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Rectification of a current in metals located in a parallel magnetic field ho and irradiated by radio 
waves of sufficiently high amplitude &"is theoretically studied. An equation for the induced 
magnetic moment of the specimen is obtained on the basis of a simple and physically lucid model. 
It is shown that at wave amplitudes greater than the critical v a l u e c ,  the induced moment has 
hysteresis as a function of h,. Initiation of the hysteresis loops is demonstrated and the dynamics 
of the variation of their shape with increasing amplitudeZis studied. At sufficiently high values 
of&4 the hysteresis loop broadens and asymptotically approaches the limiting universal curve 
obtained by Makarov and Yampol'skii [JETP Lett. 35, 520 (1982)l. 

PACS numbers: 72.15.Gd, 78.70.Gq 

1. INTRODUCTION 

In recent years, theoretical and experimental studies 
have been (and continue to be) reported on different nonlin- 
ear electromagnetic properties of pure metallic specimens at 
low temperatures. A list of these studies may be found in the 
survey of Dolgopolov' and in the dissertation of Demi- 
khov~kii .~ Dolgopolov discussed nonlinearity under the 
conditions of anomalous skin effect. 

Unlike other conductors, metals possess a high degree 
of electrical conductivity, i.e., low surface impedance. Con- 
sequently, the magnetic component of the electromagnetic 
wave in metals is always much greater than the electrical 
component. The distinguishing facture of metallic nonlin- 
earity is the decisive role of the magnetic component of the 
electromagnetic field; under skin-effect conditions this com- 
ponent can alter substantially the electron path. The change 
of the electron motion under the influence of an alternating 
and nonuniform magnetic field is the principal reason for a 
host of nonlinear effects in metallic specimens. Most of the 
nonlinear effects recently discovered in metals therefore ex- 
hibit properties that are not found in such patently nonlinear 
objects as semiconductors and gas-discharge plasmas. 

What are known as "current states," experimentally 
found in a number of metals3-' are typical examples of such a 
nonlinear response to electromagnetic perturbation. In these 
studies, under the conditions of an anomalous skin effect, a 
rectified current was produced in pure specimens irradiated 
by radio waves of sufficiently high amplitude and induced a 
constant magnetic field h and, consequently, an observable 
magnetic moment. To excite the moment it was necessary to 
apply a constant magnetic field ho parallel to the boundary of 
the metal. However, this magnetic moment continued to ex- 
ist even after h, had been removed, and exhibited hysteresis 
as a function of h,. Similar hysteresis is exhibited by the 
magnetic-field-dependent kinetic coefficients. Excitation of 
current states has a threshold, the hysteresis loops appearing 
only after the amplitude 2? of the incident wave exceeds 
some critical value R,, . 

Babkin and Dolgopolovs have found the physical cause 
of these current states. According to them nonlinear current 

rectification in metals is due to the fact that the nonuniform 
magnetic field, which is the sum of h, and of the wave mag- 
netic field H(x, t ), shapes the electron trajectory (thex axis is 
directed into the specimen and t is the time). The electron 
motion depends essentially on whether there is a plane 
x = x,(t )in the specimen on which H (x,, t ) + h, = 0. During 
those time intervals during which such a plane is absent, the 
electrons move along paths similar to those shown in Fig. la. 
These paths are virtually indistinguishable from a closed 
Larmor orbit. If I h,l ( 2 Z ,  there exists during the wave peri- 
od ~ P / W  a time interval in which the spatial distribution of 
H (x, t ) + ho is of alternating sign. In this case, the effective 
electrons which land in the skin layer move along the surface 
of the metal in paths which twist about the plane x = x,(t ) 

FIG. 1. Paths of effective electrons in a nonuniform magnetic field. (a) 
Path in a field of constant sign ( T ,  -- amc/el h (a ,  ) + hol); (b) path in field of 
alternating sign (T ,  ~ ( m c 6  lH(0,  t ) l / e ~ , ) " ~ / l h  ( o o )  + hol) when 
Ih ( o o )  + h,l<2&P; (c) path in field of alternating sign (T, --a(rnc/ 
eu,IHf(x,, t)1)"2 when Ih ( a )  + h , l - 2 X  
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(see Figs. lb, c). Hence it is clear that the conductivity will 
differ at different times. Sharp variations in the conductivity 
during the wave period 2 h  will lead to excitation of a dc 
current component which induces a constant but nonuni- 
form field h(x). 

