres yield a method of realizing the 
maximally possible total gravitational mass defect (for gen- 
eral relativity theory); this model differs qualitatively from 
the closed Friedmann model. Here the mass defect is equal 
to the infinite rest mass of the matter.' 

Such T-metrics are also of interest for relativistic astro- 
physics, besides serving as an anisotropic axisymmetric 
"quasiclosed" type of model in cosmological  application^'.^ 
(including the version with "primary" electromagnetic field 
based on the Reisner-Nordstrem T-regions7). Like the T- 
sphere, l 6  relativistic hypothetical objects which include and 
always retain beneath the Schwarzschild sphere an arbitrar- 
ily unlimited quantity of gravitationally totally bound mat- 
ter may, in principle, arise in a quantum "explosion" in 
white holes8 In an external R-region, these objects should 
appear as an ordinary sphere with finite gravitational mass 
and with aradius that expands only to its own Schwarzschild 
sphere, with a characteristic pattern of congealing and of 
formation of a gray hole in anti-collapse; further, its collapse 
phase is, in general, not o b s e r ~ a b l e . ' ~ ~ ' ~ ~ ~  

Our general analytic solution for T-models of a sphere, 
which contain a maximally rigid liquid with P = E (as well as 
a free electromagnetic field),9 may be interpreted as a gener- 
alization of the Schwarzschild-Reisner-Nordstrem vacuum 
T-metrics in the presence of a scalar-massless field, whether 
of the canonical (!P = !P (r), !P = 0) or conformal (0@ + 1/ 
6.R@ = 0) type. The T-models no longer have Schwarzs- 
child-sphere type zero-horizons that are destroyed by the 
uniform mode of the scalar field. The latter result confirms a 
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previous hypothesis, to the efict that a black hole cannot 
form upon collapse of a massiv'e body in scalar-tensor theo- 
ries. lo 

LEMAITRE MASS FUNCTION." DESCRIPTIONZ OF T- 
REGIONS IN V, 

1. Without any limitation on generality, the metric of 
any spherically symmetric field V, may be presented in diag- 
onal form 24: 

-dS2,-eo(%, ~t)dx02+eo(xo, =r)dx 2 f e ' ( % ,  st) [d62+sin2 6dqZ], 

(2) 
where the angular coefficient el".'2 = R (x,,x,) is the radius of 
curvature of the spheres S2 (x, := const, XI = const) and is a 
scalar invariant relative to any choice of the coordinates 
.to = 0 (x0,x1), z1 = L (x1,x0). 

For an arbitrary orthogonal metric (2), the Einstein 
equations reduce to a simple and convenient system in terms 
of the Lemaitre invariant mass function": 

where the prime and dot denote differentiation with respect 
to the radial x,  and time x, coordinates. This function 
m(x,,x,) is the active gravitational mass, the total energy 
equivalent of the distribution of sources of matter. The latter 
are described by an energy-momentum tensor with compo- 
nents 

TOo, Toi, T i i ,  Tz2=Tg3=f (xO, xi) 

which do not vanish identically in the case of spherical sym- 
metry and which satisfy the conservation law T :, = 0. 

In polar coordinates for curvature with r  = R (x,,~,), 
which are acceptable from the standpoint of physics only for 
R-regions in V, having a canonical metric of the form24 

the field equations (3) are greatly simplified: 
r 

e - L l -  xm (r ,  t )  , m= ( r ,  t )  =4n To0 (r ,  t )  ?dr ( 5 )  4nr S 
and a exhibit far-reaching analogy with Newtonian gravita- 
tional theory for non-static centrally symmetric systems.12 

In an external empty region of V, with Schwarzschild 
metric 

ev=e-'=I- (xM/4nr) ,  Al=const, 

the Lemaitre mass function coi~~cides with the total gravita- 
tional energy-mass integral of an isolated sphere in general 
relativity theory. '' 

In a reference frame comoving with the liquid and hav- 
ing a metric2 

-ds2=-ea(*. X ) d ~ ~ + e @ ( < ,  x)dX2+R2 (T, X )  [d6+ sin2 6dq2]  

(6) 
we obtain from (3) the system of equations 

mf=4n~R2R' ,  m=-4nPR2R, 

for the hydrodynamic energy-momentum tensor T:. 
= E(T,x), T : = T :  = T :  = - P ( r , ~ ) .  The system is com- 

plemented with the conservation law T = 0: 

and with a dynamic equation of the form 

Here u = D,R = e - u'2 R is the rate of variation of the cir- 
cumferential distances on the Lagrangian spheres 
x = const, measured with respect to local proper time. 
Equation (9) is the relativistic analog of the inverse square 
law. That is, acceleration of a layer is determined by the 
gravitational mass m* = m + 4rPR of the inner sphere and 
by the pressure gradient (0' #O). In the static case, this equa- 
tion turns into the condition of equilibrium of a gravitating 
liquid with P = P (E )  # 0 in the R-region (4). Its first integral 

u2=W-1+xm/4nR+AR2/3 (10) 

has the physically lucid meaning of the equivalent of the 
Newtonian energy equation f = W 2  - 1 = 2E for a spheri- 
cal layer x = const. Therefore, the function 

is interpreted as the relativistic specific energy of the La- 
grangian spherical layers, which includes not only the self 
mass-energy of the liquid, but also the potential gravita- 
tional binding energy and the kinetic energy of the radial 
motion. 

