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The natural oscillations of charged dimples in a direction perpendicular to a helium surface are 
investigated. It is shown that emission of ripplons causes the oscillations to be strongly damped. 
The relaxation phenomena accompanying the restructuring of a charged dimple following a 
change of the external parameters are investigated. 

PACS numbers: 67.40.Fd 

1. INTRODUCTION 

Some of the interesting objects on a charged helium sur- 
face are singly and multiply charged dimples. These po- 
laron-type formations readily appear on the liquid surface 
and manifest themselves in a great variety of situations. 
Among the most pronounced effects with participation of 
charged dimples are the singularities of the spectrum of col- 
lective oscillations of an electron crystal on a liquid sub- 
strate, oscillations due to the formation, under each of the 
localized electrons, of corresponding dimples that influence 
the motion of the electron system, as well as direct observa- 
tion of multielectron dimples. An investigation of the indi- 
cated singularities of deformation origin enabled Grimes 
and Adams' to observe Wigner crystallization in a two-di- 
mensional electron system on the surface of liquid helium, 
and yield interesting information on the details of this phase 
transition. As for the multielectron dimples observed by Lei- 
derer and Wanner,2 these formations are promising from the 
viewpoint of solving the problem of increase of the critical 
density of charges on a helium surface, are helpful in the 
study of the behavior of surface electrons in a magnetic field, 
and so forth. 

It must be noted that theoretical investigations of the 
properties of charged dimples by a number of workers3-' 
dealt mainly with the statistical characteristics of these ob- 
jects or with dynamic characteristics along the helium sur- 
face. In the present paper we discuss a number of questions 
concerning the behavior of charged dimples when their mo- 
tion is excited in a direction normal to the helium surface. 
This problem is of interest in its own right, for in the case of 
multiply charged dimples it is possible to observe visually 
the natural oscillations of the dimple. In addition, informa- 
tion on the dynamic properties of charged dimples in the 
transverse direction is needed for the description of the sin- 
gularities of cyclotron resonance on localized electrons, for 
the study of transient phenomena that take place in the dim- 
ple when the external parameters are abruptly changed, and 
others. 

ground level of such an anion is obtained using the variation- 
al principle from the functional of the total energy w 

Here (r) is the self-consistent deformation of the helium 
surface, tC, is the electron wave function, p and a are the 
density and surface tension of the liquid helium, g is the 
acceleration due to the force of gravity, m is the free-electron 
mass, F = eEl , El is the strength of the electric clamping 
field, and r is the two-dimensional radius along the helium 
surface. Choosing a trial wave function in the form 

$=n-"L-' exp (-r2/2La) (2) 

and minimizing with respect to w and L, we obtain 

LZ=E2=4nahZ/mF2. (3) 

It can be shown that the level obtained is stable to small 
"quadrupole" deviations of the wave function, i.e., to devia- 
tins of the type 

9 (x ,  y )  = (nab) -'" exp [-xZ/4aZ- yZ/4b2] , (4) 

w h e r e a = L + A , b = L - A , A / L ( l , a n d x a n d y a r e t h e  
Cartesian coordinates in the plane of the surface. Indeed, if 
the wave function is so chosen, the total energy w is given by 

where 
+a 

9 ( k ,  q )  -- 1 g (x l  I/) exp [ ikx+iqy ldx d y .  (6) 

Calculations yield the following result: 

a2w 5 F2 
2. SINGLE ELECTRON ABOVE A LIQUID-HELIUM SURFACE --- 

a=b=L 
It is known that at sufficientlv low tem~eratures and in 

strong enough clamping fields an electron-above a liquid- whence 

helium surface should produce a surface anion (Ref. 7, a2w/aa2 a2wlda ab 

whose notation is used in the equations that follow). The a2w/db da d2w/ab2 
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Starting from the foregoing we can assume that when 
the surface anion is taken out of its equilibrium position it is 
capable of executing oscillations at a certain frequency. 
These oscillations will radiate energy in the form of diverg- 
ing surface waves and should therefore be strongly damped. 
By virtue of the extremely low inertia of the electron we can 
assume that its wave function attunes itself adiabatically to 
the surface relief. In the adiabatic approximation, which will 
in fact be used below for the calculations, this means that the 
localization length of an electron whose wave function is 
chosen in oscillator form (2) is determined by the second 
derivative [ " (r) 1. = , (we are considering oscillations with cy- 
lindrical symmetry). Let e,(r,z) be the hydrodynamic poten- 
tial of the velocity. Then 

