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The transition to an incommensurate phase on an elastic substrate at finite temperature is investi- 
gated. Allowance for thermal fluctuations reduces to a study of the ground state of the corre- 
sponding quantum problem that describes the behavior of solitons in an external field. This makes 
it possible to determine the behavior of the correlation function of a system of adsorbed atoms. 

PACS numbers: 68.45.Da, 68.40. + e, 82.65.D~ 

In view of improved experimental facilities, interest has 
increased recently in two-dimensional crystal systems, par- 
ticularly those adsorbed on sufficiently perfect crystalline 
surfaces. ' 

In many cases the observed adsorbed-atom crystalline 
phases were not commensurate with the substrate (examples 
are Cs layers on molybdenum and tungsten, Kr and Xe on 
graphite, and others). The phase transition into an incom- 
mensurate state is the subject of a large number of theoretical 
papers (see, e.g., Ref. 2 and the bibliography therein). As a 
rule, simplest models were considered in whic the substrate 
was assumed to be ideal and strictly periodic. Such models, 
however, do not describe adequately the real situation in all 
cases. For a correct description of the transition into an in- 
commensurate phase it is frequently important to take into 
account the finite elasticity of the substrate. The effect of 
substrate elasticity on the behavior of adatoms in the ground 
state is the subject of Refs. 3-5. In a preceding paper6 I con- 
sidered the commensurate-to-incommensurate crystal 
phase transition on an elastic substrate for the one-dimen- 
sional quantum problem. Another formulation of the same 
problem is that of an incommensurate two-dimensional sys- 
tem at finite temperature. 

The present paper deals with the behavior of a two- 
dimensional system on an elastic substrate at nonzero tem- 
perature. Study of the statistical properties of the system by 
the transfer-matrix method reduces to finding the ground 
state of a one-dimensional quantum system. It is shown here 
that the system is unstable to the onset of long-wave periodic 
displacements of the substate atom. This leads to the appear- 
ance of a gap in the spectrum of the single-particle excita- 
tions of the quantum system. There occur in the system, 
however, also collective excitations of the charge-density 
wave, and these duplicate, at large distances, the power-law 
behavior of the adatom-system correlation function, a be- 
havior peculiar to inelastic substrates. 

In the study of two-dimensional systems it is simplest to 
consider a situation in which the film atoms are adsorbed on 
crystal faces with a furrowed potential relief of the W(112) 
type. The adsorbates can be alkali (Li, Na, K, Cs), alkaline- 
earth (Ba, Sr), and rare-earth (La) elements. The substrates 
can be W(112), Mo(112) or Ni(ll0) faces. The symmetries of 
these structures can differ.',' We consider the simplest case 
of a rectangular unit cell near a point at which the basic 
periods of the film and the substrate coincide. Compression 
(or dilatation) of such a structure with increasing (decreas- 

ing) degree of coverage takes place along the furrows of the 
potential relief. Such a system can be described by a model in 
which only displacements along the compression direction 
are ~onsidered.~ In the case of a primitive unit cell, we write 
the adatom energy in the form 

(1) 
where x = nu, a and b are the respective periods of the film 
and the substrate, and u(x, y) = u, ( y) is the displacement of 
the adatoms along the furrows. We assume here that the x 
axis is along the furrows and y is perpendicular. 

The substitution 2 ~ ( n a  + u, )/b = q,, and renormal- 
ization of the quantities x, y, and q, yields for U / T  (Tis the 
system temperature) 

U 1 a9 = 
-=- T 2  ~ & d y  [(g); (G) f l c o s B I - h -  

TZ % 'I. V a-b 
B = ( - ) ,  h = 2 6 ( $ - )  , y = ~ ,  6 - -  b . (3) 

CIY 

We investigate the statistical properties of the system at 
finite temperature by studying, using the transition-matrix 
method9 the ground state of a one-dimensional quantum sys- 
tem described by the Hamiltonian": 

where T(X) is the field momentum conjugate to the field q, (x). 
We take the substrate elasticity into account by assum- 

ing that long-wave displacements of the atoms were pro- 
duced in the system. We note directly that account need be 
taken only of the projections of the displacements w(x, y) on 
thex axis (i.e., along the furrows). Displacements of the sub- 
strate atoms in the perpendicular direction lead to a like 
displacement of the adatoms (deep potential relief in this 
direction) that is negligibly small, by virtue of the rigidity of 
the substrate, compared with the "resonant" displacement 
of the adatoms in the x direction. 