The active gravitational mass 
Z I 

m (2,  r) =4n & ~ ~ ~ ' d ~ = 4 n  e  W R 2 e w T z q  
0 0 

yields the total energy contained within the Lagrangian 
spheres, and at W # 1 it is different from the total self energy 
of the liquid in the sphere: 

X 

X ( X ,  1) =4n J e ~ ~ ~ ~ / ~ d ~ ,  dV=4nR2ew"d~, (12) 
0 

so that even for dust with P = 0, it is different from the con- 
served rest mass of the sphere14: 

If a spherical layerx = const is added, the ratio of the incre- 
ments 

differs at W <  1 by the gravitational binding energy, and at 
W 7  1 by the excess kinetic energy of the liquid. These gen- 
eral-relativisty nonlinear effects-the gravitational mass de- 
fect and the gravitational force created by the kinetic energy 
of the layer-manifest themselves in a unique way via the 
non-Euclidean nature of the physical space V3 of the comov- 
ing frame (6), since the active specific energy W = m' /A"  
determines also the geometry of the spatial cross sections 
T = const: 
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dlZ=dR2/ W (R) +RZ (d62+sin2 +d$) 

em=R' '/W2. (14) 

In particular, the sign of the function f = w2 - 1, which (at 
A = 0) characterizes the infinite 0 0 )  or finite (f< 0) types of 
motion of the layer, is opposite to the sign of the spatial 
scalar curvature13 

From the comoving condition in the form 

it follows that the rate of change of the specific active energy 
of the layer is determined by the pressure gradient. There- 
fore, at P = 0, as well as for distributions of a liquid with 
P = P(r) which are uniform in (6), the integral 
W(X) = [ l  + f (X)I1l2 is conserved. In the case of isotropic 
Friedmann models, this integral ensures separation of varia- 
bles in the metric (6): 

-ds2=-d~~+a~ (z) {dxZ+SZ (%) [de2+sin2 fidqz] ) , 

sinx ( k=+ l )  

R(x,r)=a(r)S(x), S(x)=( x (k-01, (16) 
shx (k=-I) 

m (x, T)  = p ( ~ )  S"(x), C1=-4nPa2d, p (T) = (4n/3) ~ a ~ .  

The active mass m(X,r), which is the equivalent of the 
total energy of the liquid sphere (7), is changed by the work 
done by the pressure forces P # 0 on its boundary sphere, so 
that in the Tolman-Bondi  model^'^*'^ the distribution m(X ) 
of the active mass for dust with P = 0 is [like (1 I)] a motion 
integral as well as being the conserved intrinsic rest mass 
A,(X ) and the specific relativistic energy12*13 

W (x,) =m'/.do'= (dm/M,). 

At the boundary x = X, between the sphere and vacu- 
um, where we must have P(XO,r) = 0, the Lemaitre mass 
function is constant, and, because the metric (6) of the interi- 
or region of V4 is a continuation of the external Schwarzs- 
child field, its limiting value will coincide with the total ener- 
gy integral of the mass of the sphereI2 E = Mc2: 

2. As has been pointed out by N o ~ i k o v , ~  in the case of 
spherically symmetric fields V4 of general form (2), there 
exist singular essentially nonstatic T-regions which are not 
"contained" in R-frames of the type (4), since the angular 
metric coefficient d'2 = R (x,,~,) is time-like 

e - o p = v Z >  WZxe-"R' 

and cannot be used as a spatial radial coordinate. However, 
in T-regions of V4 this radius of curvature of the spheres S2 
(x, = const, x, = const) may be used as a time-like monoton- 
ic coordinate T = R (x,,xl) and can realize a canonical T- 
system with metric2 

-ds2=-ea(x* T)dT2+em(T, x)dxZ+T2 [dW+sin2 fidqZ] . (1 8) 
A feature of this metric is that the spatial cross sections 

T = const are infinite ( - co <,y < co ) hypercylinders 
V3 = (S2 x R ,) without a classical center r = 0. 

An invariant partitioning of V4 into R- and T-regions 
may be carried out with respect to the orientation of the 
hyperplane~e"'~ = R (x,,xl) = const, which in the T-regions 
must be space-like with a normal vector inside the local light 
 cone^^.^ ds2 = 0: 

n,n'=A,R=e-ap-e-"R' 2=v2-W2>0, (I9) 

whereas in the R-region they are time-like with n,ni 
= A ,R = v2 - W2 < 0, and at the boundaries between the T- 

and R-regions they are zero-isotropic, i.e., n, ni = A ,R = O; 
I v 1 = I W I. From the definition of an invariant mass function 
(3), (lo), it is obvious that the T-regions of V4 with v2> W2 are 
inside the current gravitational radius of distribution of mat- 
ter at A = 0: 

R (so, xi) d (x /4n)  m (xo, xi). (20) 