.D 

q (I, 1, t)  = jl( (kr) q (k. t) ekzk dk. (7) 
0 

and the equation for p(k,t ) is of the form 

aZcp (k, t) 1 a ~ ( k ,  t) +o:q (k, t)'=- - at3! p at l 

where P(k,t ) is the Fourier-Bessel transform of the electron 
pressure and 0: = a k  3/p. Let the electron localization 
length L execute small oscillations about its equilibrium 
value L z ,  which is equal in the harmonic approximation to 

2/2 [Z is taken from Eq. (3)], so that L -2 = L ,' + a ( t  ). 
Then 

F p=- F 
n L"- 

r2/L' 5~ - e-r2/Lo1 ( (Lo2-?) a (t) +I). (9) 
nLoZ 

The following equation should hold in the harmonic 
approximation 

whence 

Using the connection between the Fourier-Bessel transform 
ofthksurfacereliefg, (t )and thequantity q, ( t ~ )  = ekzp  (k,t ) 
given by 

we obtain 

where 

i.e., we have for e,(k,t ) the equation 
OD 

rp (k, $1 +a:, (k, t) =c (k) I q (9. t) q4 dq. (14) 
0 

We use now the unilateral Fourier transformation with 
respect to time: 

.D 

cp(k,w)= J e cp (k, t)dt; (15) 
0 

the complex variable w is in the upper half-plane. For the 
Fourier transform of p (k,t ) we obtain the expression 

-02cp(k, o)-B(k, w), 

with B (k,w) defined by the initial conditions 

~ ( k ,  W) =ip(kl t) 1 t=o-iorp(k, t) l t=o. 

The function e, (k,w) satisfies thus the equation 
OD 

t ( k ,  o )  (a:-oz)=C(k) jcp(9, w) !I6 d g + ~ ( ~ ,  a ) .  (16) 
0 

The solution of (16) is 

Using the known formula for taking the inverse Fourier 
transform of (15), we obtain 

The integration in (19) is along a line parallel to the real axis 
and passing above all the singularities of the integrand. 

It will be shown below that A (w) is not analytic in the 
entire w plane. For a unique determination of its analytic 
continuation (AC) from the upper plane we draw a cut along 
the negative imaginary axis. Shifting now the integration 
path into the lower half-plane, we see that the integral in (19) 
is determined by the residues at the points w = f a , ,  by the 
residues at the poles of the function A (w), and by the integral 
along the negative imaginary axis (on both edges of the cut, 
Fig. I). 

Thecontribution of the poles w = + wk toe, (k,t )is pro- 
portional to exp[ + iwk t ]. At the same time the contribution 
of the poles of A (w) is proportional to exp[ - iw,,  t 1, where 
a,,, is independent of k, i.e., o,,, are eigenfrequencies of the 
system. The poles of the function A (w) are determined by the 
condition 1 = f (a), where f (w) is the AC of the function 

FIG. 1. I-Unshifted integration path, 2-shifted integration path. 
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defined by this formula in the upper half-lane on the imagi- 
nary axis. Equation (20) reduces in the upshot to the form F "" 

FIG. 3. Behavior of Regfp) as a function r: curve 1-for one-electron 
dimple (right-hand y scale and upper x scale), curve 2-for multielectron 
dimple. The sought resonance frequency f2 is determined from the ob- 
tained values of r and q with the aid of the relation p = o/o, (2/L,) from 
(21), which connects o and p (in the case of a one-electron dimple). 

where LH2=211eleH, pz=oYo: (-i;). 2 (24) 

x=-ph/27, p2=02/ok2(2/Lo), y= (-ip)''~ 

(the calculations and the explicit expressions for the func- It can be seen from Fig. 3 that with increasing H the ratio of 

tions F and H are given in the Appendix). the resonance frequency to the characteristic hydrodynamic 

