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A new representation is proposed for spin operators and is used to develop a method for evaluat- 
ing spin Green functions. The method is based on the standard diagram technique for interacting 
Rose and Fermi particles. The method is valid for systems with arbitrary spin Hamiltonians and 
can be used to exclude in a simple manner the contribution of nonphysical states at arbitrary 
temperatures. The concept of the mass operator of the spin Green function is introduced rigorous- 
ly for a Heisenberg ferromagnet and is expressed, for the first time, in a closed form in terms of 
Bose and Fermi Green functions and effective vertex parts. Expressions are obtained for the 
kinematic frequency shift and the kinematic damping of magnons. The basic difference between 
the structure of the high-frequency magnetic susceptibility tensor of a Heisenberg ferromagnet 
and that ordinarily used is demonstrated. 

PACS numbers: 75.10.Jm 

1. INTRODUCTION 

The determination of .the high-frequency, thermody- 
namic, and kinetic properties of magnetically ordered crys- 
tals is reduced in microscopic theory to the evaluation of 
spin correlation functions. The methods available for deter- 
mining these functions can be divided into three groups. The 
first includes calculations based on different algebraic real- 
izations of spin operators in terms of Bose operators, fol- 
lowed by the application of the standard diagram technique 
for Bose systems. The (2s  + 1)-dimensional physical space 
of states of spin operators (S is the spin of the atom) is re- 
placed by an infinite-dimensional space of Bose-particle oc- 
cupation numbers. Since the projection operator onto phys- 
ical space is not taken into account, the range of validity of 
these theories is confined to low temperatures. The second 
group includes numerous methods based on uncoupling the 
chains of equations for spin Green functions (see, for exam- 
ple, Refs. 1-3). Finally, the last group includes the method 
for calculating spin Green functions based on the diagram 
technique of Vaks, Larkin, and (see also Ref. 6). Al- 
though a series of important results has been obtained within 
the framework of the formalism described in Refs. 4-6, it is, 
nevertheless, important to note that this formalism is rela- 
tively complicated and nonstandard as compared with the 
technique for Bose and Fermi system. This complexity is 
connected, in the first instance, with the fact that the dia- 
gram series of perturbation theory does not have the princi- 
pal advantage of the theory of Bose and Fermi systems, 
namely, ease of interpretation which ensures that each dia- 
gram describes certain scattering of quasiparticles by one 
another. In the procedure used in Refs. 4,5, and 6, even the 
introduction of the quasiparticles (magnons) requires pre- 
liminary selective summation of diagrams, whilst the deter- 
mination of the amplitudes for the interaction between them 
remains an unsolved problem. On the other hand, it is pre- 
cisely its physical clarity that has made the diagram tech- 
nique for Bose and Fermi systems7 a uiversal and effective 
mathematical formalism in physics. It is therefore natural to 
try to formulate the problem of interacting spins in the lan- 

guage of interacting Bose and Fermi particles. 
In this paper, we put forward a method for evaluating 

the spin Green functions, which is based on a new represen- 
tation for the spin operators that has a simple projection 
operator. The corresponding diagram technique is identical 
with the standard diagram technique for Bose and Fermi 
particles but, at the same time, it enables us to perform a 
rigorous summation over the physical states of the interact- 
ing spins at arbitrary temperature. 

We shall evaluate the high-frequency magnetic suscep- 
tibility tensor x +-(k,w) of a Heisenberg ferromagnet and 
analyse its properties. We shall show that the form of 
x + -(k,o) at high tempratures in theordered state is substan- 
tially different from the Lorentz shape. 

2. REPRESENTATION FOR SPIN OPERATORS 

We shall take the spin operators in the following form: 

where a; and a, are the Bose and b ,' and b, the Fermi 
creation and annihilation operators satisfying the usual 
commutation relations and I labels the lattice sites (I = 1,2, 
. . . , N ). The operator 3; is self-adjoint and 3 If and 3 ; are 

conjugate Hermitian operators, as in the Dyson-Maleev re- 
presentation.8s9 It is readily verified that the operators s:~' 
satisfy the same commutation relations as the operators 
 and$:=^(^+ 1). 