Their boundaries v2 = W2, the zero-horizons of Schwarzs- 
child-sphere-type events (5), become semi-permeable causal 
membranes through which light rays and particles may pen- 
etrate in only one direction, from an R- to a T-region or the 
other way round. Using the equation of propagation of radi- 
al light rays ds2 = 0 in the form 

dxi/&o=e(o-")/2 

it can be easily proved that the radius of curvature of the 
spheres R = R (x,,x,) varies along both rays as 

e-"I2 (dR/dxo) =D,R=v*W. (20') 

Consequently, for both the outgoing and the incoming rays, 
in T-regions with I v 1 > 1 W I the radius is always monotonical- 
ly decreasing of v < 0 and is increasing if v > 0. Hence, there 
are two physically distinct types of isometric T-regions with 
distinct initial conditions under which the regions are pro- 
duced by the time direction24: (a) a contracting T( - )  -region 
with v < 0 in which all causal influences propagate towards 
the time singularity R = T = 0, as in the case of the phase of 
gravitational collapse of a massive body into a black hole; (b) 
expanding TI + ' -region with v > 0 in which all light rays and 
particles travel exclusively outwards from the initial singu- 
larity R = T = 0, as in the expansion of the metagalaxy, of 
from hypothetical white holes from under the Schwarzs- 
child sphere in nonuniform cosmology. l4 

Note that the sign of the "velocity" v = e-"I2 R must 
be preserved in T-regions of V4, and that regular "reflection" 
is impossible, since the turning point v = 0 must be in the R- 
region, while the "throat" with W = e - ""R ' = 0 is located 
only in the T-region for arbitrary orthogonal frames (2), in- 
cluding the system (6) comoving with the matter with TA 
= 0 (cf. Ref. 6). 

The Einstein equations assume a very simple form3 in 
the canonical T-system (18): 

e- " (oT/T+l/T2) +l/TZ=xToO+A, 

e-" (aT/T-l/Tz) -1/T2=-xTil-A, (21) 

By (3), the general relations for T-regions of V4 (18) that fol- 
low from (21) resemble the analogous equations in the quasi- 
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Newtonian R-system (4) and may be easily obtained by the 
formally substitution r+T: (cf. Refs. 2-4 and 14): 

The well-known metrics of S c h w a r ~ s c h i l d ~ ~ ~ ~ ' ~ "  and deSit- 
ter-Kottler (SDK) at (A #O) which have according to (2 1) the 
form3 

- ~ S ~ = - U - ~  ( T )  d T 2 + U ( T )  dx2+T2 [dfl2+sin2 6dcp2], 

as well as the exact solution of the Einstein-Maxwell equa- 
tionsassuming a freeelectromagnetic field E(T ) H ( T ) ,  the 
Reisner-Nordstrem (RN) metric'5b of the form (23) with 

and with energy-momentum tensor 

(which in the R-region is usually considered as the external 
field of a charged massive sphere), yield typical examples of 
uniform Novikov T-regions. Because of the enhanced mobil- 
ity of G4VIII = (G,IX X GI) on V3 ( T  = const), by virtue of 
the Birkhoff theoremgb for these spherically symmetric me- 
trics (23) and (24), the boundaries between the R- and T- 
regions of V4 corresponding to the removable pseudo-singu- 
larities15 U(T ,*) = 0 are Killing zero-horizons on which the 
type of symmetry of V4 changes. That is, the spatial homo- 
geneity in the T-region is replaced by the static character of 
the R-region, where gig = U ( T )  < 0, though in the general 
case both are merely regular zero-hypersurfaces with nini  
= A,R = 0 and constitute Cauchy-event horizons. 

PROPERTIES AND DYNAMICS OF T-MODELS OF THE 
SPHERE 

1. By definition, the above singular spherically symmet- 
ric distributions of material sources for which the comoving 
frame (6) is a T-system with R = r2(r) = T and a canonical 
metric [in fact, a uniform metric by (21) if P $01 of the form 
(18) correspond to a special case of T-regions in V4 with mat- 
ter at rest, in which there is no radial flow of energy-momen- 
tum (TA = 0) along the hypercylinder V3 = (S2xR1). 

One typical feature of T-models of the sphere is that 
according to (7) and (22) their active mass m(T)  is not related 
to the distribution of sources of matter (and if P = 0, is even 
independent of these sources), though the spatial cross-sec- 
tions in the comoving T-system (18)-the hypercylinders 
V3 = (S2 X R ,)-contain an unlimited amount of matter with 
an infinite total mass-energy (12). The latter, however, is en- 
tirely gravitationally bound in the initial T-regions of the 
Schwarzschild-Kruskal field,24 since the negative potential 
binding energy for each Lagrangian of the spherical layer 
W=O (1 1) cancels exactly its proper mass. In addition, this 

infinite gravitational mass defect is closely related to the es- 
sentially non-Euclidean hypercylindrical geometry of the 
comoving space V3 ( T  = const) in the T-system (18). Though 
the active mass of the T-models of the sphere does not, in 
general, contain any mass contribution and must be of field 
origin, its time variation is caused according to (7) by the 
work of the pressure forces: 

mT=4nT2TL'=-4nT2P(T) (25) 

