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The exact correspondence (isomorphism) between certain problems of the theory of transport 
phenomena in two-component media is discussed. Exact relations are established between the 
effective characteristics of the isomorphic problems. Such relations allow us to express the ther- 
moelectric properties of a two-component (two- or three-dimensional) medium in terms of the 
solution to the standard electrical-conductivity problem for the medium. Similarly, the galvano- 
magnetic properties of an arbitrary two-dimensional two-component system can be expressed in 
terms of the conductivity of the medium in zero magnetic field. One of the critical exponents of the 
effective Hall coefficient is determined in the three-dimensional case. The isomorphism of two 
models of the anisotropic percolation theory is established. 
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1. INTRODUCTION 

The theoretical investigation of the various properties 
of inhomogeneous media is of considerable interest. But 
even the investigation of the "simplest" problem of percola- 
tion theory-the problem of the conductivity of two-compo- 
nent disordered systems-meets with fundamental difficul- 
ties, which have not been overcome up to now. It is natural 
that the difficulties increase when we go on to consider more 
complicated problems, e.g., the problems of the galvano- 
magnetic, thermoelectric, etc., effects. Therefore, there is a 
paucity of analytic results in the theory of transport pro- 
cesses in disordered media. Somewhat more favorable in this 
respect is the situation in the two-dimensional case, where 
certain problems for isotropic two-component randomly-in- 
homogeneous systems have been solved: the electrical con- 
ductivity,' the galvanomagnetic properties in a transverse 
magnetic field2 (see also Ref. 3), and the thermoelectric prop- 
erties4 for different concentrations of the components. These 
are virtually all the exact analytic results that have been ob- 
tained for disordered media. 

A central position in percolation theory is occupied by 
the scaling law hypothesis,5-6 within the framework of which 
important physical ideas have been formulated and a num- 
ber of valuable results have been obtained. At the same time 
the applicability of this hypothesis is limited to systems that 
undergo the metal-insulator phase transition in the critical 
region. But even here the scaling hypothesis actually pro- 
vides only a qualitative description of the phenomena, lead- 
ing only to relations between the critical 
Therefore, to carry out a quantitative study of the properties 
of disordered media, we must resort to numerical and simu- 
lation experiments, which are fairly laborious even for the 
simplest problems. 

In view of all that has been said, every kind of exact 
relation that can be established among the effective charac- 
teristics of inhomogeneous media is of particular importance 
in percolation theory. As examples of such relations in the 
two-dimensional case, we can cite various reciprocity rela- 
t ion~, '~ . '  as well a Dykhne's general relation (see Refs. 2, 3, 
and'' 8) in the problem of the galvanomagnetic effects. In all 
these cases the relations are established among the effective 

characteristics of the systems within the framework of one 
and the same problem, which allows us to obtain a number of 
exact results and  relation^.'^. 7-9 Of greatest interest, how- 
ever, are the cases in which it is possible to establish an exact 
one-to-one correspondence, called below isomorphism, 
between problems of different physical natures. 

In the present paper we discuss the isomorphism of cer- 
tain problems of the theory of transport phenomena in two- 
component media. The existence of a one-to-one correspon- 
dence between any two problems is due to the presence of a 
nonsingular symmetry transformation that converts one 
problem into the other. The isomorphism enables us to de- 
rive exact relations (isomorphism relations) among the effec- 
tive characteristics of these problems, which allows us to 
obtain results that are more interesting than those obtaina- 
ble from the reciprocity relations. The isomorphism rela- 
tions do not eliminate the fundamental difficulties, but re- 
duce the original problem to a simpler problem or to one that 
has been studied in greater detail. Furthermore, it is possible 
to establish among the various effective characteristics per- 
taining to one problem relations (of the type of Dykhne's 
general relation) that do not depend on the specific structure 
of the system. 

In Sec. 2 we find a symmetry transformation that allows 
us to reduce the problem of the thermoelectric properties of 
an isotropic two-component (two- or three-dimensional) sys- 
tem to the problem of the electrical conductivity of a system 
of the same structure. The effective thermoelectric charac- 
teristics are expressed in terms of the properties of the com- 
ponents and a function f describing the electrical conductiv- 
ity of the original system without allowarce for the 
thermoelectric effects. The general formulas obtained allow 
us to fully consider the critical behavior of the thermoelec- 
tric coefficients within the framework of the scaling law hy- 
po thes i~~ .~ ;  no new critical exponents arise in the problem. 

Using the symmetry transformation proposed by 
Dykhne,' we establish in Sec. 3 an isomorphism between the 
problem of the galvanomagnetic properties in a transverse 
magnetic field H and the problem of the electrical conduc- 
tivity in H = 0 for the case of arbitrary two-dimensional an- 
isotropic two-component systems. (A similar correspon- 
dence is established by another method in Ref. 8 for the 
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isotropic case.) The components of the effective conductivity 
tensor be are expressed in terms of the properties of the indi- 
vidual components and the two fundamental functions of the 
two-dimensional anisotropic percolation theory (see, for ex- 
ample, Ref. 7). We obtain an anisotropic analogue of 
Dykhne's general relation. 

The general formulas for be allow us to solve the prob- 
lem of the conductivity of an isotropic two-component film 
in an oblique magnetic field H as well. As the intensity of H 
is increased, the smearing out region6 of such a system 
changes, in contrast to the case of the transverse magnetic 
field,' in a nonmonotonic fashion, which leads to quite a 
complicated dependence of be on H. It is sufficient to note 
that we can distinguish in the neighborhood of the critical 
point in the case when the parameters are connected by a 
certain relation eight magneticfield regions with different H 
dependences of be.,. Generally speaking, in the oblique mag- 
netic field case the conductivity behaves anomalously2 in 
two finite regions of H. 