To solve Eq. (21) we note first that when p = a + ib is frequency wk(2/L,) increases, and the damping becomes 

replaced by p* = a + ib the function gfp) is replaced by its stronger. 

complex conjugate. In addition, this equation has no roots in If the electric field becomes strong enough (in a sense 

the upper half-plane (their presence would mean instability that will be made clear below) the problem can be solved by 

of the system), since at all points of this half-plane [except the using another approach. In the equilibrium state7 

imaginary axis, on which Re gfp) decreases monotonically ~ ( 0 )  =- [F/2na] ln(2/y"xLo), 
from 0.5 to 0] we have Im gfp)#O. It suffices therefore to 
consider only the lower right quadrant of the p plane. 

Computer calculations show that the line on which 
Im gfp) = 0 and Reg@) > 0 is given by the function q(r) rep- 
resented by curve 1 of Fig. 2 @ = r exp(iq ). Re gfp) increases 
monotonically along this curve, as seen from Fig. 3 (curve 2), 
and g @) = 1 at r = 0.73 and q = - 0.72. This means that 
the sought resonance frequency is 

JZ(1)=2,070, (1/L,) (0.75-0.661). (22) 

It can be shown that when a magnetic field H normal to the 
surface is applied the equation for the resonance frequency 
takes the form 

where y is the Euler constant. 
This value was obtained for an electron wave function 

of the type (2), corresponding to a ground state energy level 

ft2/mL2=F2/2na, 

reckoned from the bottom of the well caused by the deforma- 
tion of the surface. The depth of the well is 

Ff (0) =- [FIZna] ln(2/y'"xLo). (25) 

In a strong enough field, when Lo so decreases that the loga- 
rithm becomes much larger than unity, the succeeding levels 
also appear in the well. In the same harmonic approxima- 
tion, the first excited level with radial symmetry is described 

Lo2Lt-2=g(p), (23) by the wave function 

where L : is the electron localization length with allowance 1 f 

for the magnetic field, and is given by7 (26) 

and has an energy 3F2/2tra, i.e., its appearance requires a 
field at least higher than 100 V/cm. At small oscillations of 

tK 
6 (r) the ground level of the electron changes little, and we 
shall therefore approximate it by the wave function 
q = q, + cq,, where c is obtained by perturbation theory. 
During the oscillation time the electron is in the ground 
state, since the perturbation eE,A6 (r,t ) is adiabatic for it be- 
cause the characteristic frequency of variation of6 (r) is of the 
order of w, (l/Lo), and the latter is much less than the char- 

0 3 r acteristic difference -F2/2tra between the electron energy 

FIG. 2. Behavior of - q(r) as a function of r [q, (r) and rare defined in the 
levels (which are mixed by the perturbation with radial sym- 

text]; curve 1-for a one-electron dimple (left-hand y scale and upper x metry). 
scale), curve 2-for multielectron dimple. In first order perturbation theory we have 
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k2LOZ 
exp{ E (k, t) k dk. (27) 

0 

The corresponding change of the electron pressure P (k,t ) is 

and calculations similar to the preceding ones lead to the 
following equation for the eigenfrequency: 

l='/,g(p), p=o/o~(2'"lLo). (29) 

Its solution is 

Q(w=2.j7~4~(1/Lo) (0.44-0.91). 

Since the first of the considered methods is suitable for arbi- 
trary fields El ,  the results obtained in both cases should co- 
incide as EL + a,. The difference between them is a measure 
of the degree of validity of the approximations employed. 