(as in the case of Friedmann's isotropic models (1 6) at P # 0). 
T-models of the sphere do not, in general, have any 

Newtonial equivalent, and their very existence and unusual 
properties are due to the specific nonlinearity of general rela- 
tivity theory, namely: (a) to the existence of Cauchy-Killing 
zero-horizons (CKH) such as the Schwarzschild sphere and 
vacuum T-regions (22) and (23), variable maximally strong 
fields with a "longitudinal" nonwave structure in which 
matter may be totally bound and is always confined; (b) to 
the gravitational mass defectz4.12 which ensures exact can- 
cellation of the contribution of the matter to the active mass 
m(T), the equivalent of their total energy, and constancy of 
this energy under unrestricted accretion of the spherical lay- 
ers. ' 

Such singular solutions of the Einstein equations (21) in 
the comoving T-system (6), (18) with TA = 0 and according- 
ly a = 0 and a = a(T) ,  are possible for different types of 
sources of  matter'^^-^ Tk, including an ideal liquid with a 
specified equation of state P = P (E) .  Further, if P #0, the T- 
models must be homogeneous: 

o = a ( T > ,  o=o ( T ) ,  E = E  ( T ) ,  P = P ( T ) .  

2. The simplest example, previously investigated in Ref. 
lb, of an inhomogeneous T-distributions of dust with P = 0 
yields an analytic solution for the metric (6) at R = r(r) and 
a = 0 in a synchronously comoving system. This solution 
supplements the class of Tolman-Bondi  model^'^.'^ and as- 
sumes the following form in a canonical T-system (1 8): 

Z ( T ,  X )  =€+Ao' ( x )  [ (2MIT- I )  -'"-arcsin ( T / 2 M )  '"1, 

These T-models of a sphere possess a constant active mass 
M > 0 for an arbitrary unlimited amount of contained dust in 
V3 = (S, x R ,) with an arbitrary distribution of the proper 
rest mass do@ ) whose contribution is exactly offset by the 
gravitational binding energy ( W -0) in the initial T-regions 
of the Schwarzschild-Kruskal field @ = 0, do = 0). Since 
the rest mass is fully neutralized, such passive matter with 
W=O is simply inscribed in the vacuum T-regions, preserves 
their local properties, and replaces, as it were, the trial parti- 
cles of the synchronous T-frame (6) with R = r(r). However, 
the presence of dust radically alters the global causal struc- 
ture of V4 and, in particular, transforms the Schwarzschild 
zero-sphere T * = 2M into a regular space-like boundary of 
V4 for (26), where =: 2.A; # 0. 
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It can be shown that such limiting Cauchy-Killing zero- 
horizons gig = U(T:) = 0 between causally bound vacu- 
um uniform T- and static Schwarzschid-Kruskal R-regions, 
which are membranes T * = 2M semipermeable to light rays 
and particles, become an absolutely impervious barrier to 
causal effects in T-models of the sphere (26). This is clear 
from an analysis of the basic equation for the geodesics of the 
T-metric (26): 

an equation obtained using the integrals of the angular mo- 
mentum I and of the radial momentum wCy) of the particles 
(E = + 1) and light rays (E = O), 

n 
.fje- ' k T 2  3. 

2 '  dk ' 

4 x 1  Ao1(x) -=:- 

w (xo) do' (xo)  

together with the normalization condition (1 8): 

The behavior of the geodesics for the T-models (26) 
differs from the vacuum caseI5" only by the factor 
Z (TJ) # 1, which diverges at the boundaries of the T-regions 
when U ( T  t) = 0: 

Z (T, X) ~2~o'(2M/T-1)-'"-+w. 

Along the geodesics that extend to the boundaries of the T- 
models, T (A )-+T * = 2M, the radial momentum is finite, 
whereas Z(T,x)+ W,  which as a result leads to a halt 
[ - (dT/dA ) = 0] of all the particle and light ray paths on 
this limiting barrier T * = 2M and to their reflection in the 
other T-region, which is now absolutely impermeable to 
causal effects. Thus, the pair of locally equivalent T(  + ) - and 
T'-)-regions of the Schwarzschild-Kruskal vacuum met- 

15" forms a cosmological T-model (26) when they are 
filled with gravitationally totally bound matter with W =O; 
this T-model is geodesically complete and does not contain 
any external R-regions (see Fig. la). 

Cosmological T-models of a sphere can be interpreted 
analogously in the case1" A $:O and when there is a free elec- 
tromagnetic field These T-models may be con- 
structed on the basis of the corresponding T-regions of the 
Schwarzschild-desitter-Kottler (23) and Reisner-Nord- 
strem (24) metrics, which they generalize. They may also be 
considered as a singular branch, with W = 0, R = r ( ~ ) ,  of the 
general solution (6) of the Einstein-Maxwell equations 
(A #0) for the spherically symmetric problem of collapse of 
neutral dust (P = 0) in the field of a charged central massI6 in 
a synchronous comoving T-system (cf. Ref. la): 

This constitutes an anisotropic axisymmetric cosmological 
quasi-closed model6 that contains, besides dust with WEO, 
an additional uniform variable electromagnetic field 
[E(r)11H(r)]. Its lines of force are directed along the genera- 
trices of the hypercylinder V3 = (S, x R ,) and are, as it were, 
"frozen" as a consequence of the law of conservation of 
"chargeless charges" (e = const,,u = const) for the initial T- 
regions (24). 

