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The mobility difference of negative and positive ions in normal 3He is discussed. The mobility 
mechanisms for ions of opposite signs are qualitatively different because the positive ion can 
exchange quasiparticles with the helium atoms from the ice-like shell surrounding the ion. A 
study of the mobility in a magnetic field may yield quantitative information on the magnitude of 
the exchange interaction. A calculation is carried out for the exchange scattering model and it is 
shown that a logarithmic contribution to the positive ion mobilityp + (T)  appears and is analogous 
to the Kondo effect. 

PACS numbers: 67.50.Dg, 66.10.Ed 

1. INTRODUCTION 

In the study of ion mobility in normal liquid 3He it is 
customarily assumed that the interaction of the quasiparti- 
cles with the ion is of the form of an impermeable sphere of 
radius a. It is known that at low temperatures the values of 
the mobility and of its temperature dependence differ greatly 
for positive and negative ions. The fact that at moderate 
pressures the mobilityp + of positive ions exceeds by approx- 
imately an order the mobility p- of negative ones1 is usually 
attributed to the larger radius of a - of the bubble around the 
electron2 compared with the radius a +  of the solidified heli- 
um around the positive ion.3 However, the mobilities p + ( T )  
and p -(T) are different also at high pressures p =: 30 atm,'v4 
where estimates lead to a +  z a p .  At not very low tempera- 
tures Tz0.3 K we have p+ =:p - and with decreasing tem- 
peraaturep p ( T )  is almost constant whereasp + ( T )  increases 
logarithmically [we disregard the p + ( T )  jump usually attri- 
buted to settling of 4He impurities on the "iceberg"]. If a 
potential of a hard sphere with the radius of either the bubble 
or the "iceberg" is used, and the cross section a that deter- 
mines the mobility is taken to be the cross section for scatter- 
ing, by such a potential, of a particle with momentum close 
to k,, then p -(T) should tend to a finite limit with decreas- 
ing temperature.5 This agrees well with the behavior of 
p-(T),  but contradicts the observed increase ofp +(T). This 
circumstance, and namely the fact that at a + z a -  the mobi- 
lities of ions of opposite sign have different temperature de- 
pendences, cannot be explained even qualitatively. 

We propose here to regard exchange interaction as the 
scattering mechanism that distinguishes between ions of op- 
posite sign. In the case of a negative ion the quasiparticle is 
scattered in fact by the electron density of the electron en- 
closed in a bubble. For a positive ion, on the contrary, the 
quasiparticle is scattered by helium atoms frozen on the ice- 
berg surface. Besides the usual potential scattering that ex- 
ists also in the case of a bubble, exchange scattering with spin 
flip is possible in a collision with an iceberg. Assuming elas- 
tic collisions and neglecting the ion recoil energy, exchange 
scattering is similar to electron scattering in a metal by a 
paramagnetic impurity-to the Kondo effect, i.e., it is tem- 
perature-sensitive at low temperatures. 

The assumption that the collisions are elastic is not ob- 

vious. It follows from Boltzmann's equation that at 
T <  rn&,/M, where ,M is the effective mass of the ion, the 
mobility should increase likep CQ T -', contradicting the be- 
havior of the ions of both signs. The validity of the single- 
particle Boltzmann equation, however is severely limited by 
the fact that the large radius of the ion causes it to interact 
simultaneously with many particles. Although there is still 
no complete answer to this q~estion,~.' grounds for assuming 
that the collisions are elastic can be provided by experiments 
with negative ions,8 where no deviation from the behavior 
that follows from the Fokker-Planck equation was found at 
any temperature. 

2. EXCHANGE-SCATTERING CROSS SECTION 

The exchange interaction between an atom of a liquid 
and a surface atom located at a point R is given by 

where Greek and Latin indices pertain respectively to the 
spin of an atom in the liquid and on the surface. The function 
r is concentrated in a region with linear dimension of the 
order of the diameter d of the 3He atom and has a value Vo of 
the order of the repulsion energy of two atoms separated by 
this distance, i.e., Vo 5 Uo, where Uo is the potential barrier 
produced by the entire ion. We assume that the exchange 
interaction of the quasiparticle with the surface is of the 
same form (1). The scattering amplitude is determined by the 
product of the probability of finding the particle at a location 
where the exchange potential differs substantially from zero, 
i.e., under a barrier of height Vo, by an amount equal to this 
potential. Although at large V, this probability decreases, 
the product indicated tends to a finite limit. To take better 
account of this circumstnce and to simplify the calculations, 
we make the substitution 