Note that the dc current flowing around the surface of a 
specimen is closed and attenuates in the interior of the metal 
at a distance on the order of the thickness of the skin layer 6; 
at the center of the specimen the current is zero. This means 
that over the same these distances the magnetic field h (x) 
varies from zero at the boundary of the metal to a value h ( w ) 
at the middle of the current loop, i.e., at the center of the 
bulky specimen. The induced field h (x) constitutes the value 
of H (x, t ) averaged over the period ~ I T / W  of the incident 
wave. Because of the skin effect, the alternating component 
of H (x, t ) oscillates and rapidly attenuates over a distance of 
the order of 6. 

Such a rectification mechanism will be present if the 
path of the effective electron in the skin layer L-(4cp,S/ 
e&")1'2 is much less than the mean free path I = v/v; in addi- 
tion, the wave phase should remain invariant during the free 
path time, i.e., 

The inequality (1.1) means that the characteristic value of 
the alternating magnetic field 2 X i n  a metal must exceed the 
field &Po at which L = I. In other words, the rectification 
effect is characterized by a small parameter b equal to the 
ratio L /I, or 

Here c is the speed of light, e the absolute value of the charge, 
p, and v are the Fermi momentum and velocity, and m and v 
are the mass and relaxation frequency of the electron. 

In the study we already menti~ned,~ excitation of cur- 
rent states was considered by perturbation theory. It was 
assumed that the "twisting" electrons move along the asym- 
metric paths shown in Fig. lb. The threshold nature of the 
effect and the dependence of the critical amplitude &P,, on 
the frequency w and on the mean free path I were established. 
These results are qualitatively correct for the case of not too 
high values of the nonlinear parameter b. In our previous 
a r t i ~ l e , ~  we studied the regime of advanced nonlinearity 
(b< I), in which the plane x = x,(t ) is near the surface of the 
metal (x,-6) and the path of the twisting electrons become 
symmetric relativetox = x,(t )in themagnetic field H '(x,, t )S 
(Fig. lc). It was shown that the hysteresis loop of the magnet- 
ic moment, as a function of h,, is within the range ( - 2&P, 
22?7 and has a universal form, whereas the values of the 
induced field h ( w ) are comparable with the amplitude &P of 
the incident wave. 

In the present article, we use a relatively simple, though 
physically lucid model to construct a perturbation theory for 
current states, combining the previous  result^^*^ and valid 
over the entire range of variation of the parameters 
1 ho 1 (2&P and b S 1. An equation for h ( w ) is obtained and 
analyzed; by means of this equation, generation of hysteresis 
loops and the variation of their shape with increasing ampli- 
tude 2' of the incident wave (with decreasing parameter b ) 

are investigated. The conclusions of the theory are in good 
agreement with the experimental results. 

2. DISTRIBUTION OF ELECTROMAGNETIC FIELD 

Let us consider a solid metallic specimen placed in a 
constant and uniform magnetic field h, parallel to its sur- 
face. A plane monochromatic wave of amplitude A? and fre- 
quency a ,  whose magnetic vector is collinear with h,, is inci- 
dent on the interface (the yz plane). The x axis is directed 
along the inward normal to the metal, the z axis is parallel to 
the vectors of the magnetic fields (Fig. 1). The electrical and 
magnetic components of the electromagnetic field in the 
metal are parallel to they and z axes: 

To find E (x, t ) and H (x, t ) in explicit form, it is necessary to 
solve the Maxwell equations 

with the boundary conditions 

Note that the first equation in (2.3) is accurate to terms of 
order 06 /c< 1. This equation expresses the fact that to the 
extent that the impedance is small an electromagnetic wave 
of frequency o impinging on the metal is reflected basically 
at the same frequency. 