The galvanomagnetic characteristics of a three-dimen- 
sional medium can be expressed in terms of its electrical con- 
ductivity in two cases: 1) when the medium contains perfect- 
ly conducting inclusions and 2) when the Hall component of 
the conductivity tensor of the medium does not depend on 
the coordinates (see Sec. 4). This, in particular, allows us to 
determine one of the critical exponents of the effective Hall 
constant. In Sec. 5 we establish an isomorphism between two 
models of the anisotropic percolation We also 
consider the connection between the problem of the permit- 
tivity of a system with metallic inclusions and the problem of 
the conductivity of a structurally identical system contain- 
ing perfectly conducting inclu~ions.~*l ' 
2. THERMOELECTRIC PROPERTIES 

2.1. The symmetry transformation 

The thermoelectric, thermal-diffusion, diffusional- 
electric, etc., effects12.13 are described by a set of fields E, 
and a set of current densities j, (a = 1, ..., n) satisfying the 
equations 

rot &=0, div j.=O. (1) 

For an isotropic medium in zero external magnetic field the 
linear relation between j, and Ea is given by "Ohm's law:" 

where the kinetic-coefficient matrix b in an inhomogeneous 
system depends on the coordinates. We assume the quanti- 
ties ja and E, to be conjugate quantities,14 SO that the matrix 
b is symmetric. l4 

Let us carry out a linear transformation of the fields and 
the currents: 

b b 

Let us assume that the matrices k and 2 do not depend on 
the coordinates and that they have inverses. The equations 
for tke currents and fields in the primed system have the 
form (I), (2) with the kinetic-coefficient matrix: 

8' ( r )  = P f 8  ( r )  a. (4) 

Let us require that the fields and currents in the primed sys- 
tem also be conjugate quantities. Then 

where the superscript T denotes transposition. The relation 
between the effective characteristics be and 6; in the original 
and primed systems, which coincides in form with (4), can be 
written with allowance for (5) in the form 

The formulas (3)-(6) establish a one-to-one correspondence 
between the original and the primed systems, and are valid 
for arbitrary isotropic media (both two- and three-dimen- 
sional ones), including those for which b depends continu- 
ously on the coordinates. 

Let us consider a two-component system for which the 
matrix 6 takes on constant values b(" and b(2' in the first and 
second components respectively. Then we obtain from (4) 
the two matrix equations 

A@ =iVAr, BR =fi8'. (7) 
In (7), in order to reduce the number of indices in the subsz- 
quent f$mulas,Te have inkroduced the notation: a(" =A, 
$2) = B, $')' = A  ', b(2)' = B '. Let us now require that the 
kinetic-coefficient matrix in the primed system be diagonal: 

Aosl=A.'Gos, Ba1=B.'8*, (8) 

so that the relation between j; and EL has the form of the 
conventional Ohm law: 

although the quantity u;(r) may not have the meaning of 
electrical conductivity. Let us define the aective character- 
istics of the primed system in the standard fashion: 

wherep is the concentration of the first component. Let us 
note that the function f @, A, ) in (10) is the same as in the 
problem of the electrical conductivity of a system with the 
same structure as the original system, and with components 
the ratio of whose conductivities is equal to A,. Thus, if the 
system of equations (7) with the conditions (8) possesses a 
solution, then the formulas (3)-(6) and (10) establish an exact 
correspondence (isomorphism) between the original prob- 
lem and the problem of the electrical conductivity of the 
system in question. 

In the practically interesting case of n = 2 the solution 
to Eqs. (S), (7), and (8) can be found in the explicit form. Let 
us set A;  =A,,, B ;  =RAll, A; =̂ A2,, and B; =PA,,. 
Then for the elements of the matrix N we obtain 

N,,=A;'[ (fl,,-~,,)/(~-~) 1%; 
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(21) can be obtained in the a i 4  case from the equations of 
the effective-medium t h e ~ r y . ~ . ' ~  We can verify by a direct 
substitution that, for arbitrary a i ,  the expressions (16) and 
(17) are a solution to the corresponding equations (see the 
formulas (26), (28), and (34) in Ref. 4) if the function f @, h )is 
also defined within the framework of the effective-medium 
theory (see, for example, the formula (5.7) in Ref. 16). 

2.3. The critical region 

If the conductivities of the components differ greatly 
from each other (i.e., if ff2(ff1), then a metal-insulator phase 
transition occurs in the system at p =p, @, is the critical 
c~ncentration).'~~" The general formulas (16) allow us to in- 
vestigate the behavior of the thermoelectric coefficient a, in 
the critical region. Let us, as in Ref. 15, consider the linear- 
in the a,-approximation and the case in which 024a, ,  
a,>a,, x2-x,. Then from (21) we have 

where fo = f @, a2/a,) and f, = f (p, x,/x,). 
When x,  -x,, the function f, - 1 for all concentrations. 

As to the function f, , it behaves in the critical region 171 4 1, 
h41, (T = @ -pc)/pc h = 02/a,) in the following manner6: 

Here A = h"* is the dimension of the smearing-out region6; 
the critical exponents t, s, and q are connected by the scaling- 
hypothesis relation6 q = t (1 - s)/s. 

If the inequalities (a2/a,)" (a2a2/a,a,(l are satisfied, 
then the thermoelectric coefficient a, varies appreciably in 
the critical region 171 4 1. From (22) and (23) we have 

Thus, the quantity a, increases sharply when we go from 
T>O t o ~ < O .  

The result (24a) is obtained in Ref. 15 (without any indi- 
cation of the exact condition for its applicability); in this 
concentration range the second component can be consid- 
ered to be nonconducting, so that, according to (19), a, =al .  
In the "dielectric" phase (T < 0), instead of (24d), the result 
a, -a,1~1 is obtained in Ref. 15 within the framework of the 
effective-medium theory. The value of a, used in Ref. 15 was 
also determined with the aid of a numerical experiment. It 
can be shown that the formulas (16) and (17) and, in conse- 
quence, (21), (22), and (24) are also valid for the lattice mod- 
els. The expressions (22) and (24) agree qualitatively with the 
numerical results reported in Ref. 15. Unfortunately, there 

are no data for a, and x, in Ref. 15, which makes the quanti- 
tative verification of the formulas (2 1) and (22) impossible. 