3. Since V4 is closed and causally complete in cosmolo- 
gical infinitely extended ( - UJ <X < W )  T-models of a 
sphere, the concept of a total-energy integral for these T- 
models is without physical meaning, as in the case of Fried- 
mann's topologically closed But by analogy with 
the "semi-closed" models, 3.4 we may consider bounded T- 
sphereslb surrounded by an external empty region with a 
Schwarzschild field. The total energy-mass integral 
E = Me2 > 0 of such singular T-distributions of matter may 
be properly determined by means of a regular matching of 
the intrinsic T-metric (26) in the bounded region 
( - UJ <x<xO = const) and in the Schwarzschild-Kruskal 
vacuum field,243'5a while satisfying the boundary conditions 
that the invariant characteristics of the geometry of the com- 
plete V4 must be continuous (this is obviously possible for 
P = 0) through the vacuum T-region, and emerge to the as- 
ymptotically planar R-region (see Fig. lb). The bounded T- 
sphere may contain an arbitrary infinite quantity of gravita- 
tionally totally bound matter with W=O, always enclosed 
under its Schwarzschild sphere, though from the standpoint 
of gravitation it appears as an object with finite mass-energy. 
This mass-energy is a purely field-like geometrodynamic 
massless mass of the vacuum Schwarzschild-Kruskal T-re- 
gions and is always positive." 

Consequently, T-spheres provide a method of realizing 
the maximally possible (in general relativity theory) gravita- 
tional mass defect, which is precisely equal to the infinite 
proper mass of matter. The method is different in principle 
from Friedmann's closed model. 

The boundary of the T-sphere x = X, = const consists 
of particles of dust (P = 0) that travel along the radial geo- 
desics (27)-(29) in an external Schwarzschild field with 
Z = 1 like a trial "reference liquid" of the T-system (26). 
Therefore, even using the Kruskal diagram (see Fig. 1, where 
the limiting spherex = 0 is depicted by a segment of the time 
axis u = 0), it is easy to elucidate the theoretical possibility of 
unilateral exchange of information between its internal T- 
regions and the external R-region of V,. From the standpoint 
of an observer in the R-region, the pattern of evolution of the 
T-sphere does not differ from the case of a gray hole-which 
is a semi-closed world with equatorial spherex, = 7~/2 as its 
b o ~ n d a r y , ~ , ~  and is characterized by an unusual asymmetry 
between the unobservable stage of collapse T ( - )  and the visi- 
ble anti-collapse phase T (  + in which the expansion of 
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Fig. 1 (a) Kruskal diagram for uniform T-models of the sphere (26) at A' > l/v, and e = + 1 in isothermal coordinates of the form15 

dsZ=F2(T) [do2-du2] - R ~ ( u ,  u)dQZ, 

F2-4r02e"(T) exp {T(T)/2ro), u2-u2=exp {-T(T)/ro}, 
T 

( r 0 T - )  - 2 -  (T) T r0=2M-const. 

The world lines x = 2r0 artanh(v/u) = const of the dust particles are straight lines, and the diametrically opposite ends at the spatial 
absolutely reflecting boundary R (u,u) = ro = 2M are the same. (b) Global structure of causally complete V, for a bounded 
( - co <x<xo = 0) T-sphere at P = 0 with an external Schwarzschild vacuum field. 

V, = (S2 X R ,) begins from the "central" singularity 
R = T = 0, and concludes with asymptotic congealing on 
the Schwarzschild sphere R = r(r) = 2M. The anti-collapse 
pattern of the T-sphere at first resembles parabolic expan- 
sion of a glowing spherical shell from a central point," 
which then decelerates and approaches asymptotically (rela- 
tive to the time of an external observer in the R-region, i.e., 
t - t  a, ) the gravitational radius R ( T  )+2M with a typical pat- 
tern of congealing of the process on the Schwarzschild 
sphere (as in the formation of a black h ~ l e ) , ~ . ~  while its col- 
lapse stage is not amenable at all to observat i~n. '~ ,~ 

The existence of T-spheres in general relativity theory 
leads to an important physical conclusion: Within the 
Schwarzschild sphere (which may arise, for example, in the 

collapse of massive bodies) it is possible, at least in principle, 
for the entire proper rest mass of an arbitrary amount of 
matter to become bound once its energy equivalent has been 
released in the form of radiation, though it is still unclear 
what might be the mechanism by which such an ideal gravi- 
tational "engine" operates (cf. Ref. 4). 

