
Spin-flip transitions in magnets with anisotropy-energy fluctuations 
E. V. Sinitsyn and I. G. Bostrem 

Ural State University 
[Submitted 22 January 1983) 
Zh. Eksp. Teor. Fiz. 85,661-669 (August 1983) 

We consider the features of spin-flip transitions in systems with fluctuations of the magnetic- 
anisotropy energy and of the antisymmetric exchange. We show that the anisotropy-energy fluc- 
tuations increase the width of the spin-flip transition and lead to anomalies of the temperature 
dependence of the angles that specify the orientation of the average magnetic moment of the 
system. In noncollinear antiferromagtlets with fluctuations of the antisymmetric exchange, it is 
noted that a spin-flip transition can be induced by an external field applied parallel to the average 
magnetic moment. A phase diagram in coordinates (T, H ) is constructed with account taken of the 
reversal of the sign of the first anisotropy constant. 

PACS numbers: 75.30.Et, 75 .30 .G~~  75.30.K~ 

1. INTRODUCTION 

In the theoretical study of the properties of disordered 
magnets, hardly any attention was paid to problems con- 
nected with spin-flip transitions in these compounds. Yet 

investigations of the disordered substituted ortho- 
ferrites RFe, -, M, 0, (R is a rare-earth or Y ion, and M is 
an iron-group ion), which are classical objects for the study 
of spin-flip transitions, have revealed a number of anomalies 
which have received no adequate theoretical explanation to 
this day. In this paper we analyze the possible features of 
spin flip in disordered systems with fluctuations of the ener- 
gy of the anisotropic interactions. 

It is known4v5 that the magnetic structure of disordered 
magnets can be described by specifying the statistical char- 
acteristics of the random field of the vectors Mu (r), the mag- 
netic moments of the sublattices numbered v. Of particular 
interest here are the average moments (Mu ) . The reason is 
that they determine macroscopic quantities, such as the 
magnetic moment of the system, and can be investigated by 
traditional methods of spin-flip observation, whereas to ob- 
tain information on the statistical characteristics of the field 
of the fluctuations 8 Mu (r) = Mu (r) - (Mu ) special experi- 
mental procedures are r e q ~ i r e d . ~ . ~  It  is therefore desirable to 
exclude somehow the fluctuations S Mu from the thermody- 
namic potential of the system and to use in the analysis of 
spin-flip transitions the obtained effective potential that de- 
pends only on (Mu ). In the first section of the paper this 
approach is applied to systems with random competing mag- 
netic anisotropy. In the second section we consider systems 
with fluctuations of the antisymmetric DzyaoshinskiY-Mor- 
iya exchangeY6 which exerts a substantial influence on the 
magnetic properties of noncollinear ferromagnets of the 
RFeO, type.' 

2. SPIN-FLIP TRANSITIONS IN SYSTEMS WITH 
FLUCTUATIONS OF THE MAGNETIC-ANISOTROPY ENERGY 

The thermodynamic-potential density in the systems 
considered, which are characterized by inhomogeneity of 
the magnetic-anisotropy energy and by the ensuing fluctu- 
ations of the vectors Mu (r), can be represented in the form 

Q = lim V-I {oeX+oan+ow}dV, 
v-a, I 

where Vis the volume of the system, and we,, w, , w, corre- 
sponds to the energies of the exchange, anisotropy, and in- 
teraction with the external field. We confine ourselves here- 
after to the most common transitions, in which the system 
magnetic moment does not leave a certain selected plane. We 
put accordingly 

ma,=-'12p (r) cos" (r) ,  (2) 

where 8 (r) is the angle that specifies the magnetic-moment 
orientation relative to the anisotropy axis. To highlight the 
effects inherent in disordered systems, we shall disregard 
higher-order anisotropy. The characteristics of the random 
field P (r) are the mean value and the correlation function, 
which we choose in the form 

where D ( p ) is the dispersion and R, is the correlation radius 
of the anisotropy fluctuations. The symbol ( ) is used here 
and elsewhere to denote averaging over the fluctuations of 
the principal interactions that determine the magnetic struc- 
ture. The exchange energy is of the usual form: 

oex=llza ( V  0) ', (4) 

where a is a nonrandom exchange parameter." 
We confine ourselves in this section to spontaneous 

transitions and put accordingly w, = 0. Minimizing (1) with 
respect to 8, we get 

aA0-fi (r) sin 0 cos 0=0. (5) 

