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It is shown that twofold modulation of a stationary noise wave in a linear dispersive medium can 
lead to the onset of a modulation echo, i.e., to reconstruction of the coherent response and to change 
of the wave envelope at the difference frequency of the modulation. A general interpretation of the 
considered effect is presented. An expression is obtained for the dispersion of a modulated one- 
dimensional noise wave with account taken of the irreversible phase and amplitude relaxations. 
Multiple modulation of stationary noise can lead to the onset of a modulation echo at combination 
frequencies of the modulation. 

PACS numbers: 42.65.G~ 

INTRODUCTION 

A characteristic feature of the phenomena known joint- 
ly as the "echo effect" can be taken to be the restoration of 
the coherent response of the medium to a sequence of signals 
under conditions when the response to each of them sepa- 
rately vanishes as a result of one collective process or an- 
other, even in the absence of losses. Echo manifestations 
were investigated, in particular, in and in solid-state 
physics.) In these cases the signal interaction that leads to 
the onset of the echo is the result of the nonlinearity of the 
medium. Similar effects, however, are possible also in linear 
media. The echo manifests itself then relative to such signal 
characteristics (say, its intensity) that can be subject to non- 
linear transformation. In essence, one such type is the model 
proposed by Vedenov and Dykhne4 to illustrate the follow- 
ing echo effects: after the light passes through a periodic 
lattice (raster), characteristic bands of light and shadow are 
produced, which become smeared out with increasing dis- 
tance from the raster; in the presence of a second raster, 
however, bands with a period L = (L ; ' - L , I ) - ' ,  where 
L , ,  are the periods of the rasters, are again produced at a 
definite distance behind the second raster. In this case the 
cause of the vanishing of the coherent response is the fanning 
out of the waves, and nonlinear transformation of the light 
intensity (modulation by the rasters) results in a "three-di- 
mensional" echo. Plasma echo,' a nonlinear phenomenon of 
kinematic origin, can be described in similar fashion. 

Of interest in its own right, in our opinion is the "modu- 
lation echo" effect produced when modulated waves propa- 
gate in a linear medium with dispersion. When such a wave 
propagates, the modulation is "washed out" by dispersion, 
while a second modulation of the wave at a different frequen- 
cy produces an effect at the modulation difference frequency 
(Fig. 1). This "temporal echo" can combine with the spatial 

one to form rather complicated modulation structures. The 
present paper is devoted to this question. 

Q1. MODULATION ECHO IN TWOFOLD MODULATION 

We consider the problem in the following two-dimen- 
sional formulation. A wave U (t, y, x) propagating in a linear 
isotropic uniform dispersive medium is subjected in the 
plane x = a ,  to harmonic modulation both in space and in 
time: 

U(t, y, a,+O) = U ( t ,  y, a,-0) mi cos (Bit-Kiy+cp,), 

(1.1) 

where U (t, y, a,  - 0) is a rapidly oscillating function which 
we shall hereafter call the carrier wave. If the spectrum of the 
carrier wave is specified in the plane xo < a ,  

OD 

C(o, kg, x.) = U ( t ,  y,x.)exp(-iot+ikuy)dy dt, (1.2) 
-OD 

the modulated wave at x, > a ,  can be represented in the form 
(see the Appendix) 

x cos[B,t-Kiy- (xi-a,) H, (a ,  k,) -tcpildk, do; 

here 

where k ( o )  is the dispersion law of the medium, v,,(w) 
= [k '(@)I-' is the group velocity, and the prime denotes dif- 

FIG. 1 .  Qualitative dependence of the dispersion of one-dimensional noise 

-4 
(U,( t ,  x ) )  harmonically modulated in amplitude at the points x = a ,  and 
x = a, on the spatial coordinate x. 
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ferentiation with respect to o .  Relation (1.3) means that the 
modulated wave can be approximately represented in the 
form of a superposition of amplitude-modulated plane 
waves whose envelopes propagate at the group velocity. 

