
Anomalous electron tunneling in a magnetic field near a surface 
A. V. ~hae tsk t  and B. I. ~hklovskt 

A. F. Zoffe Physicotechnical Institute, USSR Academy of Sciences 
(Submitted 22 February 1983) 
Zh. Eksp. Teor. Fiz. 85,721-734 (August 1983) 

Sub-barrier electron tunneling is known to be significantly weakened by a transverse magnetic 
field. In particular, in a strong magnetic field and at large distances x from an impurity, the wave 
function across the field in a semiconductor takes instead of the usual form $-exp( - x/a) the 
form $-exp( - x2/4A 2), whereA is the magnetic length. It is shown that if the tunneling is along 
the surface of a crystal and across a magnetic field parallel to it the interaction between the 
electron and the surface results in an anomalous transparency, i.e., the effect of the magnetic field 
is much weaker. In particular, the wave function of a donor near the surface takes the form 
$- exp( - x/b ) where x is the coordinate along the surface and across the field, and the length b 
differs from A only by a logarithmic factor. The asymptotic wave functions of donors in a film in a 
magnetic field parallel to the surface is investigated as a function of the film thickness. It is shown 
that the hopping conduction along such a film and across the field is determined by a thin 
subsurface layer in which the electrons tunnel by "using" the interaction with the surface. The 
conductivity is then exponentially larger, and the field dependence weaker, than in a bulky sam- 
ple. 

PACS numbers: 73.40.Gk, 73.60.F~ 

1. INTRODUCTION 

A magnetic field is known' to alter greatly the asympto- 
tic behavior of the wave functions of the impurity state in 
semiconductors. Whereas in the absence of a magnetic field 
the wave function of a state with energy E < 0 is of the form 
$-exp( - r/a), wherea = fi/(2m (E 1)'/2is the effectiveBohr 
radius and m is the effective mass, in a weak magnetic field, 
i.e., at A)a and& 2/a, we have 

and in a strong field, i.e., at A(a or at A)a putp)A '/a, we 
have 

Here A = (cfi/i/lel~ )'I2 is the magnetic length, H is the mag- 
netic field whose direction in this paper is always the z axis, 
a, = N(2mEH)''2 and E, are the effective Bohr radius and 
the ionization energy in the field H,  and p is the distance 
from the point r to thez axis. Equations (1) and (2) are used to 
describe the giant positive magnetoresistance in the region of 
hopping conduction over impurities. 

The alteration of the asymptotic wave functions by a 
magnetic field can be interpreted as the consequence of an 
additional potential barrier produced by the magnetic field. 
Indeed, if the vector potential is chosen in the form 
A = (1.2)Hxr the influence of the magnetic field reduces in 
the Schrodinger equation for an electron in the ground state 
to addition of a parabolic potential barrier in the form fi2p2/ 
8mA 4, which we shall call a magnetic barrier. As a result, the 
summary potential relief takes the form shown by the dashed 
line in Fig. 1, and the electron has to tunnel not only under a 
barrier of height EH, due to the negative energy, but also 
under the magnetic barrier. If the latter alters the exponent 

of the function $ the field is called weak. Otherwise it is said 
to be strong. 

It has been shown in Refs. 2 and 3 that if the electron 
encounters other impurity centers as it tunnels through the 
field, the sub-barrier scattering by them weakens consider- 
ably the influence of the magnetic field on the tunneling. At 
sufficiently large distances the wave functions fall off in a 
manner qualitatively different from (1) and (2), namely 
$a exp( - p/b ), where b is a length that depends on the im- 
purity density and on the field. It can be stated that in each 
scattering act the electron imparts to the impurities a mo- 
mentum in the direction perpendicular to r  and Hand conse- 
quently knocks down the center of the Landau oscillator and 
decreases the magnetic potential to zero. The magnetic bar- 
rier acquires as a result a sawtooth shape (Fig. 1) and no 
longer increases monotonically with increasing r. The influ- 
ence of the field reduces then effectively only to some lifting 
of the bottom of the band. It is clear from this interpretation 
that randomness in the disposition of the scattering centers 
plays no role and that the described phenomenon should be 
more general in character. 