In expression (1) for the energy, the term that describes 
the interaction of the adatoms with the substrate should be 
rewritten in the form 

v cos [$ ( M + ~ . - I U ~ ( . ~  I , 
where w,(,, is the displacement of the substrate upper-layer 
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atom m closest to the adatom numbered n (see Ref. 3 for 
details). 

We illustrate first how instability to formation of long- 
wave displacements in the elastic substrate appears in the 
system. To this end we assume that a long displacement 
wave was produced in the substrate in the x direction: 

w (x, y) =A sin ax, a<l. 

We assume here that the rigidity of the substrate is very high 
(xw2>T), so that the fluctuations of the atom displacements 
w can be disregarded. The Hamiltonian (4) is then trans- 
formed into 

1 
R = - J [nz (x) + (2- h+hl cos a x  +I cos Pep dx. (6) 

2 I 
The behavior of a one-dimensional quantum system 

with such a Hamiltonian in the vicinity of the value of the 
parameter /.3 = 477 was investigated in Ref. 6 and is briefly 
restated here. 

The classical ground state of an incommensurate phase 
can be treated as statistical periodically repeating solitions. 
At nonzero temperature the solitons begin to bend. In a one- 
dimensional quantum problem the solitons can be regarded 
as particles that obey Fermi statistics. The transformation to 
the solition representation is by constructing the fermion 
operators1': 

In thecasefl = 477, i.e., at a fixed value T = 477( ,uv)' /~ of the 
temperature, the solitons do not interact with one another. 
The incommensurability h plays the role of the chemical po- 
tential of these particles: f = h /fl. When f exceeds the size rn 
of the gap, particles begin to predominate over antiparticles 
in the soliton spectrum, meaning a transition to the incom- 
mensurate phase.I2 The term proportional to h, in the Ha- 
miltonian (6) leads to the appearance in the soliton system of 
an external periodic field that produces a gap in the soliton 
spectrum. Let h = h, > mfl. We denote the solition momen- 
tum corresponding to this energy in the spectrum by 
pF = (f - m2)lI2. A Peierls instability appears in the spec- 
trum: conditions become favorable for a displacement wave 
w(x, y) = A  sinax with wave vector a = 2pF modulated in 
thex direction to appear in the system. This produces in the 
soliton system afield witha wave vector 2pF = 2(5 - rn2)ll2 
and this in turn leads to formation in the spectrum of a gap in 
the spectrum at p =pF, and the process becomes energeti- 
cally preferred. We have thus shown that the system is unsta- 
ble to formation, in an elastic substrate, of a deformation 
wave modulated in the x direction and having a wave vector 
2p, = (S2 - rn2)'I2, withf = 25(,uv)'12~and I f  - ml(1 at 
a value T =  4 7 7 ( , ~ v ) ~ / ~ .  The solition spectrum is then sepa- 
rated from the ground state by a gap. 

To study the correlation properties of adatoms in such a 
system it is necessary to solve the problem more systemati- 
cally by considering the long-wave displacements in the sub- 
strate. This makes it necessary to consider in the fermion 
problem not only static external fields but also time-depen- 
dent ones. 

We shall assume that the upper layer of the substrate 
interacts with the adsorbed film more strongly than with the 
remaining layers, so that the latter interaction can be ne- 
glected. An equivalent situation (wherein the substrate is 
simulated by a single layer) arises in the case of a very thin 
substrate. The qualitative result obtained under these as- 
sumptions is generalized to the case of a substrate of arbi- 
trary thickness. 