Assume that the carrier signal is a stationary (in t and y) 
noise, so that the dispersion of such a noise wave behind the 
modulator satisfies the equation (see 11.19) 

OD 

mr2 
( ~ ( 1 ,  Y, 21) )= ljj G(o, k,, X ~ ) C O S ~ [ Q ~ ~  

( 2 ~ )  _" 

where G (o, k,, x,) is the spectral density of the power of the 
carrier wave, and the angle brackets denote averaging over 
the ensemble. Expression (1.5) can be easily transformed into 

(U"t, Y, 11)) 
=t/zm,2(Wo+ilz [xt (xi-a,) exp (2i(Q1t--Kty+.cpi) ) +c.c.l). 

( 1-61 

Here 
1 " 

~i(t'O)= 7 G (a,  kv, x0) erp (--2iHi (a, k,) c) dk, do, 
( 2 ~ )  

- w  

We=( UZ (t, J ,  xo) )=const. 

At large (x, - a,) the integrand in the expression for 
x,(x, - a,) contains a function that oscillates rapidly in k,, 
and o, so that the expression in the square brackets in (1.6) 
becomes small compared with W,, and the modulation van- 
ishes. The characteristic distance from the modulator, A ;+, 
at which this takes place is equal in order of magnitude to the 
interval in which the plane wave envelopes become dephased 
because of the difference between their group velocities, and 
is consequently determined from the condition 

This interval depends on the width of the frequency and an- 
gular spectra of the wave and is equal in the general case to 

where we have introduced an angle variable 6 that character- 
izes the direction of the wave vector relative to thex axis. For 
a one-dimensional noise wave (0 r O )  the interval over which 
the modulation vanishes is equal to ?~/(f2,Ak'), where 
A k l =  k L ,  - kLi,,. 

We assume now that in a certain plane the noise field is 
again modulated 

U ( t ,  y, a2+O) =U(t, y, a,-O)mz cos (Qzt-Kzy+cpz). (1.8) 

In the same approximation as above, the envelope of the 
doubly modulated noise wave is described by the expression 
[see (II.19)] 

~cos~[Q~t -K~y-  (2,-a,) Hi (o, k,) + ~ ~ , ] C O S ~ [ Q , ~ - K ~ ,  

where 

-Iff, (a ,  k,) (x,-a,) *HI (o, k,) (x2-al) I + (cp,*cp,))dk, do; 

(1.10) 

herei,j=O, 1, 2;aO=f2,= K,=p,=O,m, = 1. Within- 
creasing distance (x, - a,), the second modulation also van- 
ishes, since at large (x, - a,) the integrands in all W, ,, (ex- 
cept W,) again becomes a rapidly oscillating function, and 
the amplitude-modulated noise is transformed into a sta- 
tionary one. 

Under the condition L?,/f2, = K,/K, = p > 1, how- 
ever, there exists an "echo plane" with coordinate x, 
= (pa, - a,)/(p - I), in which the explicit dependence on x 
vanishes in the integrand of the expression for W2 - , . In the 
vicinity of this point the function W, - , is comparable in 
magnitude with the dc component of the noise dispersion, 
and this leads to the appearance of amplitude modulation at 
a difference frequency f2, - 0, and a wave number K2 - K,. 
In the x = x, plane the deviation of the noise from the sta- 
tionary one is a maximum and is equal to 

(U2(t, y,xa)>= - 1 (mlZm' ).{I + ?COS 2[ (Q,-L2,) t 

Near this plane, the shape of the echo is described by the 
expression 

where 

r ( (p-I) (xz-xe) ) =x* ( (p-1) be-x2) ) at xz<xe? 