The space of states in which the 3 .'operate is an infi- 
nite-dimensional Hilbert space of the occupation numbers 
with basis vectors 

1 1 
q,,,~ ( 1 )  = - (a~+)~lO),  cp,~(l)= (nl)x (a,+) "bl+ lo), 

(n!) " 
(2) 

where n = 0,1, . . . , oo . 
By applying the operator 3; to (2), we can verify that the 
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states p,,, with n > 2S and all the states p,,, are nonphysi- 
cal. It is clear that the quasiparticles created by the operator 
band b ,+ have no real physical meaning because their occu- 
pation numbers are nonzero only for nonphysical states. 

We shall show that the mean of the product of an arbi- 
trary number of spin operators 
S * "(7) = exp(Xr)S * "exp( - X T ) ,  over physical space can 
be expressed in terms of the mean of the operators 
3 * J ( ~ )  = e x P ( 9 r ) ~  * '" exp( - P T ) ,  evaluated in the 
space (2), using the following relation: 

<T % .  . . St+ ( z ) .  . . SV-(7 ' ) .  . . S I - ~ ~ ( Z " ) .  . . )JC 

T + (  S T ) .  " )  ) ,  (3) 
where 

B=IIIP,, P1=exp ( inbl+bl ) .  

In these expressions, ?is the projection operator onto phys- 
ical space, f7 is the chronological ordering operator 

<. . . >~e=Sp  { exp  ( - B Z ) .  . . ) / S p  { e x p  ( - p a ) ) ,  
< P . .  . )%=Sp{P e x p  (-w-). . . ) / S p { P  e x p  (-$%3) 

2?? is the Hamiltonian of the spin system in which the spin 
operators are described in accordance with (I), andp -' = T 
i! the temperature in energy units. The projection operator 
PI is diagonal in the basis defined by (2): 

Plcp", 0 (1)  =qn, 0 (1)  ; P1cpn. ( ( 1 )  =-cpn, t ( l )  3 (4) 

and, as we shall see below, the application of this operator 
leads to the mutual cancelation of contributions due to the 
nonphysical states p,, with n > 2 s  and p,,, with n>O. It is 
precisely in this se?se that we shall use the phrase, "projec- 
tion operator" for F, altkough it does not, in fact, satisfy the 
standard relation P = P for a projection operator. 

It is well known that a mean of the form given by (3) can 
be expressed in the interaction representation by writing the 
Hamiltonian in the form X = Zo + Xi,, . The evaluation 
of any spin correlation function then reduces to the evalua- 
tion of the sum of means in which the time dependence of the 
operators and the statistical averaging are determined by the 
Hamiltonian Xo. It will therefore be sufficient to prove (3) 
for &" = Zo and 2 = Xo. 

We shall use the method put forward in Ref. 4 for the 
evaluation of the spin correlation functions. We shall take 

in the form 

The evaluation of any spin correlation function with 8, 
given by (5) is performed in two  stage^.^-^ The first step is to 
use the commutation relations for the spin operators and 
then evaluate all the possible convolutions for the operators 
S + with the operators S - and 5". This procedure gets rid of 
all the operators S + and S - in the mean given by (3). (By 
virtue of the structure of the Hamiltonian Z , ,  the only non- 
zero means are those containing an equal number of opera- 
tors S + and S -.) The final result is that the original mean 
divides into the sum of terms, each of which consists of the 
product of elementary spin Green functions K y, (T, - T,), 
multiplied by the mean of the operators S of the form 
(SfSZ . . . s;), 

The second step is to write down the mean of the S 
operators. The means of an arbitrary power of the operator 
S are expressed in terms of the function b (Pt,) = SBs my,) 
and its  derivative^,^" where B, (x) is the Brillouin function 
for spin S. 