FIG. 1 .  Effective tunnel barrier in the presence of a magnetic field without 
allowance for the electron scattering (dashed line) and with allowance for 
scattering (solid line). The energy level of the tunneling electron is shown 
by a horizontal line. 
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Imagine a crystal bounded from the left by a surface 
perpendicular to they axis, with a magnetic field parallel to 
the surface and directed along z. We examine how the wave 
function of an impurity located near the crystal surface falls 
off in the x direction (which is parallel to the surface and 
perpendicular to the field). We shall show that the influence 
of the surface leads to an anomalously small decrease of the 
wave function, like $a exp( - x/b ). This phenomenon can 
be interpreted as a shift of the oscillator center in thex direc- 
tion by the electron scattered from the surface and imparting 
to it a momentum componentp, . (It is in essence the quan- 
tum analog of the classical motion of a magnetized electron 
along a wall by striking it periodically.) It is interesting that 
at A<a the value of b for this problem differs only logarith- 
mically from the magnetic length A. We shall obtain below 
an analogous asymptotic expression for a film bounded by 
surfaces y = const, as a function of the distances from the 
impurity to the surfaces and of the film thickness d. It will be 
shown that if the film is thick enough, to be able to tunnel 
over a large distance x along the film the electron first tun- 
nels to the nearest surface, next along it (giving up momen- 
tum to it) to the required coordinate x ,  and tunnels next 
across the film to the end point (Fig. 2). 

The investigated asymptotic behavior of the wave func- 
tion makes it possible to describe a number of observable 
phenomena. It is known4 that MOS structures are doped 
with sodium ions located on the interface between the oxide 
and the semiconductor. The potential experienced by the 
electron near such an ion consists of an attracting Coulomb 
potential in the right-hand half-space and of an infinite po- 
tential wall on the left. This potential contains an electron 
level, so that the sodium atoms play the role of surface do- 
nors. At low temperatures one investigates two-dimensional 
hopping conductions over these donors. In a magnetic field 
parallel to the structure surface, our results have made it 
possible to find the exponential dependence of the hopping 
resistance on the donor density and on the field strength. 

FIG. 2. Paths of tunneling from point 1 to point 2 in a thick film (d>/iL ), 
where L is the logarithm ( 1  la). The magnetic field is perpendicular to the 
plane of the figure. a) Impurity center located at the origin (point 1). If x 
(the coordinate of point 2) satisfies the inequality x>d>lL, the tunneling 
is along the paths I1 and 111. IfaL<x<d, the tunneling is along the path I. 
b) Theimpurity center (point 1 )  is not in the symmetry plane of the film. At 
x>d>aL it is necessary to choose the larger of the probability amplitudes 
of tunneling along the paths I and 11. 

We turn now to films that are doped uniformly in the 
volume. We investigate below the hopping conductivity of 
such films in a strong magnetic field parallel to the surface. It 
turns out that their conductivity is determined by impurities 
located in a thin subsurface layer of thickness less than the 
average distance between the impurities in the volume. In 
other words, the subsurface layer shunts the film volume. 
The point is that since the impurities are close to the surface 
their wave functions overlap much more strongly than of 
those far from the surface. We emphasize that unlike in Ref. 
2 we are dealing here with ordinary hopping conduction 
with hops to the nearest neighbors. 

Let us dwell on another possible effect of the crystal 
surface on the asymptotic wave functions in a magnetic field, 
an effect that has no bearing on the impurities and hopping 
conduction and will not discuss further below. Imagine a 
metal-insulator-metal tunnel function in the form of two 
plates in contact with two opposite faces (bases) of a short 
dielectric parallelepiped. Let the x axis be perpendicular to 
the bases and the z and y axes perpendicular to the lateral 
faces. Let the junction be located in a magnetic field directed 
along the z axis, and let its strength be such that it has a 
noticeable effect on the tunneling transparency. According 
to our results the electrons can then tunnel more effectively 
near the faces y = const than through the middle of the par- 
allelepiped base. In other words, the faces y = const can 
shunt the tunnel junction, acting as it were as "banisters" for 
the electrons and altering the thickness dependence of the 
transparency. Similar banisters can be dislocation lines join- 
ing the bases of the parallelepiped. 