From a comparison of (1.12) and (1.6) it can be seen that 
when the planex, is approached from the left the stationary 
noise becomes modulated, and its dispersion passes through 
the same stages as when it moves away from the modulator, 
but in reversed sequence. To the right of the plane x, the 
modulated beam again becomes stationary, and the noise 
dispersion behaves in the same way as with increasing dis- 
tance from the modulator. 
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42. GENERAL INTERPRETATION OF THE MODULATION 
ECHO 

It is possible to present for echo effects of various types a 
simple but quite general interpretation, based on the follow- 
ing circumstance. If two functions with conjugate temporal 
spectra 

V(t, r) = - C (o, r) exp (iot) do, ' i  2n - D1 

1 - 
~ ~ . ~ . ( t ,  r) = - J c * ( ~ ,  r)exp(iot) do, 

2n (2.1) 
-m 

are specified, then obviously U,,,, (0) = U ( - t,r). It is thus 
possible to reconstruct with time reversal the response U (t,r) 
of the medium to a certain external action, if a signal of the 
form U,,. (t,r) is again applied to the medium. 

In the experiments described in Refs. 6 and 7 they ob- 
served a photon echo pulse that reproduced, with time rever- 
sal, the shapes of two successive laser pulses incident on a 
ruby crystal. In the general case, however, the coherent re- 
sponse may also not reproduce the shape of the external sig- 
nal, as was indeed observed in most studies of photon echo as 
well as of other types of echo. In such cases the conditions 
that ensure an exact transformation of the spectrum into its 
complex conjugate were not satisfied. 

At the same time in optics there is a well known spatial 
transformation of a spectrum in the form 

C (o, r) +C* (a ,  r) . (2-2) 

It occurs in processes named wave-front reversal.' In this 
case the spectrum of a monochromatic wave 

is transformed into its complex conjugate, which is again 
equivalent to time reversal. 

Thus, echo and wave-front inversion effects, at least in 
the case of restoration of the signal structure, constitute one 
and the same transformation that effects a complex conjuga- 
tion of the spectrum. Recent investigations dealt also with 
mixed processes,9 when application of two laser pulses with 
complicated spatial structure produced in a nonlinear medi- 
um a photon echo that duplicated the spatial structure of the 
laser pulse. 

The modulation echo considered here has that impor- 
tant feature that the complex conjugate spectrum was not of 
the signal itself but of its dispersion: 

0. 

S (Q, y, 2 )  = t Ua(t ,  y, z) )erp (-iQt) dt. (2.4) 
-c4 

As follows from (1.61, after the first modulation the spectrum 
of the alternating component of the noise dispersion takes 
the form 

+ [ ~ ( x ~ - a , )  exp (-2i(K,y-cp,) ) 1'6 (Q+2Ql) 1'. (2.5) 

After the second modulation in accord with the law 
cos2(Olt - K g )  we have at x, < x, and x, - a,>A ,+ [see 
(1.1211 

The second modulation transforms the spectrum of the noise 
dispersion 

The interchange of the spatial variables y+-y, 
x , - a ,+x, - x, is of no significance and is explained by the 
fact that modulation causes time reversal only of the enve- 
lopes of the space-time harmonics, whereas the direction of 
propagation of the plane waves themselves remains un- 
changed. This means that the plane where the echo is pro- 
duced does not coincide with the plane of the first modula- 
tion, as was the case when the sign of the time was reversed. 
However, as follows from (2.7), the time-reversed behavior 
of the noise dispersion with increasing distance from the 
modulator is identical with the behavior of the dispersion as 
the plane xo is approached. 