We shall find it convenient to introduce in place of the 
Hamiltonian (4) the Lagrangian of the system in the form 

(7) 
where w, = w/P. By an obvious change of variables this 
expression can be rewritten in the form 

Transforming to the fermion representation, we obtain for 
the solitons the Lagrangian 

which describes a fermion system of relativistic solitions in 
an external one-dimensional "electromagnetic" field. As be- 
fore, we assume here that p = 477, which corresponds to 
g = 0. 

We carry out the gauge transformation 

Y (x) -t Y' (x) =eif (") 'u (x), 

where 
2 awl Ao=---.  2 aw, A1=--- .  
B ax ' p at' 

After choosing the appropriate gauge we obtain then an 
expression containing only one vector-potential component: 

where 

We discuss now the conditions imposed on the soliton 
system by the closest-approach requirement, which we use 
from the very outset when writing the expressions for the 
adatom energy. The closest-approach condition is equiva- 
lent to the requirement du/dx(l, which by virtue of the 
relation (n) = ( P /2~)(2q,  /ax), which relates the solition 
density to the phase gradient, is equivalent to the require- 
ment that (n) be small. It is easy to show that this condition 
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is valid when the relation I <  - m 14 1 holds, where < = h /p, 
this condition is equivalent to the requirement p i 4 1  (p, is 
the solition momentum corresponding to the energy <, i.e., 
the maximum solition momentum). In the case when the 
substrate potential relief is not very small, so that m - 1, we 
obtainp, (m, meaning that the fermion system is nonrelati- 
vistic. To describe the behavior of the solitions in the consid- 
ered region of the transition into the incommensurate phase 
we can therefore use the Schrodinger equation in place of the 
relativistic Dirac equation. For our case it takes the form 

where e, = (P, + %)/n, !PI z !P2 . If the potential relief of 
the substrate is small, so that m(1, the nonrelativistic ap- 
proximation is valid in a narrower region of the phase transi- 
tion than called for by the continuity condition. 

Thus, the behavior of the adatoms on an elastic sub- 
strate is described in the considered vicinity by the Schro- 
dinger equation for nonrelativistic solitions in the "deforma- 
tion potential" U (x, t ). 

To take into acount the thermodynamic fluctuations of 
the substrate-atoms displacement field (fluctuations neglect- 
ed up to now), it is necessary to quantize the deformation 
potential U(x, t ) in the fermion problem. The energy con- 
nected with the substrate deformation is quadratic in the 
field w(x, y), meaning also in v(x, y), the latter connected with 
U (x, t ) by the relation &(x, t )/ax = U (x, t ). Consequently, 
after expanding the field v(x, t ) in plane waves, the Hamil- 
tonian of the "phonon" field of the substrate takes the stan- 
dard form 

0 

and the total Hamiltonian of the system of nonrelativistic 
fermions interacting with the phonons takes in the second- 
quantization representation the form of the Frolich Hamil- 
tonian 

At small q the quantity g, is also small by virtue of its pro- 
portionality to q. We shall hereafter neglect the dependence 
of gq on q and regard it to be a small consant equal to gQ , 
since all the expressions used will contain the quantity gq 
and q close or equal to A. The perturbation-theory expansion 
will be in powers of this constant. 

The spectrum of the single-particle excitations of such 
an "electronic" system is separated, owing to the interaction 
with the phonons, by a gap from the ground state. We shall 
see below, however, that this does not lead to an exponential 
decrease of the correlation function with distance, since 
there exist in the system collective excitations due to the 
onset of a charge-density wave with wave vector Q = 2p, . I 3  

In the calculation of the correlation function, the contribu- 
tion that determines its behavior comes from the collective 
mode. 