Weassume that the spin-flip fluctuations88 (r) = 8 (r) - ( 8  ) 
connected with the fluctuations SP (r) = 0 (r) - Pof the ener- 
gy of the magnetic anisotropy are small. In addition, we neg- 
lect in (5) the term 8mO. These two assumptions are basic in 
this paper. In this case the angle ( 8  ) =e determines the ori- 
entation of the average magnetic moment of the system. Lin- 
earizing (5) with allowance for the assumptions made and 
taking the Fourier transform, we obtain an equation for the 
components 68  (k) in the form 
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Gj3 (k) sin B cos B 
60 (k) = a (8) = fi cos 28. 

[ak-a (a) 1 ' (6) 

Using (6) we can determine the basic statistical charac- 
teristics of the random field of the fluctuations SO (k). In par- 
ticular, the correlation function takes the form 

where 6 = ( a / ~ ) ' / ~  is the characteristic action radius of the 
exchange forces. The actual form of K, (r) depends substan- 
tially on the ratio of the characteristic lengths R, and S. In 
particular, at R, /S( 1 we have 

Ke (rI2) =D (8) Rc36a-Z exp (- ( r,, 1 16) sinz B cos2 8, (8) 

i.e., the role of the correlation radius of the fluctuations SO is 
assumed by the characteristic length S. At R,/S) 1 we have 

Ke (r,,) =D (8) ~ ' C C - ~  exp (- I r,, 1 /El,)  sin2 0 cos2 0, (9) 

i.e., as expected, the correlation radius of the spin-flip fluctu- 
ations coincides in this case with the correlation radius of the 
anisotropy fluctuations. We note that according to (7)-(9) 
the statistical characteristics of the fluctuations SO are aniso- 
tropic and depend on the orientation of the average magnetic 
moment of the system. The fluctuations SO (r) can be regard- 
ed as small if K, (r)( 1 at distances of the order of the correla- 
tion radius. This yields2' 

Thus, in the first case large fluctuations of the anisotropy 
with a correlation radius small compared with S are admissi- 
ble; such a situation can be observed for example for a ran- 
dom distribution of strongly anisotropic impurities. The sec- 
ond case can be likened to extended defects with small 
variations of the anisotropy constants. 

We transform now the expression for the density of the 
thermodynamic potential of the system. Recognizing that in 
accord with (7H9) the 68  (r) random field is statistically ho- 
mogeneous, and has the property that the correlations van- 
ish at infinitely remote points, and using the ergodic 
theorem8 

we obtain 

+L/2jj cos 28<682>+sin8 cos B(6p60). (12) 

If we confine ourselves in (12) to the first term, which takes 
into account only the average anisotropy energy of the sys- 
tem (this is precisely the assumption used to study transi- 
tions in disordered systems1), we obtain an approximation 
similar to the virtual-crystal approximation of the theory of 

disordered materials9 The remaining terms in (12) take into 
account the contribution made to the energy by the fluctu- 
ations SO inherent in the systems. 

Substituting in (12) the values of SO from (6), we obtain 

eff 
B Q =--*cos2 B - D (B) R: 
2 2a ~ i n ~ ~ c o s ' ~ [ 1 + ~ ] - ~ .  (13) 

If we neglect R, /6 in the second term of (1 3), a,, reduces to 

Thus, allowance for the fluctuations SO due to the magnetic- 
anisotropy energy fluctuations leads to a renormalization of 
the thermodynamic potential of the system (when the latter 
is expressed in terms o f 8 )  and to the appearance of effective 
anisotropy constants of higher order. 