Besides the considered oscillations with radial symme- 
try, there exist also natural oscillations of the "quadrupole" 
type, i.e., oscillations in which the electron is described by a 
wave function of type (4), while a and b execute small oscilla- 
tions about Lo in counterphase. To determine the frequency 
of these oscillations by the first method we write 

and calculations similar to those made for the oscillations 
with radial symmetry yield the following equations for the 
natural frequencies: 

Equation (32) breaks up into two: 

g(p) =I, (334 

the first describes the previously obtained radial oscillations 
and the second the oscillations of the "quadrupole" type, 
when Sa(t ) = - Sb (t ). From (33b) follows 

In the presence of a magnetic field the frequency of the con- 
sidered oscillations is obtained from the equation 

g (p) =2Lt-2L02. (35) 

To determine the frequency of the "quadrupole" oscillations 
by the second method it is necessary to use not the wave 
function p, defined by (26), but 

cos 2rp r" 
Qi =- x5L: .~ex. {- z}l 

which corresponds to the first excited level connected with 
the ground-state perturbation f (r,t ) of the considered sym- 
metry. The sought frequency is then found to be 

3. MULTIELECTRON DIMPLE ON LIQUID HELIUM 

The problem of transverse oscillations is most vital for 
multiply charged dimples, for which direct visual observa- 
tion of the eigenfrequencies is possible even if they are 
strongly damped. 

Just as for a single electron, the characteristics of a mul- 
ticharged dimple are determined from an energy functional 
that takes in this case the formss6 

lu = J d2r ( ~ E ~ E  (r) n (r) 

J n  (r) d2r- N, (37) 

where n(r) is the surface density of the number of electrons 
and n is the total number of charges in the dimple. Variation 
of w with respect to n and c at a constant number N of elec- 
tron in the dimple yields the following two equations (A is the 
Lagrange multiplier): 

Approximating 6 (r) in (38) by the expression 

g (r) = E o + i / 2 A ~ ~ i / 2 B y ~  A=-&"(O) , B=Eyf' (O), (40) 

which is legitimate in the region El > E p ,  where E p i s  the 
minimum field needed for the dimple to appear, we obtain 
for n(r) an integral equation that differs only in notation from 
the equation encountered in the Hertz contact problem [Ref. 
8, Eq. (9.7)]. We therefore obtain directly 

where a and b are connected with A and B from (40) as fol- 
lows: 

d% eE,A =- 
'IVe2 f [ (az+k) '(b2+E) El* 2 ' 

(424 
0 

Two additional relations between the constants a, b, A, 
and B stem from the mechanical-equilibrium equation. 
Thus, in the cylindrical-symmetry case, wher. a = b = R 
and A = B, the definitions (42a) and (42b) reduce to the equa- 
tion 

R"3neN/4E1g"(O), (434 

while Eq. (39) with allowance for xR(1 assumes at the point 
r = 0 the form 

Zag" (0) =eE,n(O) , (43b) 

with n(0) from (41). 
From the definitions (43a) and (43b) it follows that 
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This result is equal, apart from a numerical factor - 1, to the 
definition of R from Ref. 5 in the limit xR(1, i.e., 
E, %?r(ax)"'z2.4 kV/cm. We note also that for 
g(r)  =g(O) + 93 a distribution of the type (41) with 
a = b = R was obtained for n(r) earlier in Ref. 9. 

Proceeding in analogy with the case of the one-electron 
dimple, we can obtain the following eigenfrequency equa- 
tion for radially symmetric oscillations: 

Inasmuch asz-+m we have J,,, (z) -2-'I2 sin z, the integral 
in (45) diverges like cos z at the upper limit. The reason is 
that the quantity an(r)/ar, whose Fourier-Bessel transform 
is contained in the numerator of the integrand of (45), has at 
r = R a singularity of the type (R - r)"', so that this Fourier 
transform does not fall off rapidly enough as k-+ co . How- 
ever, Eq. (41) for n(r) was obtained by expansion near zero, 
and is therefore expected to agree well with the exact func- 
tion n(r) near the center of the dimple, but not at its edge. 
Replacing in (41) (1 - ?/R 2)112 by (1 - ?/ 
R 2)1'2 + 8 ,  8- + 0, we obtain an expression that is arbitrar- 
ily close to the initial one and has a weaker singularity near 
r = R. As a result of this substitution Eq. (45) takes the form - - Is la  ( z )  z"'@ 

dz 1 =I. (46) 

A numerical analysis shows that the root of this equation is 
(see Figs. 2 and 3) 

Q=2.35wn ( l l R )  (0.90-0-441). (47) 

Just as for a singly charged dimple, we obtain the frequency 
of the quadrupole oscillations, namely 

Q,,,=4.20wk ( i / R )  (0.80-0.60i). (48) 

Thus, in all the investigated variants of the problem of 
the natural transverse oscillations of a charged dimple, the 
fundamental eigenfrequency is of the size of the capillary 
frequency for wave numbers of the order of the reciprocal 
radius of the charge distribution in the dimple. The imagi- 
nary parts of the natural oscillations of the type considered is 
comparable with the real one, a fact explained by the emis- 
sion of surface waves. 