Before we proceed to finding concrete asymptotic 
forms, we shall describe our general approach to these prob- 
lems. We are interested only in the argument of the exponen- 
tial of the ground-state wave function of an impurity located 
at a point r'. If the impurity-potential radius is small enough 
compared with the tunneling distance, it can be assumed 
that the argument of the exponential of the wave function 
hardly differs from that of the green function GE (r; r') of the 
Schrodinger equation that takes into account exactly the po- 
tential of the surface or of the film and the influence of the 
magnetic field, but does not contain the impurity potential. 
We shall therefore calculate below only the argument of the 
exponential of the Green function GE (r; r'), i.e., writing the 
Green function in the form GE (r;O) = Goe - g ,  we shall ob- 
tain the value of g. 

2. FILM WITH PARABOLIC POTENTIAL 

We consider first a simple model of the film and specify 
its potential in the form 

U=mS22y2/2=fi2y2/2mh6, (3) 

where A = (fi/mO ) ' I 2  is the effective thickness of the film. 
The potential can be of this form when practically all the film 
electrons are captured by surface levels5 or depart to the 
metallic electrodes adjacent to the film ~urfaces,~ leaving in 
the film a positive space charge of free donors. We begin with 
this case because in a magnetic field directed along the z axis 
the potential (3) admits of an exact solution for free electrons. 
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We shall be interested in the wave function of an impurity 
located at the origin. The corresponding Green function is 

where 

~n (P-YO) 

( 5 )  
is the eigenfunction of a one-dimensional oscillator of fre- 
quency w ,  

Em= (n+'/,) Ao+h2k2/2m*, (6 )  

k is the wave vector of the electron, 

We consider first the case when the impurity center is 
located exactly on the surface. We shall show that in this 
case the wave function of an electron located at the center is 
concentrated mainly over a distance of the order of 
A lnl" (Ciw, /EH) from the surface. In fact, in the absence of 
an impurity center, y (the oscillator coordinate) is a con- 
served quantity, and the wave function is a superposition of 
two confluent hypergeometric functions. The conditions un- 
der which the wave function vanishes far from the surface 
and on the crystal surface can be shown to lead to the follow- 
ing expression for the currection to the zero-level energy on 
account of the interaction with the surface: 

where y is the distance from the surface to the oscillator 
center. Equation (9) is valid ify)A. The ground-state energy 
has a minimum if the maximum of the wave function is cen- 
tered at a distancej from the surface, defined by the equation 

In (lo), p is an unknown constant of the order of unity 
( p< 1). Using Eqs. (9) and (10) we obtain f o r j  the expression 

lelH tto me=- E=--,y 
mc 2 H' 

We calculated the integral of (4) at Ciw, BEH. In this case, at 
an arbitrary value ofA, the relation *>EH is valid. Using 
this fact for r = (x,O,O), i.e., in a direction perpendicular to 
the magnetic field and in the symmetry plane of the film, we 
obtain from (4) 

g ( x )  =x2/4L2, x<<A2/a,, (84  

Comparing (8) with (2) we see that at x(A '/aH the asympto- 
tic relation takes the usual form. In the regionx)A '/aH the 
magnetic potential is periodically "dropped" over a length 
A '/aH and g is proportional to x .  Equation (8b) can also be 
interpreted in the following manner. In Eq. (6) the term 
ii2k :/2m* can be interpreted as the kinetic energy of motion 
along the x axis. Then m* is the effective mass for motion in 
the x direction, and takes into account the influence of the 
potential (3) and of the magnetic field. This means that the 
wave function of a state with ionization energy EH should 
decrease like exp( - x/b ), where 