The correlation function 

X(X-XI) =(exp [ik(n(x) -u(x') 1 ), 
in which the averaging is over the thermodynamic fluctu- 
ations of the system and k is the basis reciprocal-lattice vec- 
tor along the x axis, in view of the fact that 

exp [iku (x) ] =exp (-i2n6) exp (ifiq) 

=exp (-i2n8x) (Y,+Y,) 2na, 

can be written in the form 

X(x-x') =<Yi+(x) Yz(x) Y,+(xf) Yi (x') >. (14) 
Instead of averaging over the thermal fluctuations we take 
here the vacuum mean in the fermion system. 

In the nonrelativistic approximation used by us, we cal- 
culate this mean value by a formalism developed in Ref. 14. 
Following this reference, we introduce the following elec- 
tron and phonon Green functions: 

G,, (k, t) =i<T(ct+,~,z(t) ck+:~/z(o) ) ), 

In the self-consistent approximation we have 

( 
G++ (k, o )  G+- (k, 
G-+ (k, o )  G-- (k, a) 1 

and the rule of bypassing the poles is specified in the usual 
manner: a positive pole is bypassed in the upper half-plane, 
and a negative in the lower. 

A* (q, W) ='/=(D++(Q, a )*  D+- (q, a )  ) 

= (1-mlm') / ( ~ , ~ - o ~ ) ,  (16) 

where 

The contribution of the collective mode to the correlation 
function is graphically represented by the two diagrams in 
the figure and leads to a power-law decrease of +he correla- 
tion function at large distances. In fact, the sum of these two 
diagrams is described by the expression 

FIG. 1. 
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X G++ ( p ,  E) G+- (p-q, E - v )  d~ d e  dk dp .  (17) 

Substituting here the value A-(q,v)  = $(D+ + - D+ - )  from 
(16), we easily find the asymptotic behavior of the Fourier 
transform of this expression at large distances. As a result we 
obtain 

i.e., at large distances the correlation function of the ad- 
atoms decreases in power-law fashion. 

Our calculations can thus be ended by the deduction 
that allowance for the finite elasticity of the substrate does 
not change qualitatively the correlation properties of the 
atoms adsorbed on it. 

The author thanks L. A. Bol'shov for a helpful discus- 
sion, as well as M. V. Feigel'man for valuable remarks. 

'L. A. Bol'shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fe- 
dorus, Usp. Fiz. Nauk 122,125 (1977) [Sov. Phys. Usp. 20,432 (1977)l. 

2V. L. Pokrovskiiand A. L. Talapov, Zh. Eksp. Teor. Fiz. 78,269 (1980) 
[Sov. Phys. JETP 51, 134 (1980)l. 

3L. A. Bol'shov, M. S. Veshchunov, and A. M. Dykhne, ibid. 80, 1997 
(1981) [53, 1038 (1981)l. 

41. F. Lyuksyutov, ibid. 82, 1267 (1982) [55, 737 (1982)l. 
5A. L. Talapov, ibid. 83,442 (1982) [56, 241 (1982)l. 
6M. S. Veshchunov, Fiz. Tverd. Tela (Leningrad) 23, 1207 (1981) [Sov. 
Phys. Solid State 23,708 (1981)l. 

'R. L. Gerlach and T. N. Rhodin, Surf. Sci. 17, 32 (1969). 
'V. K. Medvedev and A. I. Yakivchuk, Fiz. Tverd. Tela (Leningrad) 16, 
981 (1974) [Sov. Phys. Solid State 16,634 (1974)l. 

9D. J. Scalapino, M. Sears, and R. A. Ferrel, Phys. Rev. B6,3409 (1972). 
'OH. J. Schulz, Phys. Rev. B22, 5274 (1980). 
"S. Mandelstam, Phys. Rev. D11, 3026 (1975). 
'*A. Luther, J. Timonen, and V. L. Pocrovsky, Nordita Preprint 79/30, 

1979. 
"H. Frolich, Proc. Roy. Soc. A223, 296 (1954). 
I4P. A. Lee, T. M. Rice, and P. W. Anderson, Sol. St. Commun. 14, 703 

(1974). 

Translated by J. G. Adashko 

344 Sov. Phys. JETP 58 (2). August 1983 M. S. Veshchunov 344 