3. THE GALVANOMAGNETIC PROPERTIES. THE TWO- 
DIMENSIONAL CASE 

3.1. The symmetry transformation 

Let us consider an inhomogeneous anisotropic two-di- 
mensional system located in a transverse magnetic field H, 
and possessing a conductivity tensor B(r) having (in the prin- 
cipal axes) the form 

Here a, is the Hall component of the tensor q r ) .  In the 
general case the quantities a,, 6,, and a, and the directions 
of the principal axes are functions of the coordinates x and y. 
We assume that the third principal axis of the full conductiv- 
ity tensor is oriented along the normal to the plane of the 
system; this secures the two-dimensionality of the field and 
current distributions. 

Let us, following Dy khne,2 transform the electric field 
E and the current density j into the primed system: 

E=a(Er+b[n,x j'] ), j=a(cjf+d[n,~ E']), (26) 

where a, 6, c, and d are constant coefficients and n is the unit 
vector along the normal to the plane (x, y) of the system. The 
transformation (26) leaves the equations for the constant 
current unchanged; the conductivity tensor 6' in the primed 
system also has the form (25), with the components given by 

( c t b d )  
0,' (r) = (a=%, Y) ; [c- boo (r) 1 '+bZu.(r) 0. (r) - .  . 

[c-bua(r) I [d+o.(r) ]-bus&) a,(r) 
(27) 

u,,' (r)'= 
[c-bu,,(r) I'+b2u.(r)o,(r) 

Relations having exactly the same form are valid for the ef- 
fective characteristics a:, , a:, and a,, , a,, . Below we shall 
need the expressions for a,, and pa, in terms of a;, and a:, . 
Solving (27) for a,, a,, and a,, and making the substitutions 
B+ and 8'+B;, we obtain for the components of the effec- 
tive conductivity tensor Be the expressions 

(c+bd) a,.' 
Oae = (l+bu..') bzu,,'a,,' (a=x,  V) , 

(28) 

The expressions (26)-(28) give the exact relation between the 
original and primed systems, i.e., a relation which is valid for 
any dependence of B (and the directions of the principal axes) 
on the coordinates. 

For two-component isotropic (a, = a,) media, the rela- 
tions (27) and (28) allow us to obtain the fundamental results 
of Refs. 2,3, and 18. Thus, if as the primed system we choose 
the mutual system, i.e., the system obtained from the origi- 
nal system by interchanging the components (i.e., by making 
the interchange B 1 d 2 ,  where Bi is the conductivity tensor 
of the i-th component) and changing the sign of the magnetic 
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wherep andR (p >A > 0) are the roots of the quadratic equa- 
tion 

Since the fields and the currents have been chosen to be con- 
jugate quantities, the roots2f Eq. (12) are nonnegative, and 
the elements of the matrix N from (1 1) are real. 

The substitution of (1 1) into (6) with allowance for (10) 
(forA ; =All, A ; =A,,) allows to determine the effective 
kinetic-coefficient matrix =A, 6(,' = B ): 

a,= [ ( ~ u ( ~ ) - u ( ~ ) )  h+ ( ~ ( ~ ) - - a a ( ~ ) )  f,,] ( p-A) -'. (13) 

Here we have, for brevity, introduced the notation 

fr=f(p, n), L=~(P,  PI. (14) 

The functions f, and f, are determined, in accordance with 
(lo), in the following manner. Let us write the effective elec- 
trical conductivity 6, (without allowance for the thermo- 
electric effects) of the system under consideration in the form 
&e = al f (p, h ), where h = u2/u,, a, and a, being the con- 
ductivities of the first and second components, andp is the 
concentration of the first component. Then the functions f, 
and& are obtained from f (p, h ) by making the substitutions 
h+A and h--yl. 

2.2 The effective thermoelectric characteristics 

For the thermoelectric effects the kinetic-coefficient 
matrix of the i-th component has the form (see, for example, 
Ref. 4) 

Here a is the electrical conductivity, a is the thermoelectric 
coefficient, x is the thermal conductivity, and T is the tem- 
perature. From (13) and (15) we find the effective thermo- 
electric characteristics of the system 

a, = 
(wi-0,) fr- (b i -s )  fP 

P-A 
9 

where f, and f, are the same functions figuring in (14) andp 
and R are given by the expressions 

Notice that the formulas (16) are invariant under the inter- 
change p e  A, so that the quantities a,, a , ,  and x, do not 
depend on the choice of the signs in (17). We shall assume 
that R and p have been chosen such that R+u2/al and 
p+x2/xI as a i -4 .  

The expressions (16) are valid for both two- and three- 
dimensional isotropic two-component systems of arbitrary 

structure. All the information about the form and distribu- 
tion of the inclusions is contained in the function$ If, for any 
two-component system f = f (p, h ) is known for allp and h, 
then the formulas (16) give the complete solution to the prob- 
lem of the thermoelectric properties of such a system. Notice 
that the elimination of the functions f, and f, from (16) leads 
to a general relation connecting the quantities a,, a,, and 
x, , and not depending on the specific structure of the medi- 
um: 

We can judge the "degree of two-componentness" of real 
samples by the accuracy with which the relation (18) is satis- 
fied. The same remark applies to the formula (2 1) in the lin- 
ear-in ai -approximation. 

Let us consider some particular cases. If one of the com- 
ponents is a dielectric (i.e., if a, = O), then R = 0, p = x2/xl, 
and from (16) it follows (we assume that the concentrationp 
is higher than the critical concentrationp, , so that a, # 0) 
that 

u.=utf ( p ,  .O), ae=at, x,=xif (p, xalxt). (19) 

Thus, in accord with Ref. 15, when nonconducting impuri- 
ties are introduced into a medium, the thermoelectric coeffi- 
cient of the system does not change as the impurity concen- 
tration is raised right up to the percolation threshold. In the 
case when the thermoelectric coefficient does not depend on 
the coordinates i.e., (when a, = a, = a), we have R = a2/ul 
and p = x,/xl, and from (16) we find, in accord with the 
arguments adduced in Ref. 4, that 

Thus, for a, = a,, the thermoelectric effects do not give rise 
to corrections to a, and x, . 