3. ASYMPTOTIC WAVE FUNCTION OF AN IMPURITY 
LOCATED NEAR A CRYSTAL BOUNDARY 

We consider now the calculation of the asymptotic 
wave function of the ground state of an impurity center lo- 
cated near a crystal surface specified in the form of an infi- 
nite potential wall. The coordinate axis perpendicular to the 

. surface is designated y, the field is directed along the z axis, 
and we seek the asymptotic form along x. We assume that 
A(a. 

where we have introduced 

We note that Eq. (1 1) is valid in the logarithmic approxima- 
tion, i.e., it is assumed that L )  1. To calculate the asymptotic 
wave function it is convenient to locate the origin at the point 
j (we direct they axis along the outward normal to the sur- 
face). 

At a large distance from the center the asymptotic wave 
function is given by Eq. (4), in which pn fy -yo) is the wave 
eigenfunction of a one-dimensional oscillator in a state n, 
satisfying the zero boundary condition on the crystal surface 
and corresponding to the eigenvalue En (k, ). The quantum 
number k, specifies the position of the center of the oscilla- 
tor yo = A  'k,. The ground-state energy E of an electron at 
the center is in this case 

E=hoc/2+AE (y") - E H .  (12) 

We shall calculate G, (r;O) at points on then axis, i.e., we 
put in (4) y = z = 0. It can be easily seen that at h, )EH it 
suffices to retain in the sum over in (4) only the term with 
n = 0. In addition, as will be shown by the subsequent calcu- 
lations, the typical yo in (4) satisfy the inequalities 
0 <yo&/2e  Cy, is reckoned here from the origin). It suffices 
therefore to take the function Eo(kx ) in the form 

where A E  ( j) is given by Eq. (9) with y = j .  In addition, since 
j>A, we can choose the function po( -yo) in the same form 
as for a free electron in a magnetic field in the absence of a 
surface: 
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Substituting (12)-(14) in (4) and introducing a new integra- 
tion variable x = y,JA = Ak, we obtain 

SinceAE ( j )  - EH, the typical x in (1 5) will be of orderA /y (in 
which case the typical yo are of order A ' / j& ). Using the 
smallness of the variable x compared with unity in the essen- 
tial integration region in (15), we replace the function 
exp( - x2) in the numerator of (15) by unity. Closing the path 
of integration with respect to x by an infinitely remote semi- 
circle in the upper or lower (depending on the sign of x) x 
half-plane, we find that the integral is determined by the 
residues of the integrand at the first-order poles closest to the 
real axis: 

The more remote poles make an exponentially small contri- 
bution. It is easy to verify that integration with respect to k, 
does not alter the form of the exponential factor of the wave 
function. We thus arrive at the conclusion that the argument 
g of the exponential at a large distance from the center is of 
the form 

g=n I x 1 12kL. (17) 

We note that if the center is not on the surface but at a dis- 
tance smaller than or of the order ofAL from the surface, we 
get the same asymptotic form (17). It will be more convenient 
to consider the case when the distance from the center to the 
surface is much larger than AL somewhat later. 

4. IMPURITY CENTER IN A FILM 

In this section we consider the problem of calculating 
the asymptotic wave function of an impurity center located 
in a film bounded by two infinite potential walls and in a 
magnetic field. As before, they axis is perpendicular to the 
film plane and the magnetic field is along the z axis. The film 
boundaries are located at y = + d /2. The magnetic field is 
regarded as strong in the sense that h, >EH. The argument 
g of the exponential will be investigated as a function of the 
parameter 7 = d /U. We defer the calculation to the end of 
this section and present rightaway the results and their 
qualitative interpretation. We locate the impurity center at 
the origin. For a remote point r = (x, y,O) the exponent 
g(x, y) takes then the form 

In Eq. (1 8b), 
9 

It can be seen from (18) that in the case of a film with 
abrupt boundaries the expression for g(x, y) is substantially 
different, depending on the ratio of the lengths d and AL. If 
d 4 L ,  the function g(x, y) is similar to that for a film with a 
parabolic potential. If, however, the film is thick enough, 
i.e., d>AL, the function g(x, y) acquires, besides the terms 
that depend on x and y, a term that depends only on the film 
thickness [see (18c)l. This fact can be quite easily under- 
stood. 