As we have shown, T-spheres have unexpected applica- 
tions in relativistic astrophysics, for example, in the discus- 
sion of the quantum effects of generation of particle pairs 
(explosion of a vacuum in primordial white  hole^^.^). White 
holes were first considered in a classical treatmentI4 as nu- 
clei against the Friedmann background that had lagged be- 
hind in cosmological expansion due to an initial stage of 
strong inhomogeneity of a singular state of the universe in 
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which super-dense matter may escape from under the 
Schwarzschild sphere in an anti-collapse stage at any mo- 
ment of time, for example, at once for an external observer, 
i.e., as in the time-dependent transformation of the pattern 
of collapse in the formation of black  hole^.^.^ But in a neigh- 
borhood of the Schwarzschild central singularity R = T = 0 
with M >  0, corresponding to the anisotropic vacuum state 
of the initial expansion of the lagging nucleus with an asymp- 
totically uniform Kasner-Taub metric2 of the form (6) 
(u = 0, R a T ~ / ~ + O ,  c~ T- -+ co ), the quantum vacu- 
um is unstable relative to spontaneous generation of particle 
pairs of this strong variable gravitational field if 
T 5 T, - (G+~/C~)"~- set., Therefore, the T-region 
must be filled with super-dense hot matter consisting of 
created and rapidly thermalizing (except, probably, the gra- 
vitons) particles with E, - 1/x?2, - g/cm3 (Ref. 8). The 
product matter is initially at rest relative to the T-system1' 
(where the Schwarzschild singularity R = T = 0 is simulta- 
neous and the initial metric uniform) and is simply a bound- 
ed T-distribution with vacuum surrounded by the external 
isotropic background of the Friedmann model. Consequent- 
ly, the particles of product matter in the initial T-region are 
gravitationally totally bound ( W EO) and always contained 
within their own Schwarzschild sphere. These particles do 
not contribute at all to the total mass-energy m(T) (which is 
due to the initial Schwarzschild singularity), but influence 
markedly the dynamics and properties of a white hole.1c.' 

Thus, as a result of intense quantum production of par- 
ticle pairs near the Schwarzschild anisotropic singularity 
R = T = 0, the classical white hole will turn into a bounded 
T-sphere and may contain an arbitrary proper mass of gener- 
ated matter totally bound gravitationally to the initial T- 
region in V,. To a first approximation, the intrinsic T-model 
may be regarded as uniform in the form (18) with u = u(T)  
and w = w(T), ignoring outflow (and accretion) of matter: T 7 
#O due to the discontinuity of the pressure P #O at the 
boundary x = X, with the outer Friedmann (or even empty) 
region, since even at the speed of light a shock wave can 
travel within finite proper time AT - R, /c - xM/c of expan- 
sion of the T-sphere only a finite radial distance along the 
hypercylinder V3 = (S, X R ,) to its gravitational radius 
AX -AT= (x/477)mma, ; in addition, the shock wave will 
draw in only a small fraction of the matter in the T-sphere.' 

4. For uniform T-models of the form 
-dS2=-eo(T)dTz+e*(T)d x 2 +T2 [dfi2+sin2 6 d ~ ~ ] ,  (1 8') 

filled with an ideal liquid with equations of state P = nE 
(O<n<l), the Einstein equations (21) and (22) admit of a 
number of integrals1" 

Due to the work of pressure forces P $0, the active mass 
m(T) of the T-models and, correspondingly, the gravita- 
tional radius F ( T )  = (x/4?r)m, must vary, so that by using 
(3  1) the problem can be reduced to that of solving a single 
nonlinear equation of the form 

In the case P = &/3, it is an easy matter to indicate its parti- 
cular solution with 

namely: 

(33) 
In this special T-model of the sphere, overall expansion of 
the hypercylinder V3 = (S, x R ,) begins and ends (after pass- 
ing through the regular extremum: r,,, = T,,, = F,, 
= (3/2)M, (em/' ),, #O) with Kasner linear singularities: 

just as in the case of the T-regions of the Schwarzschild- 
Kruskal field. 

As before, the T-models of a sphere exhibit a consider- 
able degree of similarity with the initial T-regions, though 
the existence of gravitationally totally bound liquid with 
W 0 not only radically alters the global causal structure of 
V, (eliminating the vacuum zero Cauchy-Killing horizons 
U ( T  :) = 0 such as of the Schwarzschild sphere T 7 = 2M, 
as well as external R-regions), but also markedly influences 
the local properties of a white hole in view of the variability 
of the active mass m(T) if P #O. 

The characteristic features of the dynamics of T-models 
of a sphere, (3 1) and (32) for P < E, are reflected by an exact 
solution more general than (33) with P = ~ / 3  when FTT #O, 
in the Shikin parametric form18.' with f = - FT > 0: 

F (5) -- 1 E T(E)  -a+ - - - -a+-f->O, -- 
b E 3 b 3 3 

PO, 

They must have two singularities, initial and final (E,P+ co ), 
with one of them (a > 0) or even both together ( - 2/ 
\/5 <a < 0) being vacuum singularities of the Schwarzschild 
field R = T = 0, and with a form independent of the pres- 
ence of matter. The two singularities correspond to aniso- 
tropic Kasner collapse of V3 = (S, X R ,) into a line 

with the active mass remaining finite: 

m ( T )  =m(E,,z)  =M,,,=const, M1+M2. (36) 
The second possible type of singularity in the T-models 

(a > 0) is described by the kinematic Kasner asymptote of the 
collapse of V, into the disk S,: 
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The latter apparently replaces the vacuum Schwarzschild 
zero sphere T * = 2M, which in T-models of a sphere turns 
into a physical singularity (E,P-CC) without altering its 
zero-orientation if P < E. There is therefore no causal radial 
horizonI8 in this type of singularity (unlike the Schwarzs- 
child linear singularity), and the light rays traverse an infi- 
nite distance along the generatrices of V3 = (S, x R,) as 
T-+T*, r(r*)-+T *. In such a longitudinal contraction of the 
hypercylinder V3 into a spherical 6-layer S,, the active mass 
becomes infinite: 

as a consequence of the effect of the pressure forces 
P (7) a (T - T*) - ( I  + " ) + a  on a Lagrangian sphere of finite 
radius r(r*) = T * = const. 