We note that despite the smallness of the fluctuation SO, 
their contribution to the effective thermodynamic potential 
can be appreciable. Thus, at 

RClG=i3ID(p)'", 8=0, 
it follows from (5) that it is comparable with 8. The fluctu- 
ations SO are in this case no less small, since relation (1) takes 
the f o r r n p / ~  (@)112( 1 and is well satisfied, e.g., in the spin- 
flip region, where the constant p is small. 

- Minimization of a,, yields three equilibrium phases': 
O = 0 , s  = ~ / 2 ,  and a canted one in which 8 takes on inter- 
mediate values. For the thermodynamic potential (14), for 
example, we have in the canted phase the known relation 
sin28 = - K1/2K2 (Ref. 1). 

The regions of existence of the different phases are 
shown in Fig. 1, where we use for convenience the dimen- 
sionless parameters 

z=D(p) R;/a2, y=R,Zfila. 

When 7 varies with temperature (this corresponds to a 
change of the average anisotropy constant), orientational 
transitions take place in the system at temperatures TI and 
T2 defined by the relations 

FIG. 1. Phase diagram. The arrow indicates the direction of motion for 
spin-flip tra~sitions connected with the decrease of the relative exchange 
energy. 1-8 = 0,2-8 = ?r/2,3--canted phase. 
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FIG. 2. Possible form of the dependence o f 3 6 )  for different sections of 
the phase diagrams of Fig. 1: 1--ordered medium z = 0;2-z = 10W3;3- 
z = 10-*;4-z = 0,l. 

It can be shown that when conditions (10) and (1 1) are statis- 
fied we have at these points the divergence of the averaged 
(over the fluctuations 6 p )  generalized susceptibility in ac- 
cord with a law characteristic of the Landau theory 
(X ) a ( T  - TI,, )-I, i.e., in this sense these transitions are 
second-order phase transitions. The possible types of tem- 
perature dependence of the anglegin the spin-flip region are 
shown in Fig. 2. We note that with increasingz the size of the 
section 8 ~ ~ / 4  at the center of the transition region in- 
creases, and the transition at the points TI and T, becomes 
more and more abrupt and acquires the character of a jump. 

Interestingly, it is possible to have in the considered 
systems spin-flip transitions not connected with the change 
of the sign of the average anisotropy constant B. Indeed, in 
accord with (15a), for example, the constant K, is deter- 
mined by the contribution of two terms of opposite sign. 
When the exchange interaction is weakened (this can be ob- 
served for example, in rare-earth ion compounds, where the 
magnetic anisotropy energy exceeds the exchange when the 
temperature is l~wered,'~." a negative contribution to K, 
may predominate. These transitions will be observed on the 
phase diagram of Fig. 1 when moving along the lines 

as a 4 .  The intersections of the curves of the family (17) 
with the phase-transition line (and consequently also the re- 
alization of spin-flip transitions due to weakening of the ex- 
change) is possible, as can be readily shown, only at suffi- 
ciently large fluctuations of the magnetic-anisotropy energy, 
D ( p)//3 1. These transitions do not occur, and the system 
remains in the canted phase characterized by an angle Tli, 
whose value is determined by the statistical characteristics 
of the anisotropy fluctuations. At P '/D (B)# 1, for example, - e li, Z 7T/4. 

The conditions for the applicability of the described 
scheme of spin-flip transitions in systems with fluctuations 
of the magnetic-anisotropy energy can be determined on the 
basis of relations (10) and (1 1). It can be shown that the ex- 
pressions (13) and (14) used by us for the density of the ther- 
modynamic potential become rather crude approximations 

in the immediate vicinity of the line7 = 0( /3 = 0), i.e., at the 
center of the transition region. 

