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The dynamics of a liquid-crystal solution of long rodlike macromolecules is investigated on the 
basis of the molecular kinetic equation of Doi and Edvards. The following basic results are 
obtained: 1) The ratio of the third and second Leslie viscosity coefficients is a3/a2 < 0, therefore 
the Leslie angle is meaningless for the system considered. This affects substantially its rheological 
properties. 2) The viscous stresses have two essentially different relaxation times (7; and 7.3, with 
T;/T: - U,/T- lo-', where U, is the characteristic energy of the rod in the external field that sets 
the director orientation. The fact that the dissolved particles are macromolecules manifests itseIf 
in large absolute relaxation times (7.:'- lo3 sec), which lend themselves therefore to mechanical 
experiments. 

PACS numbers: 46.60.Bd, 51.20. + d 

1. INTRODUCTION 

It is known that liquid-crystal ordering sets in in a suffi- 
ciently concentrated athermic solution of extreme-rigid- 
chain (rodlike). ls2 One can include among such systems solu- 
tions of helical synthetic and biological polypeptides, as well 
as aromatic polyamides. The experimental investigation of 
their rheological properties is the subject of many papers.'-' 

The purpose of the present paper is a theoretical investi- 
gation of such liquid-crystal solution on the basis of the mo- 
lecular approach of Doi and Edvards. In such a system, un- 
like in low-molecular liquid crystal, there exists a large 
parameter, viz., the ratio of the macromolecule length L to 
its diameter d, L /d > 1. The presence of this large parameter 
enabled Doi and Edvards to describe the dynamics of the 
system within the framework of a consistent microscopic 
theory,"' which was used in Refs. 6-9 to study in detail the 
dynamics of equilibrium-isotropic solutions. The needed 
principles of this theory are expounded in Sec. 2. 

The investigation of the molecular dynamics of a liquid- 
crystal solution is desirable, in particular, because its results 
can be compared with the phenomenal theory of Leslie, Eric- 
sen, and Parodi (see, e.g., Ref. 10). For example, it is possible 
to connect the Leslie viscosity parameters with the molecu- 
lar parameters, The papers of Doi" and Marrucci,12 in 
which the Leslie angle and the Leslie coefficients were calcu- 
lated for a liquid-crystal solution, are shown in Sec. 3 to be 
based on an incorrect assumption. In Sec. 3 is developed 
another method, free of such an assumption, of calculating 
the Leslie coefficients, and the results obtained in this sec- 
tion differ qualitatively from the results of Refs. 11 and 12. 

The system considered, being a solution of macromole- 
cules, is characterized by longer relaxation time than low- 
molecular liquids. Therefore the frequency dependence of 
the Miesowicz viscosities, which is investigated in Sec. 4, can 
be obtained in mechanical experiments. 

2. PRINCIPLES OF THE THEORY OF DO1 AND EDVARDS 

Rotational Brownian motion of rods (length L, diame- 
ter d, L ) d ) is described, in accord with Refs. 8, 9, 11, and 
12, by the following diffusion equation: 

where f = f (n) is the density of the rod distribution in orien- 
tation and is specified by the unit vector n, V = V, is the 
~radiezt  in orientation space, T is the temperature, 
D, = D,(n, [ f 1) is the rotational-diffusion coefficient, 
U,,, = U,,, + U,,, is the sum of the potentials of the m e y -  
molecular and external fields acting on the given rod, andg is 
the tensor of the velocity gradients of the macroscopic flow. 

The analysis of Eq. (1) with an anisotropic diffusion co- 
efficient is quite diffiiult. Therefore, following Refs. 8,9, 11, 
and 12, we replace D, by an effective constant (independent 
of n) diffusion coefficient D, of the order o p  

T In Lld 4 -2 

Or= B q . ~ ~  ( c L ~ ) ~  [;j f (n)f (n') sin y... do do'] , (2) 

where q, is the solvent viscosity, c is the rod concentration, 
y,,, is the angle between n and n', andB is a numerical factor. 

