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The coupling between the field and the current acquires a nonlocal form in small metallic parti- 
cles (a(le, a<vF/o, where 1, is the electron mean free path in the bulk specimen and o is the 
frequency of the external low-frequency field). Under these conditions, the classical theory of 
electromagnetic absorption based on local coupling is no longer valid. A nonlocal theory of 
infrared absorption is developed, and it is shown that the form of the absorption coefficient is of 
the same form as in the classical theory, except that the effective electron-collision times, which 
govern both the electric-dipole and magnetic-diople parts of the absorption, greatly differ from 
each other. For magnetic-dipole absorption, the effective collision time has the meaning of the 
relaxation time of the electron angular momentum and depends strongly on the features of the 
reflection of the electrons from the surface of the metallic particle. It is shown that the corre- 
sponding effective electron mean free path varies between a value on the order of the particle size 
(in the case of diffuse reflection) and a value corresponding to the electron mean free path in a bulk 
specimen (for specular reflection from the surface of a spherical particle). The relaxation of the 
electron angular momentum in a particle whose boundary consists of randomly oriented facets is 
also considered. The results explain the anomalously large infrared-absorption cross section. 

PACS numbers: 78.30.Er, 41.10.H~ 

1. INTRODUCTION 

Infrared absorption of finely dispersed metallic systems 
is distinguished by a number of features because of the small 
size of the absorbing particles. The behavior of a system of 
electrons in an electromagnetic field of frequency o is gov- 
erned by two parameters: the electron mean free path I ,  and 
the electron path per field oscillation vF/o.  At low tempera- 
tures, both these parameters significantly exceed the particle 
size in the far infrared region (particle size is several tens to a 
few hundred angstrom). Therefore the interaction between 
the metallic particles and a low-frequency field is deter- 
mined by the paths of the electrons over a longer period of 
time, during which the electrons succeed in repeatedly col- 
liding with the surface of the particles. Naturally, under 
such conditions the relation between the field and current 
will be nonlocal. Hence, it is clear why the classical theory, 
based as it is on a local relation between the field and current 
in particles, and successfully used to describe the electro- 
magnetic properties of finely dispersed metallic systems in 
the optical frequency region, where vF/04a always (a is the 
particle size), is not capable of explaining the greater absorp- 
tion observed in the far infrared region. The divergence 
between the theoretical and experimental absorption coeffi- 
cients is several orders of magnit~de. '-~ 

The classical theory, in which the permittivity of a par- 
ticle is described by the Drude formula and the electron 
mean free path is assumed to be simply limited by the parti- 
cle size (i.e., 1, -a), leads to the following expression for the 
absorption ~oefficient:~ 

where r-a/uF is the electron mean free time, f is the frac- 

tion of volume occupied by the particles in the system, and 
o, is the plasma frequency. 

The first term in (1) corresponds to electric-dipole ab- 
sorption, and the second to magnetic-dipole absorption. For 
typical metal parameters, the magnetic-dipole absorption 
makes the main contribution at a 2 40 A. The parameter T is 
chosen artifically and with a degree of uncertainty in this 
theory mainly because electron collisions with the particle 
surface cannot be successfully taken into account within the 
framework of the local theory. 

Below we develop a theory based on a nonlocal relation 
between current and field in a metallic particle. It will be 
shown that the absorption coefficient has the form (I), 
though the relaxation times occurring in the electric dipole 
and magnetic dipole terms differ greatly. In the first case, 
r = rp is always on the order of a/vF and corresponds in 
sense to the relaxation time of the electron momentum. In 
the second case, T is equal to the relaxation time of the angu- 
lar momentum r, of the electron. This time is basically gov- 
erned by the reflection of the electron from the boundary and 
by the shape of the particle. In the case of diffuse reflection, it 
is on the order of ah,, but in the other limiting case, in the 
case of specular reflection in a spherical particle, angular 
momentum conservation in collision with the boundary al- 
lows the angular momentum to change only as a result of 
scattering of the particle inside the volume. Consequently, 
rm is equal to the electron mean free time in the bulk, and at 
low temepratures may greatly exceed a h F ,  In real situa- 
tions, it is obvious that 7, can also greatly exceed a/v,, since 
the particles are nearly spherical in shape and have a crystal 
structure close to perfect.5 

Below we will consider three cases, two limiting cases of 
a diffusely and specularly reflecting boundary, as well of a 
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boundary consisting of randomly inclined specularly reflect- 
ing facets. The entire approach is based on the classical ki- 
netic equation. Quantum effects are discussed only briefly. 
The treatment is also limited to the linear-response theory 
and, consequently, to sufficiently weak fields. 