We present by way of example several estimates for dis- 
ordered solid solutions on the basis of rare-earth orthofer- 
rites, where a =: 4 x 10-7 erg/cm3 and the constant B can be 
represented in the form 

p=K(T-T, )  !T,=Kt, (18) 

where K=: lo4 erg/cm3 (Ref. 1). 
In the compounds considered there should be added to 

a,, also the fourth-order anisotropy a:; = k, sin4@. Since 
the constant k, in orthoferrites is small ( k , ~  lo3 erg/cm3), 
allowance for its fluctuations does not make substantial con- 
tributions to the thermodynamic potential (13) or (14), and in 
the latter we can confine ourselves to allowance for the aver- 
age energy z, sin48. The characteristic effective radius of the 
exchange forces in compounds based on orthoferrites is 
large: 6 R 103a, where a is the lattice constant. We can there- 
fore expect satisfaction of the condition R,  /6( 1 and, conse- 
quently, describe the systems by the thermodynamic poten- 
tial (14) with effective constant 

In the case of substitutions in the rare-earth and iron 
sublattices (except for the cases when Fe3+ ions are replaced 
by the ions Co2+ and Mn3+, which have an unusually large 
magnetic-anisotropy energy1, the magnitude of the fluctu- 
ations D ( p ) 1 1 2  corresponds to lo5-lo6 erg/cm3 (Ref. l), so 
that 

and even in fully disordered solid solutions (R ,  =a) it can 
make a substantial contribution to K ,, . When the correla- 
tion radius R ,  is increased, say as a result of partial ordering 
of the solid solution, Ak, increases correspondingly. 

Since Ak, is positive, one can expect at z < 0 the resul- 
tant constant K,,, to be positive, and consequently the sec- 
ond anisotropy constant in the disordered and in the corre- 
sponding ordered compound will have opposite signs. In the 
ordered compound the spin-flip takes place jump wise (first- 
order phase transition'). and in the disordered one we have 
two second-order phase transitions at the points Tl and T, 
defined by the condition (16). The change of the character of 
the transition was experimentally observed1 for a transition 
in the ab plane of YFeO, (constant $(YFe03) < 0, Ref. 11) 
when part of the Fe3+ ions was replaced by Mn3+ ions. 
There are also data" on the observation of a similar pheno- 
menon in disordered solid solutions based on hematite 
Pe l  - x Crx ),O3, (Fe, - x Al, 1203. 

At k2 > 0 the fluctuations of the anisotropy increase the 
width of the transition. In fact, according to Ref. 1, in sys- 
tems described by the thermodynamic potential (14), the 
temperatures of the start and of the end of the transition are 
determined by the relations Kl(T2) = O,K,(T,) = - 2K,(T1). 
From this we obtain for the ratio of the temperature intervals 
A T = T, - T,  in adisordered (A T (D ))and ordered (A T (0)) 
compound 
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In accord with the estimates ofAk, above, the broadening of 
the transition region in a disordered compound can be ap- 
preciable. It is possible that this mechanism, alongside the 
peculiarities noted in Ref. 1 for the temperature dependence 
of the constant K,, will lead to a large width of the transitions 
in a number of the solid solutions YFe, - , Cr, 0,. 

In conclusion, we determine the applicability limits of 
the model used by us for the orientational transitions in the 
compounds considered. Substituting in (10) the equilibrium 
values of the angle8, determined from the condition that (14) 
be a minimum, we obtain 

whence, using the estimates given above for the parameters, 
we obtain 

This relation excludes temperatures in the immediate vicini- 
ty of the center of the spin-reorientation region (8= ~ / 4 ,  
/3 = 0). Taking (18) into account we find that for disordered 
compounds based on orthoferrites our analysis is valid if the 
relative temperature t satisfies the condition 
t>(10-6 - 10-3)(Rc/a)4. In the case of a completely disor- 
dered solid solution(R, =a) the region of the temperatures 
excluded by this condition is extremely small. 

3. SPIN-FLIP IN COMPOUNDS WITH FLUCTUATIONS OF THE 
ANTISYMMETRIC EXCHANGE 

Allowance for the interaction of the systems considered 
in the preceding section with an external magnetic field does 
not lead to additional, compared with (l3), renormalizations 
of the thermodynamic potential. An entirely different pic- 
ture is observed in the presence of fluctuations of the Zeeman 
energy of the system. 