4. MULTIELECTRON DIMPLE ON THE INTERFACE BETWEEN 
LIQUID AND SOLID HELIUM 

Leiderer and coworkers have recently performed a 
number of experiments on the properties of a liquid-solid 
helium interface to which an external field clamped negative 
ions produced artificially in the liquid phase.'O." Among the 
results of these experiments were: a) observation of a multi- 
ply charged dimple on the solid-helium surface; b) determin- 
ation of the critical field for dimples with different charges; 
c) direct visual observations of the dependence of the dimple 
depth (at the center) on the time following a jumplike change 
of the clamping field. In the present section we describe the 
last of the foregoing effects. The starting point is an equa- 

tion'' that determines the evolution of the dimple relief{ (r,t ) 
with time: 

Here p ,  and p, are the respective densities of the solid and 
liquid phases, m4 is the mass of the He4 atom, and K is a 
constant that determines the crystal growth rate as a func- 
tion of the difference between the chemical potentials of the 
two phases: g = - K - p,), Pel is the electron pressure 
equal to eE, n(r,t ), and a is the surface tension on the liquid- 
solid interface (we neglect the anisotropy of a). 

Transforming the Fourier-Bessel representation in r 
and using the connection between p(k,t ) and 6 (k,t ) 

aE (kt t )  kq  (k ,  t)'=e\- Pi-Pz 
at  9 e=-9 

fi 

we rewrite (49) in the form 

- --- Pi aE(k' t ,  +ak2f (k ,  t )  +Pel (k ,  t )  . 
m,K at 

It will be shown below that owing to the very strong damping 
of the melting-crystallization waves (the temperature under 
the conditions of Refs. 10 and 1 1 was 1.35 K) we can neglect 
in (50) the second derivative 8 (k,t ) compared with the first, 
i.e., replace (50) by the equation 

where c = l/m4K. 
Let now the clamping field change at the instant of time 

t = 0 from El to E,, and then g(k , t )  will begin to change 
gradually from its initial value to a value < *(k ) correspond- 
ing to the static dimple at the field E,. If the ion mobility on 
the interface is large enough, i.e., if n(r,t ) at a given 6 (r,t ) is 
determined by the condition that the total potential (38) be 
constant, it is impossible to solve (5 1) in the general case. It 
can be done approximately, however, if the clamping field 
decreases jumpwise by many times or even drops to zero. 
Indeed, the electron pressure can then be neglected because, 
at least for not very large t, we have the inequality 

From (5 1) without Pel it follows directly that 

OI 

1 (n=O, t )  = I E (k ,  1-0) exp {- (E + 2 k 2 )  :} kdk 
0 PC 

e-"'~ '-pel (k ,  t=-0) --- j t 
exp{ - - ( k ~ ) ' }  k dk,  (53) 

a o 
xZ+kZ za 
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where 
~,=cp,/ep,g. ~c2=cRZp,la, x2=p,gela, z , lz l=?cZR'~l ,  

Rgx- '  is the radius of the dimple at the instant t = 0. It 
follows from (52) that the second derivative with respect to 
time can be neglected in (50): the characteristic rate of 
change of g is @g/c, whence 

for under the conditions of Refs. 10 and 1 1 we have a -0.2 
erg/cm, E - 0.1, and c - 1 O3 cm/sec. Since P,, is contained in 
(53) under an integral sign, it can be assumed that the true 
value P (k,t = - 0) [which should be determined by solving a 
system of equations of the type (38) and (39)] can be replaced 
with acceptable accuracy by the function (k ) corresponding 
to the charge distribution 

n (r) =(N/nR2) exp(-f /R2). 