2. NONLOCAL PARTICLE CONDUCTIVITY 

For a system of electrons the kernel of the conductivity 
operator which governs the integral relation between the 
current and field in a metallic particle, is of the form 

oiJ (r, r', t-t') = - 30p2 1 dn dnln'n"P(r, n, tlrl, nl, tr) (2) 
( 4 ~ ) '  

in a quasiclassical description of the electron motion. Here 
P (r,n, t Ir1,n', t') is the probability density of observing at a 
time t an electron at the point r, moving in direction n, if it 
was located at the point r',nl of the phase space at the instant 
t '. Integration in (2) is with respect to the directions n and n'. 
If the electron mean free path I, (a or if the frequency is high 
enough so that t - t ' - l / o  za/v,, the probability P de- 
creases rapidly with increasing distance Ir - r'l, and we ob- 
tain for 8' a local expression described by the Drude for- 
mula if it is assumed that the field varies slowly at these 
distances (r - r'( at which di differs appreciably from zero. 
In the opposite case (1, >a and aw(vF) it is necessary to take 
into account electron collisions with the surface of the parti- 
cle. If the particle is a sphere, allowance for the collisions 
with the boundary leads to the following equation for P: 

P(r, n, tlNo, no, to) =Po(r, n, tlNo, noto) 

where No is a unit vector that indicates the point on the 
sphere at which a particle with coordinates r' and n' at an 
initial moment of time t ' < to arrives at time to. The probabil- 
ity Po describes the free motion of a particle after a single 
collision with the boundary at point No, after which it ac- 
quires a momentum in the direction q,. The second term in 
(3) takes into account multiple collisions. The angle 6 is equal 
to the angle between the direction No and the chord connect- 
ing the directions N and No, while the function W ($,$ ') is the 
particle scattering probability in the direction 8 relative to 
the normal if the particle is incident to the surface at an angle 
8 '. In the case of diffuse scattering, W is independent of 8 ' 
and equal to T-'cos 0. The probability Psatisfying (3) is only 
that part of the total probability of particle transition 
between states n, r, and n', r' which is due to collisions with 
the boundary. The path that directly connects the points r 
and r' also contributes to the total probability. In the case of 
diffuse scattering, we find from (2) and (3) that 

3op2 dndn' . o 
oi'(rI r', a )  = - -n'n'J exp i-(1+11) 

nup2 J (4nI2 [ u~ I 

3oP2 (r-r') '(r-r') j 

'+ ----- 
(4n) ' ~ a  1 r-r' I' 

where 

r n j -+- [(r'.n') 2+a2-r f2 ]  ' ' I ,  1= (m) + [(rn)2+a2-rZ] ", If=- ( 
1 

P, =% J ~ ~ ( e o s ~ ) e r p ( -  a sin - sin 0 d0. 
2i@ UP 2 ) 

3. DIPOLE ABSORPTION 

In finely dispersed systems with a low concentration of 
metallic particles, absorption of electromagnetic radiation is 
determined basically by the absorption properties of the in- 
dividual particles. In a dipole approximation, the absorption 
coefficient is 

a=- 3of irn(~.+~.), 
ca3 ( 5 )  

wherex, andx, the magnetic and electric polarizabilities of 
the particles. For the sake of simplicity, unity permitivity 
and unit magnetic permeability of the environment are as- 
sumed. To compute the electric polarizability, it is necessary 
to solve Poisson's equation inside the particle; the induced 
charge is nonlocally connected with the potential ~ ( r )  by (4). 
Expanding the potential in spherical functions, we obtain in 
the dipole approximation (I = 1) an equation for the radial 
part of the potential: 

d d 4ni - dr - dr 9 ( 1  - 9  ) = - o d (r, r ) ( I )  , (6) 

a2 
K (r, r') =2n J P, (cos 0)- di (rl rr, o )  sin R dB. (7) ar a+ 

The integration in the latter equation is with respect to the 
angle between the directions r and Wr'. The potential q, (r) 
must be matched to the radial part of the potential outside 
the sphere, which has the form 

cpO=~eEolr'-rEo, (8) 

where Eo is the external electric field. When matching the 
potentials, it is required that the potential and its radial deri- 
vative be continuous. Note that the continuity of the normal 
component of the electric field, but not of the induction, 
follows from the microscopic description of the fields. But if 
the permittivity of the environment is not unity, and if we 
also take into account the contribution of intraband transi- 
tions to the permittivity of the metal, the induction associat- 
ed with the corresponding polarizability must be contin- 
uous. 