We consider by way of example spin-flip transitions in 
disordered compounds based on orthoferrites with fluctu- 
ations of the antisymmetric exchange. The latter is known1 
to lead to the onset of a transverse weak moment in the sub- 
lattice of the 3d-ions. We consider for the sake of argument 
transitions in the ac plane, in a field directed along the c axis 
(Fig. 3). The density of the thermodynamic potential of the 
system can be represented in this case in the form1 

B = lim V-I 
V-+m 

(19) 
where V, as above, is the volume of the system, and F and G 
are the mutually perpendicular ferro- and antiferromagne- 
tism vectors.' The first and second terms in (19) take into 
account the exchange energy, and the third the antisymme- 
tric Dzyaloshinskii e~change .~  In compounds base on 
RFeO, the random vector d is collinear with the b axis (Fig. 
3)- 

We choose the correlation function K,,,(r-r') in the 
form (3) with the appropriate substitutions 
D (p )-+D (d,, ),Rc +rC. The last two terms in (1 8) take into ac- 
count the energies of the magnetic anisotropy and of the 
interaction with the external field; Mo is the magnetization 
of the system at absolute saturation. For simplicity we shall 
disregard hereafter the fluctuations of the magnetic anisot- 
ropy. Eliminating F from (19) we obtain for Hllc (Ref. 1) 

xI=l/I, h=M,H,, !Vc=dg (r) / I ,  

The last term in (20) corresponds to fluctuations of the inter- 
ation with the external field. 

Introducing the angle 8 (r) (Fig. 3) and eliminating, as in 
the preceding section, the fluctuations 68, we obtain 

where Ro takes into account the average energy of the anti- 
symmetric exchange and of the magnetic anisotropy': 

Q,=-KsG,Z-i/,x,h" I-C,") -rn,hTT,. 

Here c,, = (G,, ) are the components of the average anti- 
ferromagnetism vector of the system, mo = (d,, )/I, and AR 
is a contribution due to the orientational fluctuations 68  [the 
conditions for its applicability can be established in analogy 
with (10) and (1 1)] 

AQ~-1/Zxllh2C2. 

The quantity x determined by the fluctuations of the anti- 
symmetric exchange, can be interpreted as the longitudinal 
susceptibility of the system: 

a,=r:D (4) I@. (22) 

Minimization of Re, with respect to the angle 8 that 
specifies the orientation of the vector (G) yields two solu- 
tions (Fig. 3): the phase 4 (Ref. 1) in which 

sin B =0, 
and the canted phase r4, (Ref. I) ,  in which 

FIG. 3. Phase diagram of a compound with fluctuations of the antisym- 
metric exchange. The insets show the geometry of the arrangement of the 
vectors (F), ( G ) ,  (d , ) ,  (H) in the phases T4,T4,, (xlI >x,). 

Investigation of the stability of the obtained solutions 
shows that the behavior of the considered systems depends 
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substantially on the sign A, = x - X, . At A, > 0, just as in 
ordered system, a transition r4,-+r4 is observed at K ,  <O 
and H>H, , with the threshold field determined by the rela- 
tion' 

with fields renormalized on account of the antisymmetric- 
exchange fluctuations 

where&= / 1 - rfD (d, )/a1 I; the exchange field is of the usual 
form Hex = I /M,. 

At A, < 0 two transitions are observed. The first is pos- 
sible only at K ,  < 0 and corresponds to the usual r4,--+r4 
transition in an ordered compound. The threshold field is 
given by 

Besides, at any sign of K ,  and when the condition 
Ha, > - H i / 4 H e x  is satisfied, a transition r4-+r'42 is pos- 
sible in a field 

It is similar to the transition to the canted phase in ferrimag- 
nets (for example, at K ,  = 0 we have the relations (Fa ) = 0, 
(F, ) = xll h ) that are usual for ferrimagnets), and is due to 
the presence in the system of a certain fraction of moments 
directed, owing to fluctuations of the antisymmetric ex- 
change, counter to the weak moment. At HI1 (F) deflections 
of these moments are possible toward the field that causes, 
owing to the exchange coupling spin flip in the neighboring 
regions and in the system on the average. Favoring the con- 
sidered transition are large values of the correlation radius 
r, .  Indeed, the necessary condition (A, < 0) for the transi- 
tion is transformed in the presence of the relation a z I a 2  
into 

r,2/a23 12/D (d,)  , 
inasmuch as in compounds based on orthoferrites we have I / 
D (d, )) 1 and the transition considered is possible only for 
large-scale (r, )a) fluctuations of d, (r). 