In the special case (a = O), the singularity is caused ex- 
clusively by the presence of gravitating matter and corre- 
sponds to Friedmann quasi-isotropic collapse of V3 into a 
point: 

em/2ar(T) ,TaZ2/[3(l+n)l '0, 

when m(r) a V- " a T p  3n a T - + ") -+ cc because the 
pressure increase is more rapid (Pa T-  3(' + ") a rP2- cc ), 
than the decrease in the area of the "liquid" sphere 
S = 477T '-0. 

In Kasner collapse of V, = (S, x R ,) into the line (35), 
conversely, the pressure grows more slowly: 

and as S = 47~T ,_to, the active mass therefore remains fin- 
ite: m(T)-+M = const. Since such a linear singularity of the 
T-models of a sphere is vacuum-like and is independent of 
the presence of matter with P < E ,  the initial value M>O 
must be thought of as the bare massless mass of the initial T- 
regions of the Schwarzschild field in a white hole. 

Uniform T-models of the sphere, which are defined as 
the solutions of the Einstein equations (21) and (22) relative 
to the T-metric (18) with TA = 0, may also be constructed 
using a more realistic description of product matter in a 
white hole, as in anisotropic c o s r n ~ l o ~ ~ . ~ ~ ' ~  Here matter is 
treated as a mixture of an ideal liquid with P = n& (O<n,< 1) 
and collision-free nonthermalizing radiation (gravitons, 
neutrinos) in the form of mutually canceling counter flows of 
ultrarelativistic particles along the generatrices of the hyper- 
cylinder V3 = (S, X R ,) with an energy-momentum tensor in 
the uniform T-system (18') of the 

The time variation of the active mass of the T-models of a 
sphere is now caused by the combined work of the isotropic 
pressure forces P # 0 of the liquid and the anisotropic tension 
of the flows of ultra-relativistic particles to the Lagrangian 
spheres x = const in accordance with (2 1) and (22): 

so that in the course of the general expansion of 

V3 = (S, X R ,), the latter must always decrease. The initial 
active bare mass is therefore a maximum in the Schwarzs- 
child linear singularity (35) (and for the point (39) and disk 
(37) singularities m(T) is even infinite), and its minimum co- 
incides with the maximum transverse expansion of the hy- 
percylinder V,: 

F ( T )  =T= (?c/4x) m(T) .  

A detailed analysis of the dynamics of uniform T-models of a 
sphere (18') filled with liquid with different equations of state 
P = nE (O<n< 1) and different flows of ultra-relativistic par- 
ticles (40) may be found in Ref. lc. 

Thus, if white holes did actually exist as lagging nuclei 
in the singular initial state of the universe,14 then, because of 
the instability of the quantum vacuum relative to production 
of particle  pair^,^.^,^^ they turned into bounded T-spheres 
and became gray holes. But their pattern of evolution cannot 
be fully explained if outflow of matter (P #O) or possibly its 
accretion in the "hot" version is taken into account, and 
requires further s t ~ d y . ~ , ~  

APPENDIX 

UNIFORM SCALAR-TENSOR GENERALIZATIONS OF 
SCHWARZSCHILD AND REISNER-NORDSTREM T-METRICS 

1. For the special case of a liquid with a maximally rigid 
equation of state P = E, the T-solutions of general relativity 
theory may be obtained in the simple analytic formIcs9 

These T-models of a sphere are distinguished by a number of 
specific behavioral features, since the maximally rigid liquid 
with P = E alters qualitatively the expansion dynamics of the 
hypercylinder V3 = (S, x R ,) compared with vacuum T-re- 
gions of the Schwarzschild field (v2 = 0, E = 0). Its effect is 
always substantial even at the two central singularities 
r(r) = 0, one of which becomes an anisotropic point collapse, 
and the other a linear collapse of V3 = (S, x R ,) with modi- 
fied Kasner asymptote: 

Here the active mass is m(r) a T - + 3p + cc ,p < 2/3. If a liq- 
uid with P = &(u2 > 1/4) is dominant, only point collapse of 
V3, approaching the Friedmann quasi-isotropic regime, is 
possible ifp2-1/3, v2-+3/4, j&~1/3.~ Note the degenerate 
case v2 = 1 in which the hypercylinder V3 is static in the 
longitudinal direction (em/, = Xo = const) and pulsates only 
in the transverse direction, whereas the two central singular- 
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ities r(r) = 0 correspond to the collapse of V3 into a "keg": 
p1 = 0,p2 =p3 =j = 1/2,p2 = 1/4. 