The current densityj(x, t ) is not a monochromatic func- 
tion and depends in a complex way on the time t. Therefore 
we represented the solutions of the Maxwell equations in the 
form 

m 
x 

E (x, r )  = z E. (at)  exp [ - -   in^ (ot) 
6,  

Here En (4 ), Sn , and 6 (4 ) are determined from (2.2), and the 
coefficients Hn are found from the boundary conditions 
(2.3). Since the solutions of (2.4) must be periodic in the time t 
with the period 27r/o of the incident wave, the function 6 (4 ) 
must satisfy the condition 6 (4 + 27r) = 6 (4 ) + 27r and vary 
from0 to 27rin the interval O(4<27r. Moreover, 6 (4 )must be 
continuous, monotonic, and single-valued if the set of func- 
tions exp[-in6 (4 )] is to be complete. 

In the representation (2.4), the current density of the 
conduction electrons may be written in the form 

It follows from (2.2) and from the fact that Hn is independent 
of4 that the product an (a t  )En (a t  ) isindependent ofthe time 
t. 

The conductivity of the n-th current-density compo- 
nent (under the conditions of the anomalous skin effect) may 
be represented in the form 
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0 0  6 ,  
-a(cp), '"(') = 1- exp (-2vTa) 1 

cos q+h, 2% cos cpf ho 
( h ( m )  +ha ) (- h(rn) +ha ) ' (2'6) 
4 "v dv 

a ( r ) =  - [ I -  exp(--2vTa) I [ I -  exp(-2vT(1p)) I-'. n u2 

Here a, is the static conductivity of the metal, O (x) is the 
Heaviside function (O (x) = 0 if x < 0 and O (x) = 1 if x > O), 
2Ta is the electron period in a constant-sign magnetic field 
(Fig. la) and 2T (# ) the electron period in analternating-sign 
magnetic field (Figs. lb, c), and v, is the electron velocity in 
the xy-plane perpendicular to the totd magnetic field vector. 
Equation (2.6) for a(# ) is written for a metal with a spherical 
Fermi surface, with 

nmc 
Ta= uI= (v2-02) %. 

elh(-)+&I ' 
That (2.5) and (2.6) are valid may be demonstrated by 

means of an exact derivation based on the kinetic equation 
for the electron distribution function. For lack of space we 
do not present this derivation, all the more since from the 
point of view of physics, the structure of (2.6) is sufficiently 
clear by itself. The spatial dispersion in (2.4)-(2.6) is taken 
into account in the ineffectiveness-concept model (see the 
Appendix), which yields correct results to within real con- 
stant factors. In this model, the factor Sn/I in (2.6) is the 
usual one for the anomalous skin conductivity. This factor 
reflects the fact that only some of the effective electrons im- 
pinging on the skin layer S,, and not all of the electrons, 
interact with the electromagnetic field in the metal. The de- 
nominators (1 - exp( - 2vT)) take into account the prob- 
ability that the effective electron will repeatedly return to the 
skin layer in a magnetic field parallel to the boundary of the 
specimen. In writing out &(at ), it was assumed that the total 
field H (x, t ) + h, in the metal changes sign not more than 
once. In this case, the path of the effective electrons depends 
on the orientation of the total field on the metal surface 

H (0, t )  +ho=2% cos ot+ho 

relative to the field within the metal 

During these time intervals when the field has the same 
sign at the boundary and within the specimen it vanishes 
nowhere, Wwt ) = 1, and the conductivity (2.6) is equal to the 
well-known conductivity of the "Larmor" electrons (Fig. 
la). But ifH (0, t ) + h,andH (a, t ) + h,areofdifferent sign, 
the spatial distribution of H (x, t ) + h, is an alternating-sign 
function, 6(wt ) = a(wt ), and the conductivity will be com- 
pletely determined by the twisting electrons (Figs. lb, lc). 
The quantity a(# ) is the ratio of the conductivity of the twist- 
ing electrons to the conductivity of the metal in a field of 
constant sign without such electrons. The period 2T (# )of the 
twisting electrons depends on v, , so that the formula for a(# ) 
contains averaging with respect to v, . Still without present- 
ing the explicit form for T (# ), we may show that T (# )( Ta as 
long as the skin effect is anomalous with respect to the vari- 

able field (S<cpF/2efl. This means that a(# ) is always 
greater than unity. 