and assume R to be arbitrarily located on the surface of an 
ideal sphere of radius a. To obtain the cross section for ex- 
change scattering by the entire ion we multiply the cross 
section for scattering by the potential (2), averaged over the 
directions of R, by the total number N, = 4razdn, of surface 
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atoms, where n, is the density of solid 3He. 
In the first Born approximation in V,, but taking exact- 

ly into account the potential U,, the matrix element of the 
quasiparticle transition from the state k into k' is 

In the second-order approximation in V,, the contribution to 
the matrix element is made by two graphs (Fig. 1) 

These expressions differ from the analogous expressions for 
the matrix elements of electron scattering by a paramagnetic 
impurity in a metal9 that the quasiparticle moves between 
the two "exchange" collisions in the field of the repulsion 
potential of a solid ion of large radius a s k ;  ', and conse- 
quently its propagator is of the form 

Since all the expressions contain a propagator with equal 
arguments, it does not matter whether it is expanded in 
terms of the set of functions $if or $i-'. The designation 
and normalization of the scattering states $!+ 'coincide with 
those used in Ref. 10. If the frequency sums in (4) are calcu- 
lated by the methods of Ref. 9, using (2) and substituting 

1  (+) 

( r )  = , i1 (21+1) ci41('"R,, ( r )  Pi (i;), 
1 .  

from Ref. 10, it can be shown that 

4nd3 ~ = n r ( ~ + ~ ( ~ = ~ ~ , ~ ~ ,  (- 
3 

(7) 
The transport cross section for scattering by the whole ion 
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can be reduced, after performing the necessary integrations, 
to the form 

x RtFl  (a )  ln $1 {[% r( (21f 1) R; I ( a )  1' 
kFZ 

When the potential U, of the hard sphere is increased, the 
product of the potential by the wave function on the Fermi 
surface tends to a finite limit, namely, at ka) 1 and I<ka we 
have 

2kZ 
UORklZ(a)+ --- 

maz [I- (i;)2]'! 
This equation, without derivation, was used in fact back 

in Ref. 11; the analogous equation cited in Ref. 6 contains in 
the right-hand side an extra factor ( 2 ~ ) ~ ' .  The derivation of 
(9) is given in the Appendix. Using (10) and (A8), we obtain 
ultimately 

3. THE RUDERMAN-KITTEL INTERACTION 

We obtain within the framework of the described model 
the indirect interaction of the spins of two neighboring 
atoms on the ion surface. The molar volume of solid helium 
on the melting curve is u = 24-loz4 A3/mol, therefore the 
average distance R between the atoms of the solid helium, (u/ 
NAb )'I3 =: 3.3 A, exceeds substantially the reciprocal Fermi 
momentum of the liquid k, = 0.88 A-I, namely: 
Rk, = 2.95. Bearing in mind this circumstance, we carry 
out all the calculations under the assumption a)R>k, '. 

Let 8 = R /a( 1 be the angle between the two locations 
of the neighboring atoms on the sphere. It follows from (5) 
and (6) that 

Using (lo), the asymptotic equation" 

P1 (cos 8 )  -JO((1+'/z)*), 6 K 1 ,  (13) 

replacing the sum in (12) by an integral (the significant values 
are I ,  I ) ,  and taking into account Eq. (6.567.1) of Ref. 12 

and the asymptotic form of J,,,, we obtain 



k~ MS[ ( k r + E / ~ r )  R ] .  (15) 
Gie ( R )  2n2(i,B2 J iea 

The indirect-exchange energy is expressed in standard 
fashion in terms of 

and can be reduced to the form 

4. CONCLUSION 

 experiment^^.'^ revealed a logarithmic increase of 
,u + (T )  starting with T = 50 mK up to the superfluid transi- 
tion temperature. The decrease of the exchange-scattering 
cross section means that the interaction has a ferromagnetic 
character, in agreement with the notion that 3He is an al- 
most-ferromagnetic Fermi liquid. Equation (1 l )  is valid for a 
gas of interacting particles. In 3He the interaction leads to 
damping of the quasiparticles far from the Fermi surface, 
and the upper limit in the logarithm should be taken to be a 
temperature Tz50-100 mK, above which the Fermi-liquid 
theory does not hold. In the interval from 50 to 5 mK the 
mobility is approximately doubled. If all this increase is at- 
tributed to exchange interaction, it must be assumed that the 
effective coupling constant g = 16k i d  3Vd9nU0 is of the 
order of 1/3, i.e., quite large. 