Let us now consider the mean of the product of an arbi- 
trary number of spin operators, in which each spin operator 
is given by (1) and 

Repeating the discussion used in Ref. 10 in connection with 
the Dyson-Maleev representation, it can be shown that, at 
the stage at which the operators S + and S - are excluded 
from the initial mean, we obtain a result identical with that 
obtained in the technique described in Refs. 4-6. This is due 
to the fact that, during the first stage, one uses only for 3 **' 
commutation relations that are identical with the commuta- 
tion relations for S* J ,  and the time dependence of S* *' (T) 

and$* *' (T) also turns out to be the same. The presence of the 
projection operator in (3) is unimportant because it com- 
mutes with S* .'. Since the operators S; are self-adjoint, we 
arrive at the following important conclusion: the non-Her- 
mitian property of (1) has no ifluence on the evaluated corre- 
lation functions. 

Let us now consider the mean of the product of an arbi- 
trary number of & operators. Since this product can be ob- 
tained in a standard manner by differentiating the partition 
function 

z=n l z l ,  z i = S p  e x p  {pyoS:+ inb,+ b , )  . 
It will be sufficient to confine our attention to the evaluation 
of Z, . In the basis defined by (2), we have 

00 OD 

n=O 

It is clear from (7) that the operator F, is, in fact, a projection 
operator. Thus, the results obtained for the mean of an arbi- 
trary power of 3; are exactly the same as in Refs. 4-6. 

Consider the functions 

G t 2  ( z t - z2)  = < P  T,at  ( z , )  a,+ ( z z )  )% , (8) 
Pi, (zl-72) = < P  T%bl ( z l )  b2+ ( z 2 )  )% . (9) 

When the means of only the operators a,+ ,a, are evaluated, 
the projection operator need not be taken into account be- 
cause it commutes with them. For the Green function (8) 
with 2 = 2, (61, we obtain 

where S,, is the Kronecker symbol in the site indices and 
n, = [exppy, - 11-'. This expression is identical with the 
elementary spin Green function K y, (7, - r2). 

When &' = Po, the Green function (9) is given by 
nIo, ~ t < z ~  

F t 2  ( T ~ - T ~ )  =6t2  exp  {-zo (z1-. t2)  1 
I n ,  T (I1) 

352 Sov. Phys. JETP 58 (2), August 1983 Bar'yakhtar etal. 352 



where n,,, = [exp fix, - 11 - I .  Becyse of the presence of the 
projection operator i,, the mean (PI  bl + bl ), is determined 
not by the Fermi but by the Bose distribution function. This 
is a consequence of the fact that the projection operator in- 
fluences the analytic properties of Green's function (9). It 
may be shown that the latter satisfies Bose-type parity condi- 
tion 

Ftl* (260) =+Ftl. ( ~ + p ) .  (12) 

We also note that 

Fi~p(.t.) =Gn.F(z). (13) 
This important property is connected with the fact that the 
spin operators (1) contain Fermi operators only in the combi- 
nation b +b. None of the spin Hamiltonians will therefore 
have matrix elements describing the transitions of a fermion 
from one site to another. 

The representartion given by (1) will thus enable us to 
evaluate any spin correlation functions by standard diagram 
techniques for interacting Bose and Fermi particles. Actual- 
ly, the resulting diagram technique is equivalent to that for 
interacting boson fields. The only outstanding feature is 
that, with each closed loop on the F,. (7) lines, we must asso- 
ciate the additional factor ( - 1) (this is a consequence of the 
anticommuting property of the operators b + and b ). The 
formalism developed in this paper leads to a rigorous solu- 
tion of the problem of summation over physical states and, 
consequently, to a description of the spin system in the entire 
range of temperatures. 