As shown by Onsager,' the mean molecular field takes 
at L # d the form 

U,,,(n, [ / I )  =2cTL2d J sin yn..f(n')dof (3) 

so that at c 2 1/L 'd the rods tend to be oriented in the same 
direction (nematic order is produced in the system), where 
the equilibrium distribution density is given by 

f (n) =const exp ( -USe l f /T ) .  (4) , 

Besides the kinetic equation, it is necessary to know the 
form of the stress tensor. It is shown in Ref. 11 that the 
traceless part of this tensor is equal to 

and the averaging is carried out here with the aid of the 
distribution function in orientation, which is obtained from 
Eq- (1). 

The Leslie coefficients of the liquid-crystal phase are 
calculated in the next section on the basis of Eqs. (1)-(5). 
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3. LESLIE VISCOSITY COEFFICIENTS 

Let the solution be located in an external field 

where q is a dimensionless parameter of the field and the unit 
vector u specifies its direction. If the magnetic field H is 
external, then 

1 
q= - x.H21T, 

2 (6)  

wherex, is the anisotropy of the molecular susceptibility. If 
the flow-velocity gradients are small enough ( g ( q) ,  the di- 
rector is parallel to the field direction u. The stress tensor 
takes then the form (see Ref. 10) 

where 

and a, are the Leslie coefficients. 
To determine the Leslie coefficient it suffices thus to 

find ua8 in first order in gap. We divide uap into symmetric 
and antisymmetric parts: 

~ a ~ = ~ a : + ~ a ~ ~ .  

We multiply ( 1 )  by vaS (n) = (3na no - Sa8)/2 and integrate 
with respect to do. Comparing the resultant expression with 
(5) we find 

Let f (n) = fo(n) + $(n), where f,(n) = const e - uo is the 
equilibrium distribution function, $(n) the first-order cor- 
rection, and u, = U,,, (n , [ f , ] ) .  It is convenient to introduce a 
spherical coordinate system with the vector u as the polar 
axis. The function f,(n) is axisymmetric, so that in the zeroth 
approximation we have 

(nune)= I f o  (n) nunn d~='l.dau(I-~) +suauo, (9) 

6 terms 3 terms 
/ - 

\ + kz ( ~ a u p 6 ~ ,  + . . .) + k3 (&.36,, + . . .), 
( 10) 

where 

k,=r, k2= (s-r) 17, k,= (l-'01,s+3/,r) 115; 

and s is the equilibrium order parameter: 

Taking the stationary character of the problem into account, 
this yields 

We proceed now to the antisymmetric part of the stress 
tensor. We transform (8 )  into 

Linearizing ( I ) ,  we arrive at the equation 

D,P$=G, (14) 

where 

It is convenient to resolve the source G into terms propor- 
tional to e * lrnX with m = 0 , l  (X is the azimuthal angle): 

where 

Y0=P2 (cos e), Y,=sin 0 cos 0, Y2=sin2 8, n=u cos 0+e sin 0. 

The solution of (14) can obviously represented in similar 
form 

$(n) =$a (0) ga,uau#+$t (0) eaucrsgan+lJ)*+ (0) eauagaa 

+q2 (0) (eaes+'Izuau~) ga,. (18) 
Introducing the notation 

c,=q~. 9. (8) Y .  (6) do, m=O, I ,  I + ,  2,  (19) 

we reduce ( 1  3) to the form 

It remains to find c, and c:. Assume for the time being 
that therejs no external field. It  is then easy to show that the 
operator P has a doubly degenerate zero eigenvalue corre- 
sponding to the eigenfunctions 

a f o  9, (n) = - 90 e"X. 