The contribution of the exchange scattering to the mo- 
bility can be quantitatively obtained by investigating the be- 
havior of p + ( T )  and p - (T)  at a pressure near the melting 
point in a magnetic field of strength such that the spin split- 
ting AE of the Fermi surface be larger than or of the order of 
the temperature. In 3He we have AE = W ( 1  + Zo/4)-'H, 
where Zo = - 3,2@ = 0.16; consequently the exchange part 
of the scattering, which exists only for,u+(T), is suppressed 
at T 5  50 mK in fields H z  80 kOe. A high pressure is neces- 
sary to bring a + as close as possible to a - and actually study 
the scattering mechanisms that distinguish between these 
ions. 

An estimate of the energy of indirect interaction with a 
maximum constant g = 1/3 yields, according to (16) 
4T,, < 1 mK. This shows that the logarithmic correction to 
(1 1) can increase and become comparable with the first Born 
contribution even before the indirect interaction becomes 
substantial. 

The observed vanishing of the logarithmic growth of 
p +(T) in a solution containing 1 % 4He (Ref. 13) can be inter- 
preted as formation, around the ion, of a 4He film that is 
stable at all temperatures and excludes exchange scattering. 

We note that one more indication of the difference 
between the mechanisms of quasiparticle scattering by ions 
of opposite signs is the fact14 that on going into the super- 
fluid s t a t e ~  + ( T )  increases more slowly thanp -(T) with de- 
creaseing temperature. 

The author thanks S. V. Iordanskii for discussions and 
remarks. 

APPENDIX 

Aradial wave functionin apotential U (r) = UoO (a - r), 
finite at the origin and having at infinity the asymptotic form 

is of the form 
Rhl (r) =@(a-r)  B ~ ' " Z , + V ~  (krr)  

2nk '12 

( a )  ( )  [coa 13,h+~,, (kr)  + ( - l )  l sin 811-l-. (kr)  1, 

where the notation for all the special functions is the same as 
in Ref. 12. The conditions that R,, and all its derivatives be 
continuous at r = a can be written in the form 

BIl+~l, (k'a) = (2nk)'" [cos 61Jl+nl, (ka) -sin 61Nl+l~, (ka ) ]  , (A3) 
I ( a )  cos 61Jl-w (ka) -sin GIN,-~l: (ka) k l - - = k  
I +  ( a )  cos 611,+118 (ka)  -sin &.A' (ka)  (A41 

where J -  . - ,,, = ( - 1)" ' A'. + ,,, . We substitute in these 
expressions J, + ,,, = Re H ',; ,,, and use for the function 
H:'(x) the quasiclassical asymptotic expression at k a s l ,  
1) 1 and I < ka in the form 

(11 2 '1s exp ( i a l )  H,+Q*(x) m-i - ( n (xZ-p')" ' 

P nl a,= (x2-p2) Ih+p arctg - - -- 
x 2 '  

wherep = 1 + 1/2. An impermeable sphere corresponds to 
the limit k '--+co, and then the wave function vanishes on the 
Fermi surface. The condition for this, as can be seen from 
(A3) and (A4), is 

At finite k ' such that ko>k it follows from (A3)-(A5) that 

cos 6111-~~,  (ka) -sin 6lNi-B/, (ka) 
aR,, (a )  = (2nka) '" 

k'Zl-% (k'a) /kZ,+~l, (k'a) 

k sin (6:'' -6j0: ) m2 - 
k' [I- ( l /ka)  '1% ' 

Taking (A6) into account, we have 

sin (6:" -&:?, ) = [ 1 -  (l/ka)'] '", (A8) 

From which in fact follows Eq. (10) of the main text. 
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