3. DYNAMIC AND KINEMATIC IN1 ERACTION BETWEEN SPIN 
WAVES IN THE HEISENBERG FERROMAGNET 

Complete information on magnon interactions can be 
obtained by evaluating Green's function 

Glz (zl-zz) =(P T,a, (z,)az+(zz) ). (14) 

Consider the Heisenberg ferromagnet with 

where J,,. is the exchange interaction between the spins on 
sites 1 and 1'. Substituting (1) in the Hamiltonian, we obtain1' 

&r=ghH+S(Jo-Ik), I= (2S+l) (gpBH+SJo), (15) 

where Jk ,ak ,  bk are the Fourier components of the exchange 
integral and, correspondingly, of the operators a,, b, . 

The Hamiltonian given by (6), used to derive the result 
in the last section, differs from (15) in that the latter includes 
all quadratic terms in the operators that are due to the ex- 
change interaction. This regrouping within the Hamiltonian 
means that lines corresponding to Green's functions 
G O(k,wn ) (10) and FO(k,wn ) (1 1) are dressed in diagrams ofthe 
form 

The way line in these diagrams represents the interac- 
tions PJ,.  We shall assume that this dressing has been car- 
ried out, and associate the function G O(k,wn ) = ( E ~  - iw, )-' 
with the solid line and FO(k,wn ) = (x - iw, )-' with the 
broken line, in accordance with the choice of Zo (1 5). 

It is clear from (1 5) that the energy of the fermions does 
not depend on the wave vector. This property remains in any 
order of perturbation theory and is connected with the con- 
dition given by (1 3). 

The interaction Hamiltonian is now given by 

+ ( ~ 3 ( 1 2 ; 3 4 ) b ~ + b ~ + b ~ b ~ ) A ( I + 2 - 3 - 4 ) ,  (16) 
where l=kl, 2=k,, and so on, and 

The first term in Xi,,, describes the dynamic interac- 
tion between magnons, and is identical with the Dyson scat- 
tering amplitude.' The second and third terms describe ef- 
fects connected with the finite dimensionality of physical 
space (according to Dyson, this is the kinematic interaction 
between magnons). Thus, in the representation defined by 
(I) ,  effects connected with the finite dimensionality of phys- 
ical space are transferred directly to the Hamiltonian and in 
the form of an addition to the dynamic interaction. 

We shall now use Dyson's equaton and express G in 
terms of the mass operator Z: 

The series for the mass operator can be represented graphi- 
cally in a standard fashion7 in terms of the complete Green 
functions (8) and (9) and the effective vertex parts, as shown 
in Fig. 1. This expression includes the Green function F (9), 
which we shall also write in terms of the mass operator 2,: 

F(k, on) = {x-%(k, on)  -ion)-i- (19) 
In its turn, 2, can be represented by the diagram series 
shown in Fig. 2. 

Let us first evaluate the contribution of the diagrams in 
Fig. 1 to 8, assuming that all the lines and vertices are ele- 
mentary. The first two graphs then describe the dynamic 
interaction between the magnons, and the last two the kine- 
matic interaction: 

Zd,, (k, on) =N-' (JoSYk+q-Jt-Jq) nq r, 

1 xkin (k, a,) =- (2S+l) (],-A) &- (2S+l) (l+nr)nrT 

We note that B (O,wn ) = 0, in accordance with the require- 
ment of the nonactivation nature of the spin-wave spectrum 
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FIG. 1. 

of the Heisenberg ferromagnet. 
The mass operator, evaluated with the Dyson scattering 

amplitude q, (12; 34), provides us with a precise description 
of the renormalization of the spinb-wave spectrukm and the 
attenuation of these waves when all thermodynamic means 
are evaluated in physical space. However, both physical and 
nonphysical states contribute to the evaluation o f 2  ,,, in the 
basis of the Bose operators. To obtain correct results, it is 
essential to exclude the contribution of nonphysical states 
form 2,,, . This exclusion procedure can be implemented 
because of the presence of 8,, in the mass operator 2. 

It is clear from (21) that 8,, contains real and imagi- 
nary parts that determine the kinematic frequency shift and 
the kinematic attenuation of magnons. To estimate the mag- 
nitude of this shift, let us take into account the temperature 
renormalization of x. The principal contribution at low tem- 
peratures is provided by diagram a of Fig. 2, namely. 