The conjugate function p,(n) satisfies the equation 

P+v0=O, (21) 

which can be transformed into 

D U O  
VZq0- Vq0 Vu, = - etix, a e 
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with, obviously, qo(n) = q (8 )e * iX. We now turn on the ex- 
ternal field again, after which we regard (22) as the definition 
of pO. Multiplying (14) from the left by qo(n) and integrating 
with respect to all the coordinates, we obtain 

Substituting (17) and (18) in (23) we obtain c, and c,' : 

where 

1 
I'=- - 5 cp (0) (3f. sin 0 ws 0+ 

2 d 0 

Transforming (24) with the aid of (22), we obtain ultimately 

1 dqo 
c,=s+P, c.+=-r, r = -(-sin2 0). 

2 dl3 (25) 

Equations (12) and (30) determine the Leslie coefficients 
(we leave out the common factor cT/2D,): 

2 
at=-2r, a, = -(7-5s-2r), 

35 

It follows from (12), (22), and (25) that in the isotropic phase 
we have s = r = r = 0, therefore the coefficients 
a , ,  a,, a,, a,, a, vanish there, as they should. In addition, 
as can be seen from (26), the Parodi relation 
a, + a, = a, - a, is identically satisfied, as should likewise 
be expected. If the order parameter s is close to unity, i.e., 
s = 1 - E, E ( 1 (this condition is in fact satisfied in a liquid- 
crystal solution of rigid rods, since s 2 0.8, Ref. I), Eqs. (26) 
can be simplified. In this case Vu, , 1, therefore the first 
term in the left-hand side of (22) can be neglected, after 
which the equation can be easily solved: 

rp (0) =0, 0<n/2, lp (8) =@-a, 0>n/2. 

We have thus r-- 1/2(sin2 8 ) = e/3. In addition, 
r = 1 - 10/3~, and in first order in E we have therefore 

It can be seen that a,/a,z - 1 / 3 ~  < 0. This differs qualita- 
tively from the results of Refs. 1 1 and 12, where it was found 
that a,/a, > 0. In addition, it is shown here that a,= - 4/ 

FIG. 1. The upper plate moves along the x axis with velocity V, and the 
lower with oppositely directed velocity. The distance between the plates is 
2h. 

3~ is less than zero, just as in low-molecular liquid crystals, 
contradicting the results of Ref. 12, where a, = 0. 

As a result of the negative 9 = a,/a, the Leslie angle 
Oo, defined by the relation tan2 0, = 9 ,  becomes meaning- 
less. In addition, all the indicated features influence substan- 
tially the rheological properties of the system. Consider, e.g., 
flow in the form of a simple shift between two parallel plates 
(Fig. 1); let the director be oriented at the surfaces of the 
plates along the flow direction (the x axis). It is known', that 
at 9 > 0 such a flow is always stable, and at 9 < 0 the flow 
becomes unstable already at very low shift velocities, when 
the Ericsen number (defined in the Appendix) is 
Er = Er,, -- 1.219 I-'", and the resultant structure is sta- 
tionary and homogeneous in the plane of the plates, i.e., 
along the axes x and z). The situation wherein the plates 
orient the director perpendicular to the flow plane is investi- 
gated in the Appendix. It is shown there that in this case the 
stabilities are also interchanged at Er = Er,, and modula- 
tion sets in along the z axis of the structure, with ErC2/ 
Er,, =: 500 near the liquid-crystal transition point. 

The causes of the indicated difference between the re- 
sults obtained here and in Refs. 1 1 and 12 are connected with 
the additional "separation approximation" of the form 
(nu no n, n,. ) =: (nu nB) (n, n,, ), used in Refs. 11 and 12. 
It can be seen from (10) that this approximation can lead to 
an error on the order of 100%. 

The reason why 9 < 0 in a sufficiently strongly ordered 
state can be explained in the following manner. Let the 
Couette-flow velocity be V, = gy. From the definition of the 
Leslie coefficient it follows that 9 = T2/r , ,  where r, is the 
torque that tends to rotate the director from the position 
along the velocity gradient into the position along the 
stream, and r2 vice versa (Fig. 1). Clearly, TI > 0. We shall 
show that r2 < 0. Let the director be oriented initially along 
the stream. If the ordering is high enough, the distribution 
function f (n) is localized on small sections of the unit sphere 
near the x axis; these sections can be regarded as locally 
plane. On !he section with coordinate x = 1 the flux 
n = gn - (ngn)n is specified by the equations y = - gy2, i- 
= - gyz. Since y is negative everywhere, the distribution 

function as a whole (meaning also the director) will move in 
the negative y direction, i.e., r2 < 0. 