Whether the Zel'dovich limiting asymptote P = E is re- 
alistic for the description of super-dense product matter in 
white holes is quite open to question, as in cosmology (see the 
bibliography in Ref. 19). But a maximally rigid liquid with 
P = E simulates a massless free scalar canonical-type field 
that satisfies the d'Alemberg equation OY = 0, when it as- 
sumes in general relativity theory the role of only a source of 
matter as, e.g., for the Dicke scalar-tensor theory of gravita- 
tion (see Ref. 21 for details). Therefore, the T-models of a 
sphere (Al)  in general relativity theory may be considered as 
a modification of the Schwarzschild vacuum T-region in the 
Dicke scalar-tensor theory in the presence of a uniform 
mode of the free scalar field 

Y =0, Y (u) =Yo In (tg ( ~ 1 2 )  ) "? o=const, 
which is equivalent to a maximally rigid liquid at rest with 

if we substitute 2 = dltf /4. 
2. T-models of a sphere that contain a maximally rigid 

liquid with P = E admit of an analytic solution also where 
there is a uniform free Reisner-Nordstrem electromagnetic 
field (24) of the 

-dsz=-).le"dq2+e"d$+r2(q) [de2+sin2 t?d$], (A3) 

where y2 = a2 + f l  and v0 = const (cf. Ref. 5c). These T- 
models may be interpreted as solutions of the Einstein equa- 
tions for gravitationally bound free uniform electromagnetic 
fields and a canonical scalar massless field as sources of mat- 
ter: OY = 0, Y(7) = Yo + SS~) if we set 
f l  = xf.S = (2w + 3)s  '. These vacuum analogs of the 
Schwarzschild-Reisner-Nordstrem T-metrics (Al)  and (A3) 
are easily transformed in canonical representation of the 
Dicke scalar-tensor theory into the initial Jordan-Brans- 
Dicke form with variable gravitational constant G a q, - '(T), 
where dZ2 = p -Ids2 and q, = ey . lc They may also be easily 
obtained for the variant of the scalar-tensor theory with a 
conformal scalar field O@ + 1/6R@ = 0 as a source of mat- 
ter in general relativity theoryz2 by a dimensional transfor- 
mation of canonical Schwarzschild-Reisner-Nordstrem T- 
metrics (Al)  and (A3) to the formz3 

Scalar-tensor generalizations of the Schwarzschild-Reisner- 
Nordstrem T-regions in the canonical representation (Al)  
and (A3) possess time singularities with asymptote (A2), 
where 

and the electromagnetic field in (A3) precludes the possibil- 
ity of linear collapse and there is left only point collapse of 

V3 = (S2 X R ,), when its influence becomes negligible: 

For the conformal variant with O@ + 1/6R@ = 0 and the 
Jordan-Brans-Dicke scalar-tensor theory with variable 
Gccq,- '(r)ar- 2b - UJ or 0, owing to the singular nature of 
the gauge transformations of the metric similar to (A4) 

6= 1 bh 1, @ (T) -+*h.-', 

the asymptotic behavior of (A2) is altered and, in terms of the 
new proper time ?* assumes the common form (cf. Ref. 2 1): 

The asymptote (A5) may include not only point and linear 
collapse, but also collapse of FT = (Sz X R ,) into a plane (but 
only for the Jordan-Brans-Dicke variant in which 
A ( r ) a q , - l ( ~ ) a r -  UJ ,03 ,S 0. However, like the canonical 
form (A2), these asymptotes do not contain the Kasner kine- 
matic set of exponents (I = 1,n = 0) of the type of collapse of 
V, int'o a "pancake" corresponding to the removable pseu- 
do-singularities U (7:) = 0 on the zero-isotropic boundaries 
T = T: between the T- and R-regions of V4 in the Schwarzs- 
child-Reisner-Nordstrem metrics (23). Thus, the uniform 
mode of the free scalar field Y = Y (7) is equivalent to a maxi- 
mally rigid liquid with 

when the T-regions of the Schwarzschild-Reisner-Nord- 
strem metrics (23) are filled, eliminates the limiting zero- 
horizons such as the Schwarzschild sphere and turns them 
into physical singularities of the point-collapse type (A2) or 
(A5) for the conformal variant and the Jordan-Brans-Dicke 
scalar-tensor theory. This agrees with the results wherein 
the Schwarzschild sphere is strongly influenced by a scalar 
vacuum field in the static R-region of V4, when the limiting 
zero-horizons in the generalized Schwarzschild-Reisner- 
Nordstrem metrics also vanish and are replaced by the bare 
singularity R = 0.10.24 This confirms a previous conclusion 
according to which it is impossible for a black hole to form in 
the gravitational collapse of massive bodies in different var- 
iants of scalar-tensor theory. l o g z 5  

I would like to express my appreciation to L. E. Gure- 
vich, I. D. Novikov, and Ya. A. Smorodinskii for a discus- 
sion of the results. 

"Similarly, bounded T-spheres with electromagnetic field (30) possess ad- 
ditional geometrodynamic chargeless charges (q#O) ,  while M>O if 
A =o.  
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