53. MODULATION ECHO IN MULTIPLE MODULATION 

The analysis carried out in 5 1 for the case of two succes- 
sive modulations of a noise wave can be easily generalized to 
the case of multiple modulation of noise [see (A.19)]. Both 
the wave number and the frequency of the modulation echo 
are then combinations of wave numbers and modulation fre- 
quencies. Thus, in triple modulation of a noise wave at points 
ai with frequencies Oi and wave numbers Ki (i = 1,2,3) the 
behavior of the envelope is described by the expression 

where 

w.. =- 
1 t l * l  ' fi G (o, k,,, x.) oos 2{(Q.*Q*Q,) t 

(2~)' -_ 

here i, j, I = 1, 2, 3, with O, =KO = q, = a, = 0, m, = 1. 
We present below different types of echo responses that 

can arise in triple action on noise, depending on the temporal 
and spatial modulation periods, and on the positions of the 
modulators (we designate here p = R,/Ol, q = f13/f11, 
p = R,/O,). Each numbered case designates first the echo 
coordinate, next the expression for the noise dispersion in 
the plane x,, and on a separate line the conditions for the 
onset of the echo: 
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1 )  Coordinate (pa,-a,) / (p - I )  : 

' I ,  (m,m,) 2{1+11z cos 2 [ (Q2-QL) t- (KZ-Kl) Y 

+ (vz-91) I 1 wo, 

3) Coqrdinate (qas-a,) l (q-4)  : 
' I l(mlmzm,)Z{l+LIz cos 2[  (8,-Q1)t- (&-Kt) Y 

+ ( c p s - c p ~ ) l 1  WO, 
Q,IKi=QsIKs, q> I .  

4) Coordinate (Bas-a,) / ( I - I )  : 
~/,(mim,m,)'{1+'l, cos 2[(Q3-Q,)t-(K,-K,) y 

+ ((PS-qZ) ] ) 

Qz/Kz=QsIKs, p>1. 

5) Coordinate (qas-pa2-a,) / (q-p-1) : 
i/s(mlm2m3)z(l+11r cos 2[(Qs-52,-8,)t- (K,-K,-K,) y 

6) Coordinate (qas+pa2-a,) l(q+p-I) : 
(mlm2m3) '{I+'/ ,  cos 2[ (Q5-52,-52,) t- (KS-KZ-Kl) y 

w. INFLUENCE OF IRREVERSIBLE EFFECTS ON THE 
BEHAVIOR OF A MODULATED SOUND WAVE 

Among the physical questions connected with the mo- 
dulation-echo effect, those of importance are the influence of 
the dissipation on the behavior of the wave and on the shape 
of the echo, and the possibility of the appearance of an echo 
on going outside the framework of the group approximation 
(of space-time geometric optics), when dispersion spreading 
comes into play for each modulated spectral components. 
We consider these questions as applied to a one-dimensional 
wave of type U ( t j ) ,  which is modulated twice harmonically 
in amplitude at the points a ,  and a, with frequencies 0, and 
0,. In a homogeneous isotropic medium with losses, the fre- 
quency spectrum of the wave behind the second modulator is 
of the form [see (II.4)J 

C (o, xz )  ='l,mlmz exp[--i (xi-a,) k ( o ) ]  

X{[C (o+Q,+Q,, x,) exp(-i(a,--x,) k(o+Q,+Q,) -icp,) 
+C(w+Q,-Q,, xo)exp(-i(a,-so) k(o+Q,-Q,) +icp,)] 

~ e x p  (-i (a,-a,) k (o+Q,) -icp,) 

+ [C(o-Q,+Q,, x,) exp (-i (a,-xo) k (o-Q,+Q,) -Q,) 

+C (o-Q,-Q,) exp (-i (a,-x,) k (o-Q,-Q,) 
+iq , )]  exp(-i(az--a,) k(o-Q,)+i~cp,)}. (4.1) 

Here k (w) = x(o) + iy(w) is the dispersion law of the medi- 
um, including also the losses. The field of the wave behind 
the second modulator is described by the expression 

U ( t ,  x,) =U*+z+U-,+,+U,-,+U-1-2, (4.2) 
where 

-i (x,-a,) k (o)  ]do.  