Figure 3 shows the phase diagram of the considered 
compounds under the assumption that K ,  > 0 at high tem- 
peratures and reverses sign at the temperature T, . We note 
the possibility of the existence of a critical temperature T, 
such that at T <  T ,  no spin flip takes place in an external 
field, i.e., the critical transition field does not exist at all. The 

temperature T, is determined by the condition H,, = H,, 
or, equivalently, by the relation 

We note in conclusion that an alternative to the consid- 
ered transition in the field H,,, is rotation of the vector G in 
the plane ac; this rotation is known' to decrease the weak 
magnetic moment. In the presence of moments directed 
counter to the field as a result of fluctuations of d, (r), this 
process may turn out to be energetically preferred. An 
expression for the corresponding threshold field can be easi- 
ly obtained in analogy with the preceding one. Thus, spin- 
flip in the ac plane in disordered compounds is possible only 
in the presence of large anisotropy, which holds the vector G 
in this plane. In the opposite case, transitions can be realized 
with spatial rotation of the vector G. 

The authors thank A. M. Kadomtseva, V. N. Milov, 
and A. S. Moskvin for a helpful discussion of a number of the 
results. 
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can be neglected take the form (lo), (1 1) with inessential additional nu- 
merical factors in the left-hand sides. 

'K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, 
Orientatsionnye perekhody v redkozemel'nykh magnetikakh (Spin-Flip 
Transitions in Rare-Earth Magnets), Nauka, 1979, Chaps. 2, 3. 

2L. H. Holmes, L. G. Van Uitert, and R. R. Hecker, AIP Conf. Proc. 5, 
690 (1971). 

'A. M. Kadomtseva, A. S. Moskvin, I. G. Bostrem, B. M. Vanklin, and N. 
A. Khafizova, Zh. Eksp. Teor. Fiz. 72,2286 (1977) [Sov. Phys. JETP 45, 
1202 (1977)l. 

4G. A. Petrakovskii, Usp. Fiz. Nauk 134,305 (1981) [Sov. Phys. Usp. 24, 
511 (1981)l. 
'V. A. Ignatchenko and R. S. Iskhakov, Abstracts, 15th All-Union Conf. 
on Physiscs of Magn. Phemonea, part 2, Perm', 1981, p. 4. 

61. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 32, 1547 (1957) [Sov. Phys. 
JETP 5, 1259 (1957)l. 

'I. G. Bostrem, A. S. Moskvin, and E. V. Sinitsyn, Fiz. Tverd. Tela (Len- 
ingrad) 23, 1535 (1981) [Sov. Phys. Solid State 23, 899 (1981)l. 

'M. Kac, Probability and Related Topics in Physical Sciences, Wiley, 
1959. 

'R. J. Elliott, A. Krumhansl, and P. L. Leath, Rev. Mod. Phys. 46 465 
(1974). 

'OK. N. R. Taylor, Adv. Phys. 20, 551 (1971). 
"A. S. Moskvin, and I. G. Bostrem, Fiz. Tverd. Tela (Leningrad) 21, 1080 

(1979) [Sov. Phys. Solid State 21,628 (1979)l. 
I2A. N. Salugin, Yu. Z. Baldukhin, and V. A. Povitskii, Ref. 5, p. 168. 

Translated by J. G. Adashko 

389 Sov. Phys. JETP 58 (2), August 1983 E. V. Sinitsyn and I. G. Bostrem 389 