Substituting (2.4)-(2.6) in the Maxwell equations (2.2), 
we easily find that 

cZ1 [ I-exp (-2vTa) ] p in n 
6n= ( 4noo. ,-)Ii3 1 n1 exp (--) 6 Inl 

inob, 
En ( p )  =- - Hn - 

cpa ( c p )  

To determine the coefficients H, , we turn to the bound- 
ary conditions (2.3). As x-a, there remains only a single 
term with n = 0 in formula (2.4) for H (x, t ). Consequently, it 
follows from the boundary condition at infinity that 
h ( oo ) = H,. From the boundary condition x = 0 at the metal 
surface, we find that 

Hn exp[-in5 (9) ] =B cos ip. (2.9) 
n--m 

This equation is an expansion of the right side of 2&Pco@ in 
a series in the complete set of functions exp[ - ing (# )I. These 
functions are orthogonal on the interval 0(#(2n- with 
weight 6 (4 ) = l/p&(# ). Therefore, the coefficients of the ex- 
pansion (2.9) are 

From (2.10) there follows, in particular, an equation for the 
induced constant magnetic field in the interior of the speci- 
men: 

Equations (2.4)-(2.11) describe a nonlinear distribution 
of an electromagnetic field in the case Ih,l <W, when twist- 
ing electron orbits appear. Let us emphasize that the repre- 
sentation (2.4) is not an expansion in a harmonic Fourier 
series in 4, as each term in (2.4) contains, in general, all the 
field harmonics at frequencies which are multiples of the 
frequency o of the incident wave. The linear situation is 
reached by making a(# ) tend to unity. When a(# ) = 1, we 
have 

andHn =&Pifn = f landHn =Oifn =0,  f 2, f 3 ,..... 
In other words, only two terms with n = + 1 are left in the 
sums (2.4). 

3. ANALYSIS OF EQUATION FOR h(oo) 

Equation (2.11) for the induced magnetic field are best 
written in dimensionless variables by introducing the new 
notation 

ho a = -  x= - h ( m )  - h(-!+ho 
2%' 2%' 

x= 
2% =%+a; 

B=arccos (a signk) , OdBGn. 
(3.1) 

359 Sov. Phys. JETP 58 (2), August 1983 N. M. Makarov and V. A. Yarnpol'skl 359 



After a number of algebraic manipulations we obtain 

Here we have taken into account the explicit form ofp and 
also the fact that a(4 + r) = a(# ); sign x = 1 if x > 0, 
signx= - 1 ifx<O, andsignx=Oifx=O. 

Equation (3.2) which is a rather complicated integral 
equation, determines the functional %(a) dependence. It has 
one trivial solution x = 0 at a = 0. It is not possible to find its 
nontrivial solutions analytically in the general case, since the 
period 2T (4 ) of the twisting electrons is a functional of the 
total magnetic field H (x, t ) + h, and, depending on the quan- 
tity b as well as the relations between h,, h (w),  and 2&", 
assumes different values within the range T, ( T (4 )( T, (see 
Fig. 1). Nevertheless, Eq. (3.2) can be analyzed in the two 
important limiting cases, and the general laws governing the 
solution x(a) found by means of such an analysis. Next, (3.2) 
may be simplified to permit a computer solution. This dem- 
onstrates the generation of hysteresis loops and the dynam- 
ics of the variation of their shapes with decreasing b (increas- 
ing &4. 