A particularly complete theoretical analysis is possible 
if the equilibrium distribution function is approximated by 
an equation in the form 
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FIG. 2. Dependence of the ratio a3/a,9 (a) and of the Miesowicz viscos- 
ities q, ,  q,, q ,  (the factor cT/2D, was left out) (b) on the order parameters. 

fo=const exp (A cosZ 8) , i.e., uo=-A cos2 Ofconst, (28) 

where A is a parameter. This approximation corresponds to 
the Maier-Saupe approximation for Uself: 

Equation (22) can be easily solved in this approximation. 
The dependenceof I9 = - r /(s + r )on the order parameter 
s, obtained by solving (22) using (25), is shown in Fig. 2a. At 
smalls <sin" = 0.53 we have 19 > 0; at s = sin, I9 reverses sign 
and reaches a negative absolute value I9 = - 0.066 at 
s = 0.74. As applied to low-molecular liquid crystals, the 
obtained value of sin, can be treated, of course, only as a 
rough estimate and the result means that at sufficiently small 
s-0.3-0.4, when the Maier-Saupe theory holds for these 
systems, I9 is positive. As for the rigid-rod solution consid- 
ered in the present paper, the approximation (28) works here 
very well. For example, the equilibrium liquid-crystal-tran- 
sition characteristics calculated with the aid of a trial func- 
tion of the form (28) differ from the exact ones by less than 
1%. 

We write 

r=(P, (cos 8) )= Jfo(n)p&(cos 8) do; 

averaging with a distribution function of the type (28), we get 

(the dependence of s on A is shown in Fig. 3). All the Leslie 
coefficients can thus be expressed now in terms of s. 

The dependence of the Miesowicz viscosities 
ql= (aS+a&+a6) 12, q2= (ah+,aJ-a2) 12, r(13=a,/2 (30) 

on s is shown in Fig. 2b. It can be seen that the usual relation 
q2 > 1j3 > q, is satisfied. 

4. FREQUENCY DEPENDENCE OF THE MlESOWlCZ 
VISCOSITIES 

The method developed in the preceding section can be 
used to investigate the frequency dependence of the 
Miesowicz viscosities. 

In the symmetric part of the stress tensor (7), the first 
term is independent of the frequency, so that it can be 
uniquely determined from the frequency dependent terms, 
since a, + 0 as w -+ m . The second term in (7) is propor- 
tional to dSaB/at = - i daB  (the time dependence is given 
by the factor e -  '"I). In the notation of (18) and (19), Sa8 can 
be written in the form 

Combining (7), (20), and (3 I), we obtain the Miesowicz 
viscosities accurate to the frequency-independent terms (the 
common factor cT/2D, was omitted): 

(32) 
To determine the quantities ci it is necessary to modify 

the linearized equation (14) to allow for the time dependence: 

We use now the approximation (28), (29). Even at the liquid- 
crystal transition point we have in a rod solution A = 8 (Ref. 
I), so that we can seek the solution of (33) in the form of an 
expansion in 1/A. To find the viscosity in principal order in 
1/A, it suffices to calculate c, in the zeroth, c, in the first, and 
c,f in second orders in 1/A. The ordinary differential equa- 
tions that follow for $, (0) from (33) can be easily solved with 
the aid of the substitution $, (8 ) = 4, (8 K(8 ). Substituting 
these solutions in (19) we obtain 

where Q = q /A ,  fl = o/ (UD,) .  Finally, substituting (34) in 
(32) and adding the frequency-independent term, we obtain 
the Miesowicz viscosities 

FIG. 3. Order parameters vs the parameter A.  
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FIG. 4. Dependenceofthe relativeviscosity v,(f2 ) /ql(0) on thefrequency. 