We make in U,,, the change of variable air 
= w + R ,  + a , ,  and expand the functions k (o + R,) and 

k (w) in a Taylor series in the vicinity of the point ww(D,,,/ 
041). We assume the losses to be small. Then, to assess the 
effects of the losses and of the violation of the group approxi- 
mation on the behavior of the modulated noise, it suffices to 
take into account four terms of the expansion for x(o) and 
two terms for y(o). Transforming similarly the other terms 
of (4.2), we have 

OD 

mlm2 
U ( t ,  x,) = - I C(w,  x.)erp [iot-i (x2-x.) k ( w )  

2n 

WOS (A2+iB,)cos E+i sin(A,+iB,) sin (A,+iB,) sin E l d o ,  

(4.3) 
where 

1 
~, ,~=Q, ,~ t+cp , ,~ -Q~,~  ( ~ , - a ~ , ~ )  [x'  (o)  + -2 *"' (s) 

B, 2=-Qt,2y ( a )  ( ~ , - a , , ~ ) ,  E=QIQ,xM ( o )  (x,-a,). 

If stationary noise is used as the carrier wave, the dispersion 
of the noise far from the second modulator (x, - a,)A ,+ ) 
takes the form 

1 
+x' (o )  (Q2 (x2-a,) -52, (x2-a,) ) - - x"' (o)  (52, (x2-a,) 

2 
1 1 

X ( Q ~ ' + ~  Q,') -Q, ( x . - a . ) , ( ~  + 3- Q,' ))]I do.  

Relation (4.4) makes it possible to find the spatial scales that 
characterize the behavior of a modulated noise wave. First, 
the characteristic width A ,+ of the region in which the echo 
is localized can be defined in analogy with the definition, in 
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(1.7), of the interval at which modulation vanishes behind 
each modulator: 

&+=n/Ax1(Q2-a t ) ,  (4.5) 

where 
I 1  

AX'=X, , , .~-X~~, , .  

Second, if the condition 

I 'lzAx"'{Qz (xz-a,) (Q12+L/~Q22)  

-Qt (xz -a t )  (Q,2+t/3Q12)) 1 a n ,  

is satisfied, where Ax" = xzax - xzin, the dephasing of the 
envelopes is no longer reversible. In this case, as can be seen 
from (4.4), the argument of the cosine depends substantially 
on the frequency even in the vicinity of the point x, 
= (02a2 - O,al)/(O, - 0,). This means that a modulation 

echo can appear only under the condition 

I (x,-az> q  ( l + i l s q Z )  - (3,-at) ( q Z + t / s )  I <A, 

whereA = 27r(Ax"'0 : ) - I  is the characteristic interval of the 
irreversible phase relaxation. 

Third, the point in the vicinity of which an echo is pro- 
duced can be far enough from the modulators (x, - a,,, 
>A T2) to permit vanishing of the modulation with frequen- 
cies 2 0 ,  and u2,, and then the noise dispersion will vary 
harmonically with the echo frequency 2(0, - 0,). 

Finally, the losses in the medium lead in this approxi- 
mation only to damping of the wave at the characteristic 
distance Z- (2y)- '. 

The effect considered can be observed in a great variety 
of physical situations. We note, for example, the case of 
propagation of a one-dimensional electromagnetic noise 
wave in the ionosphere10 (electron density 8 X 10" cmV3), 
with a spectrum in the interval 10-100 MHz. If the noise is 
modulated at frequencies 0,/277 = 100 and 0,/27r = 200 
kHz at two points separated by a distance a, - a ,  = 20 km, 
it is easy to see that the characteristic scales x, - a ,  = 40 
km, A ;t = 2 km, A = 1300 km, Z = 200 km satisfy the re- 
quirements indicated above. 

Another example pertains to a noise microwave system 
in a laboratory facility for plasma heating. If the plasma and 
electron frequencies are assumed to be 10" Hz and lop3 
sec-', respectively (see, e.g., Ref. lo), then for a spectrum 
concentrated in the interval wmin127r = 1.1.10" Hz, omax/ 
27r = 2.10" Hz, at modulation frequencies 0,/212 = 10' and 
0,/2n = 2.109 Hz, the scales indicate are A ,+ ~ 0 . 1  m, 
A ~ 6 0  m, Z ~ 5 . 1 0 ~  m. 