Recall that the anomalous transparency effect consid- 
ered in the present paper is due to the fact that the electron, 
imparting momentum to the film walls, shifts the center of 
the Landau oscillator. It seems sufficiently evident that to 
give up momentum effectively, in the case of a thick film 
with abrupt boundaries, the electron must come close to the 
film boundaries. In fact, examine Eq. (18c) at y = 0. The 
function exp[ - g(x,O)] describes the probability amplitude 
of electron tunneling from an impurity center to a remote 
point r = (x,O,O). It follows from (1 8c) that out of all the pos- 
sible paths of tunneling from point 1 to point 2 in a thick film 
(d,AL ) the electron will choose the paths marked I1 and I11 
in Fig. 2(a). Indeed, Eq. (18a) can be treated in the following 
manner: the electron tunnels from point 1 first to a point 
located at a distance of the order of AL from the wall (this 
process is described by the factor exp[ - i( 7 - L )'I), and 
then dropping the magnetic barrier, tunnels along the wall at 
a distance (the factor exp( - ?rx/2?rL )), and finally tunnels 
again from the wall to the point 2 (again the factor 
exp[ - j( v -  L )'I). We note that the factor describing the 
tunneling along the wall is exactly equal to the exponential 
factor obtained by us earlier in Sec. 3 for the case when the 
center is near the surface of a semi-infinite crystal [see (17)l. 

Clearly the tunneling paths I1 or I11 will be preferable to 
the path I (along the x axis) only if the magnetic barrier, 
which must be overcome on path I is thicker than the barrier 
that must be overcome when tunneling to the surface of the 
film (i.e., at x>d /2). If the inverse condition holds (x<d /2), 
however, the tunneling is along path I and the asymptotic 
form in this case [see (18d)l coincides with the asymptotic 
form of a strong field in the absence of the film potential (2). 
We note that it follows from the arguments just presented 
that at x>d /2)AL the wave functions at points located near 
the film surfaces should be exponentially large compared 
with its values at points on the axis, for in order to land at a 
point located near the surface (e.g., point 3 on Fig. 2a) it is 
necessary to overcome only once a magnetic barrier of width 
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z d  /2. Indeed, from (18c) aty#O we find that the wave func- 
tion in the asymptotic region is centered mainly near the film 
surfaces, and its value near the surface is larger than the 
value on the x axis by a factor exp( g2/2), which precisely 
describes the probability amplitude of electron tunneling 
from point 3 to point 2. 

Let us now dwell briefly on the case when the impurity 
center is not in the symmetry plane of the film but is shifted 
towards one of the film boundaries. Then, if d 5 AL, the elec- 
tron is effectively located midway in the film (since its energy 
is then a minimum) and the asymptotic form will be the same 
(18a,b). If, however, the film thickness is much larger than 
AL, to find the asymptotic form at an arbitrary point 2 (the 
impurity as at point 2) it is necessary to compare the ampli- 
tudes of the tunneling probabilities along paths I and I1 (see 
Fig. 2b). The tunneling will follow the path for which the 
probability is larger and the asymptotic form is obtained by 
multiplying exp( - g), whereg is given by (17), by the corre- 
sponding amplitudes for tunneling to the surface and from 
the surface of the film. In particular, if points 1 and 2 of Fig. 
2b have the same y coordinate, the argument g(x, y) of the 
exponential is given by 

The foregoing is correct, of course, only if thex coordinate of 
the point at which the asymptotic form is sought is much 
larger than the film thickness. 

Finally, if the center is near the surface of a semi-infinite 
crystal at a distance from it large compared with AL, then in 
Fig. 2b there remains only path I (the surface is on the left) 
and to find the asymptote at point 2 for this path it is neces- 
sary to go through the procedure described above. 