In (6) ,  we may expand the kernel K in powers of the 
small parameter wa/vF. Here the zeroth term of the expan- 
sion vanishes identically owing to the absence of current 
through the particle surface, while the first term corre- 
sponds to static screening and contributes to the right side of 
(6) a term equal to q, (r)r; , where r, is the screening radius. 
Thus, to obtain Imx it is necessary to expandK to the second 
degree in w inclusive. We denote this term of the expansion 
by y(r,r')w2. From (6)-(8) and from the boundary conditions 
it follows that when a)r, we have 

X.=a3+12nior.' J dr drlrZr''y (r, r' ) erp . (9) 

We find for y from (4) and (7) that 
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Thus, we finally obtain 

It is clear from ( I ) ,  ( l o ) ,  and (5)  that the electric-dipole 
part of the absorption has the same form as in the local the- 
ory. A consistent nonlocal theory made it possible to deter- 
mine the effective mean free time of the electron. Despite the 
logarithmic term in ( l o ) ,  this time is on the order of a / v ,  if 
the particles are not too large. For example, if a = 300 A and 
r, = 1 A, we have T; = 1.6vF/a . 

Note that this result is not the same as that achieved 
with a quantum-mechanical computation of the electric-di- 
pole absorption"n the frequency region where the quantum 
size effects are insignificant and the result of a quantum- 
mechanical computation should conicide with the classical 
result, i.e., for w,fi(kFma3)-I. The reason for different form 
of the dependence of the absorption on a is that in Ref. 6 the 
quasiclassical matrix elements were calculated without 
allowance for the fact that the screening potential acts on the 
electron only in a narrow region - r, near the surface of the 
particle. 

Note that in electric dipole absorption importance may 
attach also to quantum effects other than the quantum size 
effects. The latter, obviously, can be accounted for by merely 
multiplying Eq. (10) by an oscillating dimensionless function 
determined by the static level of the system.' In particular, 
since the screening length in metals is on the order of the 
electron wavelength, it is important to take into account the 
behavior of the electron wave function near the surface of the 
particles. 

4. MAGNETIC-DIPOLE ABSORPTION 

Magnetic-dipole absorption is due to eddy currents ex- 
cited in metallic particles by the solenoidel component of the 
electric field. Magnetic dipole oscillations in a metallic parti- 
cle indicate the presence of an electric field component pro- 
portional to the spherical vector harmonic 

This function determines the angular dependence of the elec- 
tric field, while the radial dependence is determined by the 
function e(r) which satisfies inside the particle the equation 

Outside the particle, e(r) is given by 

As can be easily verified, only the part corresponding to the 
free motion of the electron (without any collisions with the 
boundary) i.e., the second term in (4),  contributes to c?. 
This is because # is proportional to the correlation func- 
tion the angular momentum of the electron or, in other 
words, to the mean value of the angular momentum at the 
time, t  under the condition that the electron had some pre- 
scribed angular momentum at the instant t  '. In diffuse scat- 
tering, the electron has a zero mean angular momentum 
after the very first collision with the boundary. 

Matching eM and JeM/dr  at the boundary and setting 
w = 0 in a(r,rl,w), thereby discarding small terms on the or- 
der of wa/vF,  we obtain 

2nio a i a5mp2~mo  
xm = dr dr1?rr30M (r ,  r') = -- 

3c 30cZ ' (13) 

where T, = 2 av,  ' . As expected, in diffuse scattering 
T, - a/uF.  

5. SPECULAR REFLECTION 

As we have seen in the preceeding section, reflection of 
electrons by particle boundaries is of significance in magnet- 
ic dipole absorption. To graphically demonstrate this fact, 
let us consider the case of specular reflection. 

We first transform the expression (13) for x,. Using 
(12) and (2) ,  and also the fact that 

where M is the angular momentum, we may express x in 
terms of the correlation function of the angular momenta 
thus: 

ia30,Zo 
= ---I ( M ( t ) M  ( 0 )  )rim' dt .  

6c2pp" 

In specular reflection, the angular momentum of the elec- 
tron is conserved in each collision with the particle surface. 
Therfore, M(t ) = M(0)  and X, ( ~ ) + c c  as w-+O. However, 
collisions within the particle induce relaxation of the angu- 
lar momentum. These collisions may be taken into account if 
we set 

In this case the relaxation time rb is determined by the elec- 
tron's mean free path in the bulk "specimen"," i.e., T, -I , /  
v,. From (14) and (15) it follows that 

Thus, T, z rb if rb w 5 1 ,  and magnetic dipole absorption 
turns out to be greater in the case of specular reflection by 
comparison with the classical result if rb >a/vF or 1, ,a. At 
the same time, it can be easily verified that electric dipole 
absorption remains of the same order of magnitude as in 
diffuse reflection. 
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6. FACETED SURFACE 

It follows from the preceding section that in magnetic 
dipole absorption the effective mean free time of an electron 
may be determined by finding the time dependence of the 
correlation function of the angular momenta. Let us consid- 
er this problem for a model of the boundary that corresponds 
to someextent to the actual situation. Namely, the boundary 
is assumed to consist of plane facets with linear dimensions 
much less than that of the particle. It is assumed that the 
facets are randomly inclined relative a spherical surface, and 
that the random angle I9 between the normal N to the surface 
of an individual facet and the normal to the spherical surface 
passing through the facet is distributed according to the 
law2' 

dp= lo (8) dQ, 

where d o  is an element of a solid angle and 
w(8 ) = (6 'T)-'exp( - 8 '/6 '). 