APPENDIX 

We shall show that a two-dimensional wave amplitude 
modulated in the planes x = ai ( I  (i<N) in accordance with 
the laws ' 

mi cos (Q,t-Kiy+qi)  (-4.1) 

and propagating in a homogeneous isotropic lossless medi- 
um is described approximately in the region x, > a, by the 
expression 

Qik' ( o )  -Ki - " I} dk. d o ,  
k ( o )  

( A 4  

where k (a) is the dispersion law of the medium, the primes 
denote derivatives with respect to o ,  and C (a, k,, x, - , ) is 
the space-time spectrum of the wave at the point 
x, - , (a, - , < x, - , <a,), where M is an integer, i.e., 

00 

= JJ ~ ( t ,  y ,xM-,)exp(- iwt+ik,y)dy at. (A.3) 

At M = 1 Eq. (A.2) connects the initial unmodulated carrier 
wave U(T, y, xo) (where x, < a,) with the wave U ( t ,  y, x,) 
behind modulators arranged in tandem. 

Before we proceed to prove (A.3) we present a relation 
that connects the spectrum C (o, k,,, xi- , ) of the wave in an 
arbitrary plane xi - , modulator (a, - , <xi  - , <ai ,  Fig. 2) 
and the spectrum in the plane xi located behind this modula- 
tor (ai <xi  < a i  + , ).I1 In a homogeneous medium this rela- 
tion is of the form1, 

C ( w ,  k,, xi) ='lzmi {C ( o + Q i ,  k,+Ki, xi- , )  

~(k~(o-Qi)-(k~-K,)~)'~+~rpi] ) 

x exp { - i  (x i -a i )  [ k Z  ( o )  -ky2] ' h } .  (A.4) 

In Eqs. (A. 1)-(A.4) and in the main text of the article the 
modulators are numbered along the propagation direction of 
the wave, i.e., ai  increases with increasing i. Here, however, 
to simplify the proof it is convenient to number the modula- 
tors in opposite order (see Fig. 2). To this end we introduce a 
new index j = N - i + 1, and then the signal is amplitude 
modulated in the plane x = ii,. in accord with the law 

iiij cos (Q, t -a ,y+qj ) ,  

where, obviously, 

( 2 , 4  E, Q ,  @ ) I = ( x ,  m, Q ,  K, q ) N - j + t  

and, conversely, 

( x ,  a, m, 51, K, q ) i = ( I ,  a", iii, a, a ,  olN-i+, .  

Now (A.2) takes the form 
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We prove (A.5) by induction. We first show that (A.5) is valid 
at N - M + 1 = 1. We expand the two-dimensional wave 
U (T, y, f ,) in an arbitrary planef, > (?, in a space-time Four- 
ier integral 

I '  
~ ( t ,  y, L) = JJ .(a, ku, f l )  expi-ik.y+iotIdk, do. 

(2n) -m 

It  follows from (A.4) that 

where 

The function U2(t, y, 5,) differs from U,(t, y, i,) only in 
the signs in front of fi,, R,, and @,. We consider therefore 
only U,. We change in (A.6) the integration variables mi' 
= o + a,, k; = k + R, and expand in a Taylor series the 

function [k '(oi' -k,) - (k - k,)'] F, near oi' and k 
confining ourselves to terms linear in f2, and k , :  

(we omit hereafter the superscript "ir" in k ; and mi'). 
It follows from (A.6) and (A.7) that 

=-- I "' (J ~ ( o ,  k,, f z )  exp[iot-ikuy-i(fl-5.) 
. ( W Z  2 - m  

+ : i ( f  l-a"l) 
[I- (k,lk ( a )  )']'" 

Transforming in similar fashion U,(t, y, x,), we obtain 

We have thus proved the validity of (A.15) in the case 
N - M + 1 = 1. Assume now that (A.5) is valid in the case 
N - M + 1 = n - 1 (where n > 1 is a positive integer), i.e., 

n-i 

x(k2(o) -k:)']n cos{[Qit-Rjy+qj] 
j= I 

- ,  
(P1-iij) 

[I- (k,/k ( a )  ) Z ]  '.'. 