For a two-dimensional randomly-inhomogeneous me- 
dium with the critical concentrationp = 4, exact expressions 
are found for a,, a,, and x, with the aid of the reciprocity 
relations in Ref. 4 (see also Ref. 3). The corresponding com- 
putations are quite tedious. Let us note that the same results 
can easily be obtained from the general formulas (16) if we 
take account ofthe fact that in this case f (1, h ) = h 'I2 ( ~ e f .  1). 
The substitution of the expressionsf, = R 'I2 and f, = p 'I2 

into (16) leads to the formulas (17)-(19) in Ref. 4. 
Usually, Tuia:/xi (1 (i = 1,2), and the influence of the 

thermoelectric effects on the quantities a, and x, is slight. It 
is not difficult to see from (15) and (17) that, for a i 4 ,  the 
corrections to a, and x, are quadratic in the ai . Therefore, 
in the linear-in ai -approximation we obtain from (16) the 
expression 

a, = a,o,x,-a2uzxi-oto, (at-az) - , "I (J. 

where a, and x, are the same quantities figuring in (20). 
Notice that this result for ai -4 also follows from (1 8). 

Let us note that a relation that coincides in form with 
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field, then from (27) and (28) we obtain the reciprocity rela- 
tions given in Refs. 2 and 3. But if as the primed system we 
take the initial system with the magnetic field reversed, then 
from (27) and (28) we obtain Dykhne's general relation2 (see 
also Refs. 3, 8, and 18). The relations (27) and (28) for 
a, # uy allow us to generalize the results of Refs. 2, 3, and 
18 to the anisotropic case. 

But we obtain the most interesting results from (27) and 
(28) if as the primed system we choose a system with a "natu- 
ral" anisotropy (i.e., a system with zero Hall components), 
whose conductivity tensor in the principal axes has the form 

As in Ref. 8, we shall call such a system the null system. The 
original and the null systems have the same structure, and 
the tensors &(r) from (25) and B'(r) from (29) have the same 
principal axes at every point. Thus, the null system is in fact 
the original system (in H = 0) with the conductivities of the 
components changed. 

Setting uLi = 0, = A,,, u;~ = Ayi (i = 1, 2) in (27), 
we obtain six equations, from which we determine the trans- 
formation coefficients b, c, and d and the three dimensionless 
parameters A,, /Ay, , A,, /Ay2, and A,, /Ayl of the null sys- 
tem. As a result, we obtain 

b=B/AUl, c= ( ~ s , ~ + o , ~ B ) / h , ~ ,  d=-oal+qslB, a= (c+bd)-"; 

where 

In (30) we have also given the coefficient a determined from 
the condition j*E = j1*E'. The parameter A is a root of the 
equation 

The sign in front of the second square bracket in (32) was 
chosen from the requirement that A ~ Y 2 / ~ y l  as u O i 4 ,  and 
corresponds to the case a,, uy, > ux,uy2. Thus, the expres- 
sions (25)-(32) establish an isomorphism between the prob- 
lems of the electrical conductivity and the galvanomagnetic 
properties of an arbitrary two-dimensional two-component 
system. 

3.2. The effective galvanomagnetlc characteristics 

The isomorphism established in the preceding subsec- 
tion allows us to express the galvanomagnetic characteris- 
tics of the system in question in terms of its electrical con- 
ductivity in zero magnetic field. Let us note for this purpose 
that the effective conductivity tensor 8: of the null (two- 
component) system depends on five parameters: p, the con- 
centration of the first component, and A,, , A,, , A,, , A,, . 
Let us introduce for a null system that as a whole is aniso- 
tropic two functions f, and fy according to the equations 

aa.'=Llfa ( p ;  Axl/hv~, hs2/51, hvz/Avi) 9 a=%, Y e  (34) 

The quantities f, andf, depend on four dimensionless argu- 
ments, and are the fundamental functions of two-dimension- 
al anisotropic percolation theory. Notice that reciprocity re- 
lations can be established for the functionsf, andf, (see Ref. 
7). 

Substituting the expressions (30)-(32) and (34) into (28), 
and using Eq. (33) to eliminate the quantity (a,, - u,,)~, we 
finally obtain for the components of the effective conductiv- 
ity tensor 8, the expressions 

oar=uaifa ( u ~ ~ ~ ~ ~ - A 2 ~ I ~ ~ Y l )  D-Lt ~7 

~ a s = ~ a t -  ( oa t -~a~)  A ~ r i ~ ~ t  (l-fsfU)D-', (35) - 

D=AoSioYt ( 4 - f s f u )  + ~ ~ t ~ ~ 2 f ~ f ~ - h ~ o ~ ~ o , ~ .  
We obtain, in accordance with the equations (31), the func- 
tionsf, andf, entering into the formulas (35) from the func- 
tions, defined in accordance with (34), for the null system by 
making the following change of arguments: 

b,i/h,i+ox,/o,t, h s 2 / h y t + A o s ~ / ~ ~ ,  hv~/hnt-th (36) 

with the parameterA from (32). The formulas (35), which are 
valid for arbitrary two-dimensional two-component sys- 
tems, solve the formulated problem. All the information 
about the specific structure of a particular system is con- 
tained in the functionsf, andf, . 

For isotropic media (axi = uyi, f = f, =A), the formu- 
las (35) coincide with the corresponding expressions (ob- 
tained by another method) in Ref. 8. In this case the main 
properties of the functionf, which depends on the two pa- 
rametersp and& are known, and this allows us to carry out a 
relatively complete analysis of the galvanomagnetic proper- 
ties of isotropic two-component  system^.^ But in the case of 
anisotropic media, to use the general formulas (35), we must 
know the many-parameter functions f, andf, , whose prop- 
erties are not studied in the usual percolation the~ry .~ ,~ . ' ~ . "  
Certain problems of two-dimensional anisotropic percola- 
tion theory are considered in Ref. 7, and this allows us to 
establish the form of these functions in a number of cases. At 
the same time, the problem of determining f, and& in the 
entire domain of variation of their arguments, even if an im- 
portant one, is quite complicated (but significantly simpler 
than the problem of the galvanomagnetic properties). 