1. Let us first consider the case of weak nonlinearity 
whena(4 ) - 1 < 1, i.e., 2vT (4 )< 1. As will be seen below, this 
case corresponds to the inequality 

Since a(4 ) is nearly equal to unity, the alterating component 
H (x, t ) is mainly the field of the first harmonic (terms with 
n = + 1 in (2.4)). All the other harmonics, including the 
zeroth h (x), are much less than the first (1x1 <l) ,  and there- 
fore H (x, t ) may be given in the form 

H(x, t) =2% Re exp (-x/6,-iot) +h (x). (3.4) 

Hence it follows that the point x,(t ) at which the total mag- 
netic field vanishes is located for a considerable fraction of 
the time within the metal at a depth greater than S below the 
surface. The effective electrons, moving in the skin layer into 
the strong field W, penetrate far into the specimen, where 
the alternating component is zero, and become twisted by 
the weak constant field h ( co ) + h, ( ~ x  1 <I).' The asymmetric 
paths of these electrons are shown in Fig. lb. Their period 
may be computed by means of (3.4). As in Ref. 1, we find that 

'1; b 'It 

. 2vTb(q)= (t ) (00s (9-+) I . (3.5) 

Here and below, the depth of the skin layer 6 in the definition 
(1.2) of the parameter b should be taken to mean 16,l. Condi- 
tion (3.3) from (3.5) follows in the case of weak nonlinearity. 

Wesubstitute (3.5) in the formula (2.6) for@ ), and then 
expand the right side of (3.2) in powers of the small quantity 
a(# ) - 1 and compute the integrals. We bear in mind that 
J3zr/2 and that in the integral with respect to 4 the major 
contribution is made by the point 4 = - r /3  at which 
cos(4 - r/6) vanishes. Ignoring the numerical real factors, 
we find that 

nbzx= (%+a) sign ( x f  a). (3-6) 

FIG. 2. Solution y(x)  of Eq. (3.7). 

This equation leads to an interesting result: the varia- 
bles a and x may be normalized in a natural way with respect 
to r b  so that the equation subsequently no longer depends 
on any of the parameters 

a=nbzx, x=nbzy, y= (y+x) sign (y+x) . (3.7) 

That such a normalization is possible means that the induced 
field h ( oc ) in the region (3.3) is determined by the characteris- 
tic field &", and is practically independent of the amplitude 
of the incident wave. In fact, according to (3.7), we have 

The function y(x) is determined from (3.7), which may be 
solved quite simply (it is a quadratic equation); the function 
is plotted in Fig. 2. Note that y( - x) = - y(x). 

Recall that the point 4 = - r /3  made the major con- 
tribution to Eq. (3.2) upon averaging over the phase, while 
the integration limits J3 and - J3 did not "work." At these 
limits, there is a transition from the ordinary conduction to 
the conduction by the twisting electrons. Thus, the results 
obtained in this section are independent of the law that go- 
verns the transition from one type of conduction to the oth- 
er. 

2. As 1x1 increases, inequality (3.3) breaks down, and we 
enter the region of strong nonlinearity, where 

In this region, the conductivity of the metal in a field of 
alternating sign greatly exceeds the conductivity in a field of 
constant sign. Theirratioa(4 )> 1, i.e., 2vT (4 )< 1. Thismeans 
that the period of the twisting electrons attains its minimum 
2Tc -L /v (2vT, -b< 1); here the plane at which the sign of 
x = x,(t ) changes is near the surface of the metal (x,-S), and 
the path followed by the twisting electrons becomes symmet- 
ric relative to x = x,(t ) in the magnetic field H '(x,, t )S (Fig. 
lc). . 

NeglectingaP'(4 )in (3.2) by comparison with unity, we 
find two solutions9 x(a): 
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By (3.10), under the conditions of advanced nonlinearity 
(b( l), %(a) is a universal function without any parameters. In 
particular, %(a) is independent of the electrodynamics of the 
metal (i.e., of b ). For this reason, the result (3.10) is not affect- 
ed by the choice of the model for on (# ). The induced field 
h ( co ) is determined by the amplitude &"of the incident wave 
and is independent of $Yo: 

In our analysis of (3.2), we have until now not given a 
specific value for the product 2vTa. Nbte here that if 
2vTa ( 1, only the strong nonlinearity condition (3.9) is real- 
ized, since the period 2T (# ) of the twisting electrons is always 
much less than the Larmor period 2Ta. 