The dependences of 7, and 7, on o take thus the form of 
ordinary dispersion functions, and the characteristic fre- 
quency (reciprocal relaxation time) for 7, is equal to 
w' = 1/r; = 4AD,, and for 7, 

since usually Q < 1 (see below). In order of magnitude we 
have T;/T; = Q /2- UO/T, where Uo-qT ( sin2 8 ) is the 
characteristic energy of the rod in an external field. Connect- 
ed with the frequency dependence of 7, is a relaxation spec- 
trum consisting of three frequencies: wi/2, 3wf/2, and the 
much lower frequency w". Plots of the real and imaginary 
parts of q1 vs the frequency at Q = 0.1 (this value of Q was 
chosen purely by way of illustration) are shown in Fig. 4. 

This behavior of the viscosities can be qualitatively un- 
derstood in the following manner. It can be seen from (5) that 
the stresses, meaning also the viscosity, are governed by de- 
viations of the distribution function from equilibrium. These 
deviations can be subdivided into a shift off (n) as a whole 
(small rotation of the director) and a deformation of this 
function without a shift. In the former case the stresses are 
due solely to the external field, and in the latter exclusively to 
internal forces. In a geometry corresponding to the third 
Miesowicz viscosity (director perpendicular to the flow 
plane) the symmetry is such that only deformation off (n) 
takes place. Therefore the characteristic frequency is, in ac- 
cord with (I), of the order of w'-DrV2-Dr A. When the 
director is along the flow-velocity gradient (second viscos- 
ity), we deal mainly with a shift of f(n), so that only the 
"field" term of (1) need be taken into account: 

om-Dr VZUe,,/T--qD,. 

Finally, when the director is oriented by the field along the 
flow (first viscosity), both shift and deformation off (n) ap- 
pear to equal degree, so that a role in the 7,(w) dependence is 
played by two frequency scales, one of the order of w' and the 
other of the order of w" < a'. 

To conclude this section, we estimate the values of o' 
and w" near the liquid-crystal transition i~ a solution of rods 
of length L = 100 b; and diameter d = 5 A in sulfuric acid at 
room temperature. We determine the value of the diffusion 
coefficient from Eq. (2), recognizing that at the transition 
point c,L = 5.5L /d, and A = 8 (Ref. 1). The coefficient f l  
in (2) can be regarded very approximately as equal to unity. 
Assume an external magnetic field H = lo4 Oe and a molec- 
ular-susceptibility anisotropy X ,  = 10-7Ld is the 
characteristic anisotropy of the susceptibility per unit vol- 

ume for aromatic polyamids), then Q = q/A - [see Eq. 
(611, and 

0t=1/27f-106 sec- I, d"' l /~,"-10-3 set-I. 
It can be seen from these estimates that the characteristic 
frequencies are relatively small and can be achieved in me- 
chanical experiments. 

We have thus investigated here the dynamics of a liq- 
uid-crystal solution of maximum-chain-rigidity macromole- 
cules. The uniqueness of the object considered is that it com- 
bines the properties of a liquid crystal and a polymer. No less 
interesting a situation arises in a solution of semiflexible ma- 
cromolecules, which are so long that they cannot preserve a 
rodlike confirmation and turn into coils. The polymer prop- 
erty should become in this case even more strongly manifest. 

The author thanks A. R. Khokhlov, S. A. Pikin, and E. 
I. Kats for helpful discussions. 

APPENDIX 

We consider here the simplest flow between two parallel 
plates (Couette flow, Fig. 1) and obtain the region of its sta- 
bility in the case when the director is oriented near the plate 
surface perpendicular to the flow plane (along the z axis). 