According to (36) and (32), the arguments off, and& 
from (35) vary with varying H. Therefore, the general formu- 
las (35) in principle enable us to solve the inverse problem, 
i.e., to determine from galvanomagnetic measurements the 
fundamental functions f, andf, of two-dimensional aniso- 
tropic percolation theory, as well. In this case the two func- 
tionsf, andf, are expressed in terms of the three quantities 
u,,, uye, and a,, , so that the components of the effective 
conductivity tensor 8, are not independent of each other. 
Indeed the elimination off, and& from (35) leads to an 
anisotropic analogue of Dykhne's general  relation^,^*^.^ an 
analogue which does not depend on the specific structure of 
the systems under consideration: 

Pa,  -1d-oae-19=4,  
&=paipaz ( ~ ~ t - ~ ~ z )  / ( ~ a t ~ a z - ~ o t ~ a ~ )  9 (37) 
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Herep, is the off-diagonal component of the resistivity ten- 
sor (see (41)). The relation (37) (like (38) in the approximation 
linear in H) can be used to check the results of measure- 
ments, as well as to determine the "degree of two-compon- 
entness" of real inhomogeneous films. For H 4  we obtain 
for the effective Hall constant Re (R =pa  /H) from (35) or 
(37) the expression 

(38) 
where axe and a, are the principal values of the tensor ae 
for H = 0. The formula (38) generalizes the corresponding 
isotropic relation9*" to the case of an arbitrary anisotropic 
system. 

For a 2 4  we find from (32) that 

Substituting (39) into (35), we obtain for a system with dielec- 
tric inclusions (a2 = 0 and p >p, , where p, is the critical 
concentration) the expressions 

Here fad =fa@; a,, /a,,, 0, 0). The index d denotes di- 
electric inclusions (s denotes perfectly conducting inclu- 
sions). For the resistivity tensor elements 

@==CT,/ (w,,+o."), p U = d  (a+ov+02), p a = d  (~&u+o.L) 

(41) 
we obtain from (40) the following simple expressions: 

From (42) we conclude that the effective Hall constant 
Re =pa,/H for an anisotropic film with dielectric inclu- 
sions does not, as in the isotropic c a ~ e , ~ * ' ~ . ~  depend on the 
concentration of the nonconducting component right up to 
the metal-insulator transition point. 

If the inclusions are a perfectly conducting material 
(i.e., if (J,-+~o), then, using (36) and (39), we find from (35) 
that 

Here the functions f, have been introduced with the aid of 
the relation fa +Aa2 /Aa, ) X f, @, A, /Ay2 ) for /i ,-+ o~ . 

In form, the expressions (40), (42), and (43) seem to be an 
obvious generalization of the corresponding results of Refs. 
3 and 8 to the anisotropic case. It should, however, be noted 
that there is a significant difference between these two cases. 
In Refs. 3 and 8 the quantity fd (likef,) is a function of only 
the concentration p, so that the entire dependence of, for 
example,p~) on H is contained inp,, . But in the anisotropic 
case the quantitiesf,, and f,, depend not only onp, but also 
on the ratio a,, /a,,, which, generally speaking, is a function 
of H. 

3.3. The conductivity in an oblique magnetic field 

The general expressions (35) allow us to consider the 
problem of the galvanomagnetic properties of an isotropic 
two-component film in an oblique magnetic field H as well. 
In this case the conductivity exhibits both the features pecu- 
liar to isotropic systems in strong transverse magnetic 
fields2.' and the anomalies characteristic of extremely aniso- 
tropic media.7 

Let us orient they axis along the component of H in the 
plane (x,  y) of the system, and denote the angle between H 
and the z axis by 8. In this case the conductivity tensor has 
the form (25), with the elements 

where the subscript i (i = 1, 2) numbers the components. 
Here we have used the same model formulas that we used in 
Ref. 8 (cf. (44) for 8 = 0 with the formulas (12) in Ref. 8). In 
(44), a ,  a nipi is the conductivity of the i-th component for 
H = 0, ni and pi being the carrier concentration and mobil- 
ity respectively; the dimensionless quantity Pi ap ih .  The 
problem under consideration is a many-parameter one, so 
that there are a substantial number of different limiting 
cases. Below, for simplicity, we limit ourselves to the case of 
equal carrier mobilities, i.e., to the case in which 
p ~ = p z = p ,  orB1=Bz=B. 

Let the system under consideration be isotropic in 
H = 0. In order to use the general formulas (35), we must 
know the functionsf, a n d 6  for a two-dimensional medium 
with a geometrically isotropic distribution of the compo- 
nents and a coordinate-independent orientation of the prin- 
cipal axes of the tensor &. The conductivity of such systems is 
investigated in Ref. 7. As shown in Ref. 7, the properties of 
extremely anisotropic inhomogeneous media are distin- 
guished by their unusualness. Thus, the effective conductiv- 
ity varies appreciably even in the region of low inclusion 
concentrations.' Below we shall consider the critical region, 
where the properties of highly anisotropic systems are in 
many respects close to those of isotropic media.7 

Let us consider a null system whose components have 
markedly different conductivities (i.e., for which A, 4, ) in 
the critical region 171 41, where T is the same quantity as in 
(23). If the anisotropy is weak (i.e., if AXi --Ayi =;Ai), then 
f, =;f, =J where f is given by the expressions (23) with h 
replaced by A2//2, and with q = t, s = 4, and the sign of equa- 
lity in (23b). In the case when the components are highly 
anisotropic (i.e., when (A,, >{A,, , Ry2)>/2,)), the system 
as a whole is, according to Ref. 7, isotropic when 17.1 4 1 and 
(A,,/A,, )1'2< 1, and for the functions f, and f ,  defined in 
accordance with (34) we have 
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Here 