It is clear from (22) that essential renormalization ofx occurs 
for nq -S, i.e., for T/SJo-S, which corresponds to 
T-Tc-S2Jo. Consequently, when T4Tc, we have 
x(T)zx(O), and the formulas given by (20) and (21) provide 
the correct description of the principal contribution of the 
kinematic interction to the mass operator. This contribution 
turns out to be of the order of exp { - /3 (2S + 1 )SJo J , which 
is negligible in this temperature range. 

The kinematic contribution at T5: Tc can be estimated 
by using perturbation theoryk5 in the reciprocal interaction 
radius R ; '.. To classify the diagrams in accordance with 
this parameter, we must divide each sum over the momen- 
tum q into two intervals in the corresponding analytic ex- 
pressions: the first of these is q > qo - R ; ', for which we 
must set Jq -0 and E~ -y = gpBH + SJ,, and the second is 
q < q, for which Jq - Jo. In general, each diagram will then 
provide a contribution of different order. By performing se- 
lective summation, we can obtain the required quantity in 
any approximation. 

It is shown in Ref. 11 that the kinematic interaction 
becomes important for (5" )/S 5 T /S (2S + 1 )J,. If we take 
for the Curie temperature the value predicted by the moleu- 
clar field theory, namely, Tc = S(S + 1)Jd3 (which corre- 

Q FIG. 2. 

sponds to the leading approximation in R ; '), we obtain the 
following estimate: for S = 1/2 we have(F ) /SS 0.25, and 
for S = 5/2 we have (5" )/S 5 0.2. Consequently, the kine- 
matic interaction plays an important role in the interval 
0.75 - 0.8Tc 5: T<Tc. 

Let us now consider the mass operator in this tempera- 
ture range. In the leading approximation in R ; ', we have 

er-X(k,  an)  = g p e H + ( S )  ( l o - J k ) ,  

where 5" is given by the molecular filed equation. This result 
is identical with that reported in Ref. 5. The quantity 
2 (k,w, ) turns out to be real; the imaginary part appears in 
the mass operator only in the next order of perturbation the- 
ory. Retaining first-order terms in (20) and (21), we obtain 

Z"' (k ,  o,) = - { ( l + n v )  n,- ( 2 S + l )  (l+n,)n,)N-' 

The factor in braces in (23) is given by 

The expression (23) corresponds to the case where all 
the lines and vertices in the diagrams of Fig. 1 are assumed to 
be elementary. The results reported in Ref. 5 can be obtained 
be dressing one of the elementary vertices in the way indicat- 
ed in Fig. 3. The infinite diagram series shown in Fig. 3 also 
have first-order terms. When these are taken into ac- 
count,(23) assumes the form 

(Jk-q-Jq) (Jk-q-Jk) 2'" (k, a,) =-b'N-' 
( l -bJfi lk-q)  (eq-ian) - (24) 

Using (24), we obtain an explicit expression for the at- 
tentuationof the spin wiave: 

The attenuation described by this expression is proportional 
to the derivatives of the function b (py), and was referred to as 
"fluctuational" in Ref. 5.2' It is clear from the foregoing dis- 
cussion that the attenuation is due to the scattering of the 
spin wave by thermal magnons in the short-wave part of the 
spectrum, which was obtained with allowance for the kine- 
matic interaction. The attenuation of the spin waves was 
discussed in detail in Ref. 5 for T 5: Tc and small k. 