To derive the results (3.10) and (3.1 l), we used only the 
fact that the ratio a(# ) of conductivities increased signifi- 
cantly. The exact value of a(# ) did not play any role here. In 
other words, 2vT (# )( 1 must hold in the region of advanced 
nonlinearity (3.9), and it makes no difference what the period 
2T(4 ) is actually equal to. At the same time, Eq. (3.5) for 
Tb (# ) is such that the product 2vTb (# )(1 in the case (3.9). 
This means that the solutions (3.10) and (3.11) are obtained 
also when Tb (# ) from (3.5) is substituted for T (# ) in the for- 
mula (2.6) for a(# ), despite the fact that, formally speaking, 
Eq. (3.5) is not applicable in the case of strong nonlinearity 
(forwhich T(4 ) = T,) .  Thus, Eq. (3.2)forx(a) witha(q5 )con- 
taining 2vT(# ) in the form (3.5) is closed and yields correct 
results in the case of both weak and strong nonlinearity. 
There is no reason for doubting that such an equation de- 
scribes, at least qualitatively, also the intermediate situation. 

3. Let us substitute (3.5) in the Eq. (2.6) for a(#) and 
assume that 2vTa ) 1. Allowance for the actual electron dis- 
persion law only the real constants in (3.2) change. For the 
sake of simplicity, therefore, we will consider the case of a 
cylindrical Fermi surface with symmetry axis along the 
magnetic-field vector (z axis). In this case, 

As a result, (3.2) assumes the simpler form 

Figure 3 shows plots of the computer solutions x(a) of 
Eq. (3.12) for different values of the parameter b. The curves 
in this figure demonstrate that the excitation of the current 
states has a threshold and show the dynamics of the vari- 
ation of the shape of the hysteresis loops with decreasing b 
(increasing wave amplitude &P). 

If b)0.3, no hysteresis is present and the dimensionless 
value x of the induced field is a single-valued function of a. 
As the amplitude &" increases, b decreases, and at some 
b = b,, the plot of %(a) has two singularities at which xl(a) 
becomes infinite. For (3.12), the b,, lies in the range 0.2 < b,, 
< 0.3. At a fixed frequency w of the external signal and at 

FIG. 3. Plots of solutions %(a) of Eq. (3.12) for different values of b (the 
values of b are written next to the curves). 

fixed temperature, the value of b,, for a given metal deter- 
mines the threshold value &",, of the amplitude of the inci- 
dent wave. In accordance with (1.2), we find that 

For b < b,, , %(a) is no longer single-valued; the deriva- 
tive xl(a) has four pairwise symmetric singularities at which 
the experimental induced field x is discontinuous. The dis- 
continuous behavior of %(a) also means the appearance of a 
hysteresis loop. 

If b<b,, , but is large enough, Eq. (3.12) has no nontri- 
vial solutions if a = 0 and the %(a) curve does not cross they 
axis. In this case, a constant field h, is required to excite the 
current states and the hysteresis is in the form of two centro- 
symmetric loops. The function %(a) with b = 0.2 is an exam- 
ple of such a situation. 

At some supercritical value b = b E,, the %(a) curve is 
tangent to the vertical axis (0.15 < b < 0.2 in Fig. 3). Finite 
solutions x(0) $0 appear beginning with this point, i.e., the 
induced field h ( co ) acquires the ability to maintain itself in a 
zero external magnetic field h, = 0. The loops which exist in 
the interval b E, < b < b,, merge (when b = b E,) into a single 
loop with four discontinuites, which form pairwise two 
steps. After "some time" (as b decreases), the steps vanish 
and two discontinuities remain. 

Finally, as b decreases further, the hysteresis loop 
broadens, asymptotically approaching the limiting curve de- 
scribed by (3.10) (outer curve in Fig. 3). From an analysis of 
Eq. (3.12) it is clear that the approach to the limiting curve is 
linear in b along the ordinate axis but follows a b ' I 5  law along 
the abscissa axis. In other words, %(a) reaches the limiting 
curve faster along the ordinate axis than along the abscissa 
axis. 

All the hysteresis loops of the induced field h ( co ) lie (as 
functions of h,) within the range ( - 2&", 2X) .  At ampli- 
tudes &P far from the threshold amplitude (b( 1), the width 
of the loop is equal to 4&" accurate to b 215. 