Besides the Reynolds number Re = p Vh /la21(p is the 
average density of the solution), a convenient characteristic 
of the flow is the Ericsen number 

Er= I a, 1 Vh/K,=h Re, 

where K, is the first elastic constant of the liquid crystal. The 
parameter A = (a2(2/pKl is very large. Thus, for a solution 
of rods 100 b; long and 5 b; in diameter in sulfuric acid we 
haveA - 1013 (the elastic constants can be estimated from the 
free energy of the liquid-crystal solution1: 

and the parameter A > 1 characterize the degree of order- 
ing). Thus, the region Er - 1 corresponds to Re ( 1. 

At sufficiently small Ericsen numbers the system is de- 
scribed by a linear profile of the flow velocity 

( 0 )  - (0)  v ; ' ' ( r ) = ~ ~ l d ,  V ,  - V ,  =O 

and by a homogeneous distribution of the director 

Let 

V ( r )  = VcO' ( r )  +V ( r )  , u ( r )  = i"? 
where v ,  u, and ware perturbations. It can be shown that the 
dependence of the perturbations on x leads to their addi- 
tional damping (cf. Ref. 13); we assume therefore that a /  
ax = 0. The linearized Navier-Stokes equations and the 
equations that describe the director motion take then the 
form 14 
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aw,, 1 
O=-~.~+~~v~,,,+y~v~,,,+a~ - +-(&+as) gu,,, a t  2 

wherep is the pressure, 

No account is taken in the Navier-Stokes equations (A2) of 
the inertial terms, since they are of the order of A - ' ( 1 in 
the region Er- 1. The boundary conditions call for vanish- 
ing of all the perturbations on the plate surface: 

u=w=v=o at y=*h. (A41 

The solution of the system (A2)-(A4) can be represented as a 
product of a function of y by exp(iq, z - iwt ); this solution 
depends parametrically on the wave number q, and on the 
number I of the zeros in the interval - h Q < h. If 1 ) 1, the 
boundary conditions (A4) can be neglected and it can be for- 
mally assumed that q,, = 7~1/2h. The system (A2), (A3) re- 
duces then to an algebraic one that can be transformed into 

where 

It is easy to show that A, > 0, A, > 0, x ,  > 0, whence it follows 
that at the stability-loss point we have not only Im w = 0 but 
also Re o = 0. Therefore the critical velocity gradient g, is 
given by 

which must be minimized with respect to the parameters f 
and I. Clearly, the minimum of (A6) corresponds to the 
smallest possible 1 = 1, when (A6), derived for 1 ) 1, be- 
comes approximate. An analysis of the particular cases (see 
also Ref. 14) shows, however, that even for I = 1 the error in 
(A6) does not exceed 10-20%. 

Depending on the relation between the Leslie coeffi- 
cients, minimization of (A6) with respect to 5 leads to the 

following results. If 8 > 8, > 0 (8, - for MBBA), the 
minimum corresponds to f = 0, therefore 

i.e., at Er = Er, we are dealing here with a change in stabil- 
ity and with formation of an unmodulated structure. This 
regime was considered in Ref. 14 for MBBA at 25 "C. If 
(a, - a3)/2y5 < 8 < 8, , the most dangerous is f +O: 

(we left out the dependence on the ratios of the Leslie coeffi- 
cients and on the elastic constants. In this case the stability 
loss at Er = Er, leads thus to a structure modulated along 
thez axis. This is precisely the regime realized for the consid- 
ered liquid-crystal solution of rods, and the critical param- 
eters are: 

Let us compare the instability threshold, when the plate 
orients the director along the stream (the x axis) 
Er,, = 1.218 1 - 'I2 (Ref. 15) with the threshold Er,, , near the 
liquid-crystal transition: Er,, /Ercl z 23A 312 -- 500, since 
A z 8. Thus, if the director is perpendicular to the flow plane 
the instability threshold is 500 times higher than for orienta- 
tion along the stream. 

Finally, there can exist in principle one more regime, 
when 8 < (a, - a3)/2y5. Leaving out the calculations, we 
present the final result. Stability is lost in this case much later 
than in all the preceding ones: 

In other words, we have here not a change of stability, but a 
transition to a flow that is periodic in time and modulated 
along the z axis. 
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