We devote the end of this section to the mathematical 
derivation of Eqs. (18). The asymptotic wave function is de- 
termined by Eq. (4), where now cp, ( y -yo) is the wave func- 
tion of one-dimensional oscillator in a state n, satisfies zero 
boundary conditions on the film surfaces, and corresponds 
to the eigenvalue E, (k, ). Next, just as in Sec. 3, we include in 
the sum over n only the term with n = 0 (since fiw, )EH). 
The form of the functions qo( y - yo) and Eo(kx ) in (4) differs 
substantially, depending on the value of the parameter g. 

We consider first the case r]%l. In the absence of an. 
impurity they coordinate of the center of the oscillator yo is 
preserved and, as can be shown, the zeroth-order energy cor- 
rection due to the interaction with the film surfaces takes the 
form 

Equation (20) is valid if the distance from the center of the 
oscillator to each of the surfaces is large compared with the 
magnetic length: 7 - y0/A%l, r] + y,JA$l. Since (as we 
shall see later) the characteristic values of yo in the integral 

(4) are such that these conditions are satisfied, the functions 
Eo(kx ) and pO( y -yo) will be taken in the form 

(21) 
where AE ( yo) is given by (20). The function qo( y -yo) is of 
the same form as for a free electron in a magnetic field in the 
absence of the film potential. The ground-state energy E of 
an electron on an impurity, which enters in Eq. (4), is equal to 

E=ho,lB+AE(O) -Ern, (22) 

where AE (0) is the increase of the energy of the zeroth level in 
the absence of an impurity, due to the interaction with the 
film walls, in the case when their distances to the oscillator 
center are equal (this quantity is given by Eq. (20) with 
Yo = 0). 

Substituting (20)-(22) in (4) and introducing a new inte- 
gration variable x = y,JA = R /k, , we obtain the following 
expression for the Green function GE (r;O) in the case 7) 1: 

We calculate next the function GE (r,O) at z = 0. Since g )  1, 
we are restricted in (23) to the inequality AE ( O ) ( h , .  Within 
the framework of this inequality there are several parametri- 
cally different cases that are realized at different film thick- 
nesses d. 

1) Let the film thickness be such that the inequalities 
fiw, )AE (0),EH, are satisfied or, equivalently, 1 (r](L.  Ac- 
cording to (23), the characteristic values of x are then such 
that the inequalities x( l/g(1(7 are satisfied. Then, using 
the fact that (yl < d /2, we rewrite (23) in the form 

OD tiZk 
G. (z, y ;  0) 0: 5 dk, 5 d x  {- +E.+AE (0) 2q2x2 

-m -g, 2m 

The integral with respect to x in (24) is determined by the 
residue of the integrand at its poles in the complex x plane. 
We find ultimately that the argument of the exponential of 
the wave function takes in this case the form (18b). 

2) Let now the width of the film be such that r] lies in the 
interval L(v(x/A (the first of these inequalities corre- 
sponds to AE (O)(E, ). To calculate the integral with respect 
to x in (23) we choose the contour shown in Fig. 3 in the 
complex x plane (we consider for the sake of argument the 
case x > 0). The integrals along the segments I and I1 vanish 
when these segments are moved away to infinity. The inte- 
gral along segment I1 can be easily seen to be proportional to 
exp( - tx2/A 2) ,  where t is a constant of the order of unity. At 
the considered values of g this term makes an exponentially 
small contribution. Therefore the integral (23) is determined 
by the residues of the integrand at the first-order poles: 
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FIG. 3. Contour of integration in Eq. (23). 

A 

After finding these residues, we rewrite (23) in the form 

From (25) we ultimately obtain for the argument of the expo- 
nential the expression (18c). 

3) If the film thickness is such that the conditions L(x/ 
ANT, are satisfied we find, after integrating in (23) again 
along the contour shown in Fig. 3, that now the main contri- 
bution to the integral with respect to x is made by segment 
111. Making in (23) the change of variable x' = (ix + y)/ 
U + x we obtain, as a result of integration along this seg- 
ment, expression (18d) for the argument g(x, y) of the expo- 
nential. 