Note that even under the conditions of advanced hys- 
teresis ( b ( l ) ,  when there is only a single loop, there is a sta- 
ble-state section in a neighborhood of the origin a = 0 and 
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FIG. 4. Dependence dM /a&" on h, in tin for different values of the ampli- 
tude &"of the alternating field." Thickness of specimen 0.6 mm, T = 4.15 
K, H11[100], o/2a = 1.7 MHz. The numbers near the curves denote the 
values of Z in oersteds. 

x = 0 (by way of example, see the curves with b = 0.15 and 
b = 0.1 in Fig. 3). The width of this section is ?rb 2/2 for Eq. 
(3.12), and the %(a) dependence is described by (3.7) (see also 
Fig. 2). As shown in Sec. 3.2, in this state h (oo ) is determined 
by the field%, and is independent of the amplitude X o f  the 
incident wave. 

In Fig. 4, which we have borrowed from Murzin's dis- 
sertation,1° we present typical experimental curves for the 
derivative dM / d X  of the magnetic moment as a function of 
the external field h,. This figure demonstrates that the ex- 
perimental results are in good agreement with some of the 
conclusions we have arrived at here. Moreover, a direct pro- 
portionality has been observed5 between the critical value 
&Pa of the amplitude and o-'I3. It should be noted that all 
the experiments known to us pertain to the region of not 
"very high" amplitudes % (b- 1-0. I), where the conclu- 
sions we have drawn from an analysis of (3.2) and 3.12) agree 
in the main with the conclusions which follow from a pre- 
viously proposed rnode1.'v6 There are as yet no experiments 
that show that the hysteresis loop reaches the limiting uni- 
versal curve (3.10) as b 4 .  A measurement of the value of 
h ( oo ) = f 4%/r at h, = 0 would be one way of experimen- 
tally verifying (3.10). 

Equation (3.12) together with its analysis above pertains 
to the case 2vTa + 1. Even here, values b< 1 may be attained 
and the limiting curve (3.10) approached. If the amplitude 
% continues to increase, we enter the region where 
2vTa -cpF/2e%I< 1. In this region, the ratio of the conduc- 
tivities is 

meaning that in (3.2) for %(a) the factor in the square brackets 
is of the same order as 

As a result, the induced magnetic moment decreases with 
increasing amplitude &a, and when 2 8 2  cp,/e8 the hys- 
teresis loop vanishes. 

Studies of current states in the case of a "nearly normal 
skin effect" have recently been reported.' ' The observed ir- 
reversible magnetic-moment hysteresis and the dynamics of 
the variation of its shape resemble that which occurs under 
the conditions of the maximally anomalous skin effe~t.~" 
Despite certain differences between the results of Ref. 1 1 and 
other  result^,^" we believe that the cause of the excitation of 
current states in Ref. 11 is the same as in the case of an 
anomalous skin effect. This cause is during the external- 
wave period 2?r/o there exists a time interval when the total 
magnetic field is of constant sign, and in the remainder of the 
period there is a plane in the metal at which total field van- 
ishes: x = x,(t ). This is the necessary condition for the exis- 
tence of current states, as is clear from the following simple 
reasoning. If h ( oo ) + h, = 0, the plane x = x,(t ) exists 
throughout the entire wave period 2?r/o. Electromagnetic 
field harmonics are generated as a consequence of the time 
dependence of the conductivity which, being a functional of 
I H (x, t ) I ,  has in this case a period ?r/w and contains only even 
harmonics. Consequently, at h, = 0 an incident wave of fre- 
quency o generates only odd harmonics in the metal, and no 
constant magnetic field component h (x) is induced. To excite 
current states the conduction must be rid of this periodicity. 
This may be accomplished by "switching on " the external 
field h,, but then the plane x = x,(t ) will be absent during a 
definite part of the period. In conclusion, note that under the 
conditions of the "almost normal skin effect" current states 
can be induced only in compensated metals. In uncompen- 
sated metals, Hall conductivity prevents the excitation of the 
current states. 

w e  thank E. A. Kaner, V. F. Gantmakher, V. T. Dolgo- 
polov, L. M. Fisher, I. F. Voloshin, and S. S. Murzin for their 
interest in the study and for useful discussion. We are also 
grateful to P. N. Chuprov for the computer solution of Eq. 
(3.12). 