In the formulas (45a) and (45c) f,(r) and f,(r) are functions 
describing the conductivity of the isotropic system in the 
cases when it contains dielectric and perfectly conducting 
inclusions respectively, one being the reciprocal of the other, 
i.e., fJs = 1 (see, for example, Ref. 3). In the case when 
(Ay2/Ax1 )'12)1 the system as a whole is highly anisotropic, 
and the functionsf, andf, are given by the expressions (66) 
with h replaced by Ay2/il,, 

For A, - 1 the formulas (47) are, in order of magnitude, 
equal to (45b) 

We can use the "dielectric" formulas (39) and (40) for A, 
u,, , and aye when investigating the galvanomagnetic prop- 
erties of the system in question. For the quantity a,, the 
corresponding formula from (40) should be corrected by 
adding to the numerator the term uo,uxl a,, , which is not 
small in the 7 4  region. In the functions f, and6  we should 
take account of the fact that o, # 0, i.e., we should use formu- 
las of the type (23) or the expressions (45)-(47) with the 
change of arguments (36) made in them. 

Let us, to begin with, determine one of the most impor- 
tant characteristics of the system under consideration-the 
dimension AH of the transition (or smearing-out) region. Ac- 
cording to (36), the expression for A, can be obtained from 
(46) by making the substitution Ay2/Ax1 +Aayl /a,, . Using 
the formulas (44), we find from (46) and (39) that 
Pi = 8 z = f i )  

For 8 = 0 we obtain from (48) the expression (46) in Ref. 8. In 
a transverse magnetic field (8 = 0) the quantity A, decreases 
without restriction as fi+oo(H-+oo). A different situation 
obtains in an oblique magnetic field. It is not difficult to see 
that, when 8 > 1714, AH increases monotonically with in- 
creasing H. In the case 0 < ~ / 4 ,  as H is increased, the quanti- 
ty AH passes through a minimum and then increases without 
restriction as H+m.  This nonmonotonic dependence is 
especially strongly pronounced in the case when 8< 1. As in 
an isotropic system,' the smearing-out region A, in the in- 
terval 141348 -' decreases with increasing H; atfi = 8 - ' the 
quantity A, attains its minimum value 
(AH),, = Ao(28)2m <A,. At 8 = 8 -* we again have 
AH = A,, and in the region88 '> 1 we have A, )A,. 

In accordance with the foregoing, we can distinguish 
three r-value regions for the systems under consideration 
when841 and Irl<l. 

1) A,< (71 < 1. In this case the system in H = 0 is outside 
the smearing-out region. But in sufficiently high H there 
arises the situation in which AH ) (7-1, so that the system will 
be in the smearing-out region. According to Ref. 8, anoma- 
lous conductivity is possible under these conditions.' Thus, 

in contrast to the isotropic (i.e., 8 = 0) case,' in the systems 
under consideration, even when (71 )AO (but I T ( <  I), there is 
a magnetic-field-intensity range where anomalous conduc- 
tivity can exist. 

2) (AH),, < lrl <A,< 1. Under these conditions the sys- 
tem will, as H is increased, first leave the smearing-out re- 
gion, and then find itself in it again. From this it follows that 
there are in this case two magnetic-field-intensity regions in 
which anomalous conductivity can exist. 

3) If lrl <(AH)min, then for all H the system is in the 
smearing-out region, and there is quite a broad magnetic- 
field-intensity range in which anomalous conductivity is 
possible. It should, however, be noted that, in contrast to the 
isotropic case,,.' here, even in the r = 0 case, the H-region of 
existence of anomalous conductivity is bounded from above 
as a result of the condition AH g 1. Notice also that anoma- 
lous conductivity is possible for any angle 8 of inclination, in 
particular, for 8 = 77/2, i.e., in a parallel magnetic field, if 
the conditions 11-1 gA, (1 are fulfilled. 

The galvanomagnetic properties of the systems under 
consideration in the case when 84 1 and I rl4 1 are quite com- 
plicated, and, according to the foregoing, depend essentially 
on the relationship among the parameters. Let us limit our- 
selves to the consideration of the apparently most interesting 
case r > 0, (AH),in (r4Ao(l, and 8&,  in which we can 
distinguish eight magnetic-field-intensity regions in the H 
dependence of &, (we assume fi, = fi, = f3 ): 

The expressions (49a)-(49d), which are valid when f38<1, 
correspond to the case of an isotropic system (axi ,--ayi), and 
coincide with the formulas (47) in Ref. 8. (In deriving (49a)- 
(49d), we should set uxi = uyi, and use expressions of the type 
(23) for the functions f = f, =f, (see also Ref.8).) Notice 
that (49a), (49b) and (49g), (49h) correspond to the case 
A, >r ,  while (494-(494 correspond to the case AH (r. In 
accordance with the arguments adduced above, there are - 
two region where anomalous conductivity can occur: see 
(49b) and (49g). The case (49h) corresponds to A,) 1 (the 
functions f, and& are given by the expressions (47) with 
A i l l  replaced by A ), in which case the system as a whole is 
highly anisotropic. At thesametime, when8 - l e g $  -2(al/ 
a,)"' (the functions f, and& from (45) with the appropriate 
substitutions made), despite the fact that the properties of 
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the components are highly anisotropic, the medium as a 
whole is virtually isotropic. 

Notice that the measurement of the conductivity of sys- 
tems that undergo the metal-insulator phase transition in 
oblique magnetic fields allows us to determine the functions 
j; and& in the critical region, and thereby verify the validity 
of the scaling-law hypothesis for two-dimensional two-com- 
ponent anisotropic media.' 