Finally, in the inverse limiting case of films that are thin 
compared with the magnetic length ( r]( 1) we can represent 
(4) in theform(y=z=O)  

\ 

wherex = k,A. It  follows from (26) that the argument of the 
exponential takes in this case the form (18a). 

- 

rE. 

.xz 

x/zn m 

5. INFLUENCE OF SURFACE ON HOPPING CONDUCTION IN A 
MAGNETIC FIELD 

I 

Xi - - 

In this section we solve the two hopping-conduction 
problems mentioned in the Introduction. The first, that of 
surface hopping conduction, corresponds, e.g., to the phys- 
ical situation near the surface of an MOS structure doped 
with surface donors and is purely two-dimensional. Assume 
that donors are randomly located on the surface (x,z plane) 
of a pure crystal, and their number n per unit surface is small 
enough to satisfy the inequality nu2( 1. We consider hopping 
conduction over the nearest neighbors. In this case the resis- 

r i  

Rtk - 

tivity is p =p3  exp(~,/kT). We calculate the value of p,, 
known to be determined by the overlap of the impurity wave 
functions and to depend exponentially on the impurity den- 
sity and on the magnetic field1: 

p3aesp E,(n, H ) .  (27) 

To calculate cc (n,H) by the percolation method1 we 
must plot a curve on which 2g(x,z) = 6, where g(x,z) is the 
modulus of the argument of the exponential of the wave 
function of the donor located at x = z = 0. We must next 
calculate thearesS (l )of the figure bounded by this curve and 
find lC from the condition 

nS(Ec) =B., (28) 

where Bc is the critical number of bonds over which the 
percolation takes place. Using (17) forg(x,O) and the fact that 
g(0,z) = (z(/a, we find that 

S (g,) =cE2aLaH, 

where c is a numerical coefficient. From (28) and (27) we 
obtain then for the two-dimensional resistivity 

where a is a numerical coefficient. If we repeat this calcula- 
tion with the aid of Eq. (2), which does not take scattering 
from the wall into account, we obtain in (29) an exponent + 
rather than 4. Recognizing that under the conditions (nu2< 1, 
A<a) considered we have the inequality na,AL(l, we see 
that the influence of the surface on the asymptotic wave 
function decreases strongly the value of the magnetoresis- 
tance and changes its dependences on n and H. It must be 
borne in mind that the limiting caseA (a considered above is 
realized in experiment only when the Bohr radius is small 
enough (InSb, InAs, etc.) For silicon MOS structures A,a at 
reasonable field values. In this case an examination of the 
asymptotic wave functions near the wall shows that they fall 
off like exp( - JxJ/b ), where b = a(1 - ya4/A 4, and y is a 
numerical coefficient, i.e., much more slowly than in accord 
with Eq. (1). As a result, the magnetoresistance p,, (H )/ 
p,, (0) in the case of surface hopping conduction should be 
proportional to exp(n - 112a3A -4), i.e., be considerably more 
stable than indicated by Eq. (1). 

We consider now the second problem, hopping conduc- 
tion of a film uniformly doped over its volume. Let N be the 
donor density and Na,(l, so that hopping conduction is 
produced. We assume that the film thickness is large com- 
pared with all the microscopic lengths (d>N - ' I3 ,aJ~  ) and 
that A<a. In a magnetic field, the value of p, of a bulky 
sample is of the form1 

where qz0.9. Naturally, the resistivity in the interior of the 
film has the same value. We shall show now, however, that 
the subsurface layer has an exponentially smaller resistance 
and shunts the resistance of the film volume. To this end we 
consider near any of the film surfaces a layer of thickness Ay 
that satisfies the inequalities AL<Ay<N - ' I 3 .  Such a layer 
can be regarded as a two-dimensional system with n(Ay) 
= AyNimpurities per unit area. According to (19) the value 
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of the wave function of one impurity of the layer at another 
impurity, at large distances between them, differs from the 
function exp( - ~1.x I/UL ) used in the derivation of (29) only 
by a factor of the order of exp ( - (Ay/A ) 2 )  that describes the 
probability of tunneling first to the surface and then from the 
surface to a distance on the order of Ay. The square of this 
factor enters in the expression for the layer conductivity. We 
therefore obtain for the two-dimensional resistivity p,, of 
the layer 