4. HIGH-FREQUENCY MAGNETIC SUSCEPTIBILITY TENSOR 
OF THE HEISENBERG FERROMAGNET 

Let us evaluate the spin Green function 

K+- (1-1'; 7 )  ='Iz( TrS,+ (T) $ 1 -  (0) ), (26) 
whose Fourier transform is known to be equal (apart from a 

FIG. 3. 
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constant factor) to the component X + - ( k , ~ )  of the high- 
frequency magnetic susceptibility tensor. In the representa- 
tion defined by (1), we have 

K+- (1-1'; T) =S(P T,ar(~)al,+ (0) > 
-'I,<P FTal(.c)al*+ (0) all+ (0) a,. (0) > 

- (2Sf 1) < P T,al (T) alp+ (0) bl.+ (0) b,, (0) ) . (27) 

Consequently, we have reduced the evaluation (26) to the 
evaluation of the single-particle Green function G ,,. (r)  (14) 
and two two-particle Green functions 

G:.' (T) =-1/2<PT (z) a,,+ (0) al,+ (0) al1 (0) >, 

$l:?(~) =- ( 2 ~ + l )  (PP,UI (T )~ I#+(O)  b1,+(0) b11 (O)>. 

(28) 
Dzyalo~hinskii'~ has developed the diagram technique for 
many-particle Green functions of this type. For the func- 
tions given by (28), the diagram series can be written in the 
following effective graphical form: 

New elements have been introduced in (29), namely, the ver- 
tices 

with which we must associate ( - 1) and [ - (2s + I)], re- 
spectively. Their origin is connected with the presence of 
three operators referring to the same instant of time in the 
two-particle functions (28). It follows from (29) that 

*---. 
+Q+w}. i (30) 

The first three terms in (30) correspond to ( S  ). Taking the 
Fourier transform of (30), and representing the Fourier 
transform of the last two terms in braces by A ( k , ~ ,  ), we 
obtain 

<*)+A (k, on)  
K+- (k, on) = 

ek-2(k, on) -io, ' 

In deriving this expression, we used equation (18) for 
G(k,o, ). It is clear from (31) that the quantitty 
( S  ) + A ( k , ~ ,  ) is the residue or the oscillator strength. We 
shall refer to it as the strength operator. Equation (3 1) estab- 
lishes the relation between the spin Green function 
K ' - (k ,~ ,  ) and its strength and mass operators. We note 
that an expression for K + - ( k , ~ ,  ) that was of this type and 
was valid at low tempekatures was first obtained in Ref. 13 
with the Dyson-Maleev 

Using the properties of the interaction amplitude, it can 
be shown that A (O,w,) = 0. Hence, it follows that 
K + -(O,w, ) = (S )(E, - w - is)-', which is identical with 
the exact result for X+ -(O,o). 

It is clear from (3 1) that the mass operator of the spin 
Green function is identical with the mass operator of the 

single-particle Bose Green function (14). Its evaluation was 
discussed in the last section. Let us consider the strength 
operator and evaluate A ( k , ~ ,  ). Suppose that the diagrams 
for A ( k , ~ ,  ) in (29) have been constructed from elementary 
vertices and zero-order Green functions. Simple calcula- 
tions then yield 

A (k, on) =- - (l~-p+l~-q-lp-~q) N2 

I 

The first term in (32) is due to the dynamic interaction 
between the magnon and the second is due to kinematic in- 
teractions. As in the case of the mass operator, the role of the 
kinematic term reduces to the exclusion of the contribution 
due to nonphysical states. 

Let us now investigate different limiting cases of (32). 
When T(SJo the contribution of the kinematic term is ex- 
ponentially small and is of the order of 
exp( - 0 (2s  + l w ) ,  so that it can be neglected. We pres- 
ent explicit expressions forA " (k,w) = Im A ( k , ~ )  as functions 
of temperature and wave vector. We examine the region of 
wve vectors and fields for which Jk = JO[l - v(ak)2], 
E~ zSJov(ak )2. The result for E, ( T  is 

where 

When T e k ,  we have 

It is shown in Ref. 5 that, in the case of high spin for 
which S% 1, there is one further characteristic temperature 
interval, namely, SJo(T(S2Jo. In accordance with the esti- 
mates given in Ref. 11, the contribution of the kinematic 
term can, as before be neglected in this temperature interval, 
and we have 

eiT2 
A" (k, en) = 

2'n'S (Slav) 1 2  (po/k), 

wherep, is the momentum on the boundary of the Brillouin 
zone and 

I, (1) -0.084; 1, (5) -0.232; 1, (8) =0.236. 