APPENDIX 

In solving the Maxwell equations (2.2) we used an 
expression for the current density written in the ineffective- 
ness-concept model (2.5), (2.6). The ineffectiveness concept 
was first proposed by Pippard in the linear theory of the 
anomalous skin effect. It has since been successfully used in 
studying different high-frequency properties of metals and is 
known to give correct results to within constant real factors 
on the order of unity (see Ref. 12). Its use in nonlinear prob- 
lems, however, is as yet not self-evident and requires some 
justification and generalization. The present Appendix deals 
with just this subject. 

The current density j (x,  t ) is found by solving a kinetic 
equation, which is linearized with respect to the electric field 
E (x, t ), but contains the Lorentz force of the total magnetic 
field H(x, t ) + h,. We then compute the asymptote j(x, t ) 
which is valid under the conditions of the anomalous skin 
effect. The asymptote has the structure 
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on 

j (x, t) = dxfQ (x, x1)6 (at) E (x', t) . (A.1) 
0 

Here Q (x, x') is a time-independent kernel of the conductiv- 
ity operator of the "Larmor" electrons. It describes the spa- 
tial dispersion in the case of the anomalous skin effect. The 
factor 5(wt ) describes the time dependence of the conductiv- 
ity; its form can be found in (2.6). 

In accord with (A. I),  the solutions of the Maxwell equa- 
tions (2.2) will be found in the form of an expansion in the 
complete set of functions exp[ - ing (wt )I: 

E (x, t) = x En (x, ot)  exp [ -ing (ot) 1. 

From the fact that Hn (x) is independent of time and 
from the first equation in (2.2) it follows that the product 
5(4 )En (x, 4 ) is independent of 4 (4 = o t  ). Moreover, 

where the prime denotes the derivative with respect to x. 
From the second Maxwell equation (2.2), we obtain the 

equation 
ino 

En (5, p) = - 
cpa (p) Hn (x)' 

and also that the product 5(# )i (4 ) must be constant (the dot 
denotes the derivative with respect to 4 ). This constant, de- 
noted p-' in (A.4), is determined from the condition 
6 (4 + 277) = 6 (4 ) + 277 (see the text following (2.4)). Hence 
we have the expressions for 6 (4 ) andp presented in (2.8). 

Let us differentiate (A.4) with respect to x and substi- 
tute H :, (x) from (A.3). As a result, we obtain an equation for 
E n  (x, 4 1: 

Equation (AS), together with the boundary conditions 

ino 
En' (0, (PI = - Hn (0) , En (00, (PI =O 

cpa 
(A.6) 

determines uniquely the n-th component of the electric field. 
Let us now justify the ineffectiveness concept. As in the 

linear theory, the gist of the concept is the following. Instead 
of solving (A.5) we estimate it by the simplest method where- 
in that the solution En (x, 4 ) retains its principal features. The 
estimate is performed by replacing the integral conductivity 
operator Q by an effective multiplication operator Q,,. In 
this replacement it is necessary to take into account the fact 
that the field En (x, 4 ) varies sharply and is non-zero in a thin 
surface layer of thickness an. In the case of the anomalous 
skin effect, the kernel Q (x, x') is a maximally smooth func- 
tion of its arguments and varies over distances of the order of 
I or else cp,/2eR (an (I, cpF/2eW. The characteristic val- 
ue of Q (x, x') at x, x' 5 an has the form 

Therefore, in estimating (AS) we can make substitution 

In the upshot, the integro-differential equation turns into an 
ordinary differential equation whose solution 

En (x, q~) =En (0, v) exp (-XI&) ( A 4  

varies exponentially over a distance 6, determined by (2.8). 
Equations (2.4)-(2.6) follow directly from (A. I), (A.2), 

(A.7), and (A.8). 
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