4. GALVANOMAGNETIC PROPERTIES. THE THREE- 
DIMENSIONAL CASE 

Let us consider an isotropic three-dimensional two- 
component medium in a magnetic field H. If we orient the z 
axis along H, then the conductivity tensor &(r) has the usual 
form 

(50) 

The problem is to determine the effective characteristics 
a,,, a,, , and a,, of such a system. 

The symmetry transformation (26) is a characteristic of 
the two-dimensional case, and does not have a three-dimen- 
sional analogue. Therefore, it is not possible to establish for 
three-dimensional media such general relations as (35). Nev- 
ertheless, in two cases it is possible to relate the galvanomag- 
netic properties of a three-dimensional system with its elec- 
trical conductivity computed without allowance for the Hall 
components. 

The equations for the constant current do not change 
under the transformation 

h 

where C is an arbitrary (coordinate-independent) antisym- 
metric tensor. Let the Hall component for some two-compo- 
nent medium be coordinge independent, i.e., let 
a,, = a,, = a,. Then, setting C = 6, , where &, is the anti- 
symmetric part of the conductivity tensor &(r), in (51), we 
amve at the conclusion that the original galvanomagnetic- 
effect problem reduces in the primed system to the problem 
of the electrical conductivity of an anisotropic medium with 
zero Hall components (i.e., with a: = 0). Thus, 

In (52) we have taken account of the fact that a:, = 0, i.e., 
that a,, = a,. It is not difficult to see that the equalities (52) 
are, in accordance with Ref. 19, valid for any r dependence of 
6 when a, = cost. The quantities a:, and a:, in (52) do not 
depend on a,. Therefore, introducing for two-component 
systems the functions f, and f, by analogy with (34), we 
obtain 

O..=Oaifa (p; ~ ~ t / ~ ~ l ,  Orz/CJZi, u ~ z / o ~ ~ )  (u=x, 2 )  , OaeZOa. 

(53) 

The condition a,, = a,, cannot be fulfilled for all H. Using 
for the elements of the conductivity tensor 5 the usual model 
formulas (a, = ai , while axi and aai are given by the expres- 
sions (44) with 0 = O), we conclude that the equalities 

n, p: = n, p: for H 4  and n, = n, for H-cc follow from 
the condition a,, = a,, . 

Let us now consider a system consisting of a matrix with 
conductivity tensor &, of the form (50) and pe~fectly con- 
ducting (&,-+cc) inclusions. In this case, setting C = &,,, we 
arrive in the primed system to one of the problems of aniso- 
tropic percolation t h e ~ r y ' . ~ ~ . ~ ~ :  the problem of the conduc- 
tivity of an anisotropic medium (with a: = 0) with perfectly 
conducting inclusions. Thus, axe = o:, , a,, = a:, , and 
a,, = a,, . Introducing the functions f,, and f, in accor- 
dance with the relation 

we finally obtain (p <p,  ): 

( 8 ) -  -urzfs. (p, alb/aII), a:i"=a.lf.. (P, adazz), a:' =ua. 

(55) 
Outside the smearing-out region the expressions (55) are also 
valid in the case of a large, but finite 8,. 

Let us use the results obtained to analyze the critical 
behavior of the effective Hall constant Re (for H a )  in sys- 
tems that undergo the metal-insulator transition. In the "in- 
sulator" phase (7 < 0), outside the smearing-out r e g i ~ n , ~  the 
inclusions of the first component can be considered to be a 
perfectly conducting material if a,, )ox, and a,, )a,,, i.e., 
n ,p ,>n y, and n, p: )n, p: (for h a ) .  Both inequalities are 
satisfied if p'-p, and n,)n,. In this case we obtain for 
Re = H -'oae/02,, (H-rO] from (55) with allowance for (23c) 
the relation 

where A is the same quantity figuring in (23). From (56) we 
find the following relation between the critical exponents f 
(see Ref. 9) and q: 

The relation (57) is proposed (in the form of a hypothesis) in 
Ref. 9 for a consistent description of the critical behavior of 
Re in a broad range of parameter values. The present analy- 
sis shows that the relation (57) is exact. 

The case o,(o,, a,, = a,, ( e .  ny,(n,p, 
n y z  = n,p,,) is realized when n,<n, and p2>p,, with 
R, = R,(a,/a2)2>R,. For such a system, the effective Hall 
constant can be found in the entire critical region. Setting, 
for H a ,  a,, = ae = a, f (p, h ), and using for f (p, h ) the ex- 
pressions (23), we obtain for Re = R , [f (p, h )]-, from (53) the 
relations 

I->& A<.c<l: R.--R,T-~', (58a) 

I z I <A: Re-Ri (01/(12)~', (58b) 

z<O, A<1~1<1:  R,-Rz1~)2g,  ( 5 8 ~ )  

where A = (a,/a,)"" , q = t (1 - s)/s. 
Shklovski?' has proposed for Re an interpolation for- 

mula that is consistent with the scaling-law hypothesis: 

Here A is the dimension of the smearing-out region (see (23) 
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and (58)); the expression for the critical exponent g takes 
account of the relation (57). For s = 0.62 and t = 1.6 (Ref. 9) 
we have gz0.6, which differs from9 vz0.9. Another expo- 
nent from Ref. (9) assumes, when (57) is taken into account, 
the form k = 2(1 - s) z0.76. 

In both of the cases considered above the first term in 
(59) is large compared to the second, and (59) coincides with 
the expressions (56) and (58). At the same time for a system 
with dielectric inclusions (u, = 0, T > 0) only the second term 
in (59) makes a nonzero contribution. In this case, according 
to (59), the effective Hall component a,, varies in the follow- 
ing manner as 7 4  ( H 4 ) :  

(in this case u,, = oze -ulrt). Let us point out that, for the 
quantities Re and o,, , all the critical exponents (see Ref. 9 
with allowance for the equality (57)) can be expressed in 
terms oft and s, (i.e., in terms of the critical exponents for the 
H = 0 electrical conductivity problem. It is possible that this 
indicates the existence of some approximate isomorphism 
between these problems for 171 < 1 and H 4 .  In view of this, 
it is of considerable interest to obtain the result (60) by a 
direct method. 