The temperature behavior of the real part of the 
strength operator for T<SJ,,S 2Jo is determined by (S  2, in 
the leading approximation. 

It is clear from (32) that the strength boundary of the 
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spin Green function K +-(k,o) contains real and imaginary 
parts, both of which depend on w and k. Let us consider the 
influence of this structure of the numerator K + -(k,w) on the 
behavior of ImK+-(k,w) and Re K +-(k,w) as functions of 
w. In accordance with (31), we have 

( ( S ' > + A t ' )  y r  +! A t r ' ( € r - a )  
K" (k, O )  = 

( T ~ - o )  2 + y r 2  ( e r - ~ ) ~ + y r ~  ' (36) 

where 

F r = e r - R e  Z(k, e k ) ,  y r = I m  Z (k, e k )  
are, respectively, the energy and attenuation of the spin 
waves at the given temperature, and 
A; = A  ' ( k , ~ ~ ) ,  A I = A  " ( k , ~ ~ ) .  We shall use the values of 
B (k,o) and A(k,u) for w = E, , since we shall be interested in 
the shape of the curves corresponding to (36) and (37) near 
resonance. 

Consider the shape of the curve representing K "(k,w) as 
a function of w. It has a maximum at 

o = ~ k + y k A , " / 2 ( S ' ) .  

Since, at low temperatures, 

1 O A r 1 ' - y k e e k ,  

the position of the maximum of K " ( k , ~ )  departs from w = Ek 
by an amount of the second order of small quantitites in the 
parameter yk / E ~ .  It is readily seen that, in the leading ap- 
proximation in this parameter, the half-width of the curve is 
y, , and the shape is that of a Lorentzian. However, even for 
E, > I;, - 0 1  >yk , the presence of the second term in (36) 
ensures that the shape of the wings of the K "(k,w) curve is 
asymmetric relative to the position of the maximum. 

An increase in the temperature is accompanied by an 
increase in y, and A ;,A ;, whereas (S) decreases. For 
T' 5 T, and large enough k, the shape of the line K "(k,w) is 
appreciably non-Lorentzian and asymmetric even for 
IE, - W I  5 y k .  

Consider the real part of X+-(k,w). The curve repre- 
senting K '(k,w) as a function of w has a maximum at that 
point 

O = P k - y k - y k A k " / ( S ' >  

and a minimum at 

~ = G + ' f h - y d / / ( ~ > .  
At low temperatures, the halfwidth of the curve in the lead- 
ing approximation in yk /&, is equal to w, and the shape of 
the line is Lorentzian. However, the wings of the curve are 

asymmetric relative to the position of the maximum and 
minimum. As the temperature increases, and when k is not 
too low, the shape of the K '(k,w) curve becomes essentially 
non-Lorentzian even for IE, - w I 5; yk . 

Neutron scattering is an effective method for the experi- 
mental investigation of the dependence of the spin correla- 
tion functions on k and w. The shape of the peaks on the 
energy distribution of inelastically scattered neutrons is de- 
termined by the imaginary part of the tensor X+ -(k,w) and, 
according to (36), should be non-Lorentzian. The non-Lor- 
entzian shape of the peak corresponding to the magnetic 
scattering of neutrons by EuO and EuS was observed in Ref. 
14 and, apparently, in Refs. 15 and 16. 

The authors are indebted to A. M. Grishin and V. A. 
L'vov for useful discussions, and to S. M. Ore1 for assistance 
in numerical calculations. 

"We have omitted the tilde from the Hamiltonian because this should not 
lead to any misunderstanding. 
"The expression given by (25) is identical with the corresponding expres- 
sion in Ref. 5 only for o = E, . The reasons for this discrepancy are ex- 
plained in Ref. 11. 
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