The resistivity (31) has a sharp minimum at a layer thickness 

Substituting (32) in (3 1) we find the two-dimensional resistiv- 
ity of this layer 

where p is a numerical coefficient. On the other hand, the 
resistivity of a square centimeter of the inner part of the film 
is given by (30), referred to d. Comparing this resistivity with 
(33) and recognizing that Na,A 'L( 1 we conclude that the 
resistivity of films that are not too thick is determined by the 
surfac: layer and takes the form (33). The anomalous tunnel- 
ing transparency near the surface therefore decreases sub- 
stantially the resistivity of the film and weakens its depen- 
dence on the magnetic field. 

6. CONCLUSION 

We conclude by presenting one more interpretation, 
without the use of the magnetic-barrier concept, of the effect 
considered in the present paper as well as in Refs. 2 and 3, 
namely the anomalous transparency to tunneling across a 
magnetic field. This interpretation is based on the concept of 
the Feynman path integral. It is known7 that to find the total 
amplitude of the probability of transition from point 1 to 
point 2 it is necessary to sum the transition amplitudes over 
all possible paths joining these points. The contributions of 
the individual paths are proportional here to exp(iS/fi), 
where S is shortened action for a given trajectory. Using the 
expression for the action S in an electromagnetic field8 in the 
form 

we find that in the case of electron tunneling with negative 
energy - E, in a potential U = 0 the amplitude of a transi- 
tion along a given path is equal to 

where Y ,, is the length of the path and Q, is the magnetic- 
field flux through the contour consisting of this path and the 
straight line joining points 1 and 2. We note that the influ- 
ence of the magnetic field is contained entirely in the second 
factor. Owing to the presence of the oscillating factor ex- 
p(ieQ, /*), when the transition amplitudes are summed over 
the different paths the waves propagating along the different 
paths interfere with one another, and this leads to an expo- 

FIG. 4. Paths joining points 1 and 2. Forbidden paths are shown by 
dashed lines. The magnetic field is perpendicular to the plane of the figure. 

nential dependence of the transparency on the magnetic field 
[see (1) and (2)]. The result of the presence of some scattering 
potential, e.g., an opaque crystal surface parallel to the 
straight line drawn from point 1 to point 2, is therefore clear. 
Some of the paths will be forbidden, and an unbalance in the 
path integral is produced thereby. The neighboring trajec- 
tories will suppress one another more weakly, so that the 
transition amplitude will increase exponentially. In the film, 
paths are forbidden by both walls (Fig. 4), so that in the limit 
of a very thin film @ z O  for practically all the remaining 
trajectories, so that the magnetic field should play no role. 
This conclusion is confirmed by Eq. (18a), according to 
which at d4A the asymptotic wave function takes a "non- 
magnetic" form. 

Similarly, if an opaque screen with a narrow aperture is 
placed halfway between points 1 and 2 the total amplitude at 
point 2 will receive contributions from only those paths 
which pass through the aperture. It can be verified that in 
this case the increment to the argument of the exponential (1) 
in a weak field, and the entire argument of the exponential (2) 
in a strong field, will decrease roughly to one-half. 

Multiple subbarrier scattering by impurities located in 
the region adjacent to the straight line joining points 1 and 2, 
which was considered in Refs. 2 and 3, is similar to the ac- 
tion, as it were, of an entire system of screens. It enhances the 
contribution of some paths and weakens that of others. The 
resultant unbalance increases the sum over the trajectories 
and enhances the transparency e~ponentially.''~ 
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