5. THE CONDUCTIVITY OF ANISOTROPIC MEDIA 

It is natural in the investigation of the electrical conduc- 
tivity of inhomogeneous anisotropic systems7~10*20 to limit 
ourselves initially to the study of the simplest models. First, 
there is the system with geometrically isotropic distribution 
of the components and coordinate-independent orientation 
of the principal axes of the conductivity tensor 6. An exam- 
ple of such a medium is given in Subsec. 3.3. Second, there is 
the system whose components are isotropic, and the anisot- 
ropy of the medium as a whole is determined by the shape 
and orientation of the inclusions (a geometrically anisotrop- 
ic medium). We shall show that these models are isomorphic 
in one important particular case, and find an exact relation 
between their properties (cf. Ref. 10, where a system with 
inclusions of ellipsoidal shape is considered). 

Let the structure of a two-dimensional system with geo- 
metrical anisotropy be obtainable from some isotropic (ran- 
dom or regular) network through a uniform extension along 
one of the axes, e.g., the x axis. Let us transform the coordi- 
nates, the electric field E, and the current density j into the 
primed system: 

x=vx', y=y'; E,=E,', E,,=vE,,'; j,=vj,', jy=j,,'. 

(61) 
Here v = const is the coefficient of extension. The transfor- 
mation (61) converts the anisotropic network into an isotrop- 
ic one, and does not change the constant-current equations. 
But the conductivity of the primed system is described by a 
tensor of the form (29) with u:(r) = v-'u(r) and a;(,) 
= vo(r), where u(r) is the local isotropic electrical conduc- 

tivity of the original system. Thus, the primed system is a 
medium with a geometrically isotropic distribution of the 
components, which are described by conductivity tensors of 
the form (29) with elements 

where a, and a, are the isotropic conductivities of the com- 
ponents in the original system. 

The effective characteristics of the original (a,,, a;,) 
and primed (a:,, a;) systems are also connected by rela- 
tions of the type (62): 

Let us introduce the functions g, and g,, for a system with 
geometrical anisotropy in the following manner: 

oas=crtga (p ,  h; V )  , h=oz/c~t ( a = ~ ,  Y )  . (64) 

For the primed system, let us define functions f, and& in a 
manner similar to (34). Then from (63), (62), and (64) we final- 
ly obtain the relations 

Relations of the type (65) can be established for three-dimen- 
sional media as well. 

The limiting case of a system with geometrical anisotro- 
py is a layered medium (v-oo ) in which a(r) depends only on 
one coordinate, in the present casey. The effective character- 
istics of a layered medium are easily determined; as a result, 
from (64) and (65) we obtain 

f , (p;  0, 0, h)  =p+ ( I -p )h ,  f , (p ;  0, 0, h)=h/(ph+l--p).  

(66) 
Hence for p z h  and h< l  we obtain after the substitution 
h-+Ay2 /Ayl the expressions (47). 

In conclusion, let us discuss the consequences (for an- 
isotropic media) of the simple, but useful isomorphism 
between the problem of the permittivity of a system with 
metallic inclusions and the problem of the conductivity of a 
structurally identical system with perfectly conducting in- 
clusion." Let the matrix be uniaxial (i.e., let E , ~  = ey2 < ez2 ), 
and let the orientation of the principal axes of the tensor %(r) 
be coordinate independent. Then, for the principal values of 
the effective permittivity tensor 2, we have, in accordance 
with Ref. 11, the relations @ < p , )  

where f, and& are the same functions figuring in (54) and 
(55). According to arguments adduced in Refs. 20 and 7, a 
system with perfectly conducting inclusions becomes virtu- 
ally completely isotropic asp-p, (T < 0, 171 < 1). Therefore, 
for the %,-tensor elements we obtain (in the case when 
EL2 ,Ex* 

where q is the "isotropic" critical exponent. Thus, in the 
critical region even a highly anisotropic medium with metal- 
lic inclusions possesses qualitatively the same dielectric 
properties as the isotropic 

6. CONCLUSION 

The examples considered in the present paper demon- 
strate that certain problems of percolation theory are secon- 
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dary. Their solution with the aid of isomorphism relations is 
entirely determined by the solution to certain primary (basic) 
problems. Notice that the establishment of the isomorphism 
relations allows us to, in particular, relate separate analyti- 
cal results of percolation theory. Thus, of the three exact 
results mentioned in the Introduction, the second and third 
are, when allowance is made for the isomorphism of the cor- 
responding problems, a consequence of the first. In other 
cases the isomorphism relations enable us to obtain new re- 
sults from the known ones. 

The secondary problems do not require separate inves- 
tigations with the aid of numerical and simulation experi- 
ments, thus allowing us to concentrate our efforts on the 
basic problems. The role of the latter problems is greater, but 
so also is the need for quality of their investigations both in 
the sense of accuracy and in respect of the ranges of values of 
the parameters. In particular, it is necessary to carry out a 
thorough investigation of the function f @, h ) in the entire 
domain of variation of the argumentsp and h. Notice that we 
can invert the isomorphism relations and use them to carry 
out a more thorough study of the basic problems. Finally, let 
us note that we can judge the applicability of the two-compo- 
nent medium model to real samples by the degree of accura- 
cy with which the relations of the type of Dykhne's general 
relation are fulfilled. 

The examples cited do not, apparently, exhaust the con- 
sequences of the symmetry transformations used in the pres- 
ent paper. But of even greater interest is the search for new 
transformations that will allow the establishment of isomor- 
phisms between other problems. The establishment of all 
possible isomorphisms will, in principle, enable us to reduce 
the entire variety of phenomema associated with the theory 
of transport processes to a set of basic problems. Of top- 
priority is the search for the correspondence, if it exists (even 
if with a limited region of applicability), between the prob- 
lem of the galvanomagnetic properties of three-dimensional 

media and the problem of the conductivity of anisotropic 
systems with the same structure. 
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