(A. 10) 

On the basis of this assumption, we shall prove that relation 
(A.5) takes place at N - M + 1 = n, where n is an integer. 
Just as above, starting from (A.4), we represent U (t, y, 2,) in 
the form 

- (k.+R.)2]"-iC) cos f [Sb,t-Rjy+g] 

(A. 1 1) 

The expression for U2(5 y,?,) can be obtained from (A. 1 1) by 
reversing the signs of a , ,  K,, and G, (where 1 g < n ) ;  we con- 
sider therefore U,(t, y, 2,). We make in (A. 11) the change of - 
variables mi' = o + b, and k ; = ky + K ,  and expand the 
function in the argument of the cosine and the function in the 
argument of the exponential in Taylor series about mi' and 
kt ,  retaining in both expansions the terms linear in b, and 
K, (1 G<n)  the superscript "ir" of oi' and k ; will be omitted 
hereafter). Then 

(A. 12) 

Transforming U,(t, y, f ,) in similar fashion we see easily that 
relation (A.5) is valid at N - M + 1 = n. Consequently 
(A.5), meaning also (A.2), describes the behavior of the wave 
at any number of modulations. 

We transform in (A.2) to integration with respect to the 
angle 8 = arcsin[k,/k (a)] rather than with respect to ky : 
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~ e r p  ( io t - ikr )  fimi cos{ [at-Kiy+rpi] 
,=>f e 

-(xN-ai) ( 
v,., ( 0 )  cos 0 

-K.  tg 0 )} d0dw. (A. 13) 

wherer = xxO + yyO, k = k, x0 + ky yo = k (o) (xO case + y- 
o sine ), xO, and are unit vectors in the directions of the axes 
x and y. 

The region of validity of (A.2) and (A. 13) is bounded by 
the conditions 

(x3---xi) Kn [P (Q,, K , )  Q+Q (a,, K t )  Kt1 -', (A. 14) 

P(Q,, Ki) = --- { ? [ I -  
o cos B o 

If the carrier wave U (t, y, xo) is noise stationary in time and in 
y, we can obtain an expression for the dispersion of this noise 
wave in an arbitrary plane x, behind the modulators. In 
(A.2) we denote for brevity the argument of the cosine by 
$,(o,k,,). We shall assume that the mean value of the noise at 
the input is zero, and then the dispersion of the random sig- 
nal is 

1 " 
( u 2 ( t ,  y . 2 ~ )  )= 71 1 5 1 (C(o, k.. x0)C'(a1, k Y 1 ,  1 0 ) )  

( 2 n )  -_ 

Xesp { i ( o - o l ) t - i  (k , -kg1)  y - ~ ( X N - X ~ )  [ ( k 2 ( o )  -kUZ)'" 
N 

- ( k z ( o t )  - ( k u 1 ) 2 ) " ] ) n  rn? cos * ( a ,  k u )  
1-1 

X cos $i ( a t ,  k,') dkudkvldwdot. 

(A. 16) 

The camer signal U (t, y, x,) is a noise stationary in time and 
in y, so that its spectral components are delta-correlated13: 

(C(o, k,, z,)C'(oJ, k,', xo) ) 

=G(o, ku7 ~o)6  lo4-@) 6 (k,l-Ic,) 7 (A171 

where G (0, ky , xo) is the spectral density of the power of the 
carrier wave 

Behind the entire system of modulators, as follows from 
(A. 16) and (A. 17), the dispersion of such a noise takes the 
simple form 
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