With this substitution, the integral in (53) is easily evaluated. 
As a result we have 

f (0,t) -t (0, 0 )  e-"'lG (t/zz) /G ( 0 )  , 154) 

where 

G (x) =exp [ (I/,+ z) s2] El [ ( i lc+s)s2] ,  

s = xR and E, is the integral exponential function. 
For large t s r ,  it follows from (54) that 

The result (55) for 6 (0,r ) can be compared with the experi- 
mental data." According to these data, the characteristic 
relaxation time is of the order of 10-50 sec, and the time 
dependence of { (0,t ) is not purely exponential. These two 
statements agree qualitatively with (0,t ) determined from 
(55). In fact, in accord with the definition (53) of 7, the nu- 
merical value of this characteristic time is of the order of 
&-losecat E-0.1 andc-lo3 cm/sec. 

5. CONCLUSION 

We present some summaries. We obtained the eigenfre- 
quencies of the oscillations of singly and multiply charged 
dimples on the surface of liquid helium. The simplest modes 
of such oscillations are radial and quadrupole. The frequen- 
cies of the quadrupole oscillations are 1.5-2 times larger 
than the radial ones. In the case of a singly charged dimple 
we considered two approaches to the determination of the 
eigenfrequencies: 1) harmonic approximation, in which the 
electron is described by a wave function of the oscillator type 
with a localization length corresponding to a dimple ap- 
proximated by a partibolid, and 2J perturbation theory for 
the ground level when the clamping field is strong enough. 
The first method was used to find also equations for the ei- 
genfrequencies of the dimple in a magnetic field H normal to 
the helium surface. It was found that the damping of the 
oscillation increases with increasing H. 

The situation in the case of multiply charged dimples is 
qualitatively the same. The characteristic frequencies of 

such dimples are of the order of the capillary frequency for 
wave numbers of the order of the radius of the charged nu- 
cleus at the center of the dimple. An interesting modification 
of the problem of dimple oscillations on a liquid helium sur- 
face is the relaxation of a dimple on an interface between 
liquid and solid helium following an abrupt change of the 
clamping field. The relaxation time scale predicted by the 
theory is in qualitative agreement with experiment." 

It should be noted that althogh the resonances corre- 
sponding to excitation of the radial and quadrupole modes of 
the charged dimples should be relatively broad, neighboring 
resonance lines do not overlap strongly, since their excita- 
tion calls for an alternating electric field of different polar- 
ization (along the normal to the helium or along the helium 
surface). Besides, the possibility of visual observation of the 
dynamic properties of multielectron dimples, demonstrated 
in Ref. 11, can also be used to determine the type of oscilla- 
tions and the positions of the corresponding resonance fre- 
quencies. 

APPENDIX 

To calculate the integral 
* 

see-" ds 
I =  9- 

sa+p2 

we add and subtractp2 in the numerator, make the change of 
variable s2 = t, and replace p by the variable y = p4I3. We 
obtain 

This integral is a particular case of Eq. 2.3.2.3 of Ref. 12 
(a = 2, p = 0, r = 3/2, s = 1). This formula, however, can- 
not be applied here directly, inasmuch as at the indicated 
values of the parameters it contains a B function of negative 
argument. To get around this difficulty we take the limit as 
a-2 (this can be done by virtue of a corresponding theorem 
in mathematical analysis). Putting a = 2 + Aa we obtain 

s I 
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where 

A (3,n) = n/3, (n + 1)/3, (n + 2)/3, and the transitionAa-4 
was made in all expressions that are continuous in Aa. Using 
the expansion 

n 
L - - B(2+g/aAa,  -1-'/SAa)'=-l/Aa+O ( A a ) ,  
3 

y"+*"=y5 (1+Aa In y+O ( ( A a )  ') ) , 
-r (-l+Aa) =l lAa+$(2)  4-0 ( A a )  , 

and noting also that 

where 

we obtain an expression for I. Replacing in it y by p4I3  and p 
by - ip, we obtain the final expression for gk ) .  A formula 
for gk) is also derived with the aid of 2.3.2.3 of Ref. 12, but 
J,/,(z) is first expressed in terms of sin z and cos z which are 
in turn represented in the form Im exp( - iz) and 
Re exp( - iz). 
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