It is also assumed that the electrons are reflected specu- 
larly from the facets and that 6 1. The boundary condition 
for an electron distribution function that satisfies the kinetic 
equation has the form (see, e.g., Ref. 8) 

where f + and f - are the electron distribution functions be- 
fore and after the electrons collide with the boundary. The z 
axis is directed along the inward normal to the spherical 
surface at the point of contact. The scattering probability W 
satisfying the normalization condition and the detailed bal- 
ancing principle has the form 

W (n', n) = ~ 6  (a-n) +w (8) n,', (17) 

where ii' = {n:,n;, - n:) , and 

In the case of specular reflection from the facets the 
angle I9 is related to the vectors n and n' by the equations 

N=(n-nr)/ 1 n-n' 1, N.=cos 8. (19) 

If 6 '(1, values of n close to ii' make the major contribution 
to the integral (16). Then the integral boundary condition 
may be reduced to a differential one by expanding n f +(n) 
near ii'. From (16)-(19), we obtain 

where A, is the angular part of the Laplacian operator and e, 
is an angle which determines the direction of the projection 
of the vector n on the tangential surface at the considered 
point of the spherical surface. It is best to select the following 
coordinates, which determine the state of the electron (see 
Fig. 1): the spherical angles of the vector M ($ and a ) ,  the 
angle of inclination I9 of the chord along which the electron 
moves between two collisions, the coordinate x of the elec- 
tron on the chord, and the angle o which determines the 
position of the chord in the plane of motion of the electron. 
Three of these variables ($, a ,  and I9 ) are slow in the sense 
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that slow diffuse spreading (to the extent that 6 is small) of 
the distribution function with respect to these variables is 
produced by collisions with the surface. In specular reflec- 
tion, $, a ,  and I9 are integrals of the motion, and the distribu- 
tion function with respect to these variables does not change 
form with time. The other two variables (x and w) are fast 
variables. Rapid cyclic motion with times -a/v, with re- 
spect to these variables occurs, and it is therefore natural to 
average over them if we are interested in the behavior off at 
t)a/u, (averaging over the initial values x' and w' is also 
assumed). Averaging over to a is also possible, since X, can 
be determined simply by finding the correlation function 
(M ' (t )M ' (0)) (see ( 14)), and the component M ' is indepen- 
dent of the angle a. 

We introduce the function 

p ( e , q ) = J d ~ d ~ ~ ( f ) ,  (21) 

where the angular brackets denote averaging over w ,  w', a ,  
or a ' .  From the kinetic equation, 

which describes the change of the distribution function 
between two collisions with the surface (0 < x  < 2a cos6 ), it 
follows that 

Hence, from (20), changing to new variables and averaging 
over w and a ,  we obtain 

2a ap- 1 a ----- a ~ w e  a a 
sine-p+-- sin $ - p+ 2p. 

~ , 6 ~  at sin8 a8 a8 2sing ag a* 
(23) 

The initial condition for Eq. (23) has the form 

p 1 t=,=6 (8-8') 6 (9-$'). (24) 

The boundary condition follows from (23) if we require that 
there be no diffusion flow through the boundary of the range 
of I9 (0 < 8 < 77/2), i.e., 

p (n/2, *) =O. (25) 

The solution of (23) satisfying conditions (24) and (25) has the 
form 
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where 

1 and n are positive integers, while P,-,?* and P, are Le- 
gendre functions. Since M a sine cos$, only the term with I, 
n = 1 contributes to the correlation function. Thus, 

Obviously, it should be kept in mind that actually, 
r; = L?,, + u,/le , and that if Sga/le, when f2, , (v , / l , ,  
the effective mean free time r, is determined by collisions 
within the particles and is equal to the electron's mean free 
time in the bulk specimen. 

The author thanks V. M. Agranovich for valuable dis- 
cussions. 

"Bear in mind that this "specimen" must simulate the internal structure 
of the particles, i.e., contain the same density of the electron-scattering 
electrons defects. 

2'In fact, the actual form of the function w(B ) is not important. What is 
important is that w(B ) decrease sufficiently rapidly for values of 0 greater 
than some (small) angle. 
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