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The two-dimensional problem of thermal self-action of light in a fixed medium is considered in the 
geometric-optics approximation. An exact solution of the Cauchy problem is obtained for the given 
approximation. Exact expressions for the mean intensity and phase gradient of the beam behind the 
random phase screen are obtained on the basis of the solution of the Cauchy problem, i.e., the 
average over a random initial phase. The same model describes also the thermal self-action of a 
spatially incoherent beam. It is demonstrated that to obtain finite expressions for the mean square 
intensity it is necessary to go beyond the framework of the geometric optics approximation. Some 
concrete examples are considered. 

PACS numbers: 42.65.5~ 

I. INTRODUCTION 

Propagation of high-power light beams in a medium 
changes the characteristics of the latter, particularly its tem- 
perature. This changes the refractive index of the medium 
and as a consequence alters the light beam itself. The ensuing 
self-action problems are difficult to treat analytically. They 
are frequently made complicated by the fact that the charac- 
teristics of the light beam as it enters the medium can be 
random functions. The investigation of such problems, 
called the random-phase-screen model, is the subject of an 
extensive literature in radiophysics (we mention only Refs. 1 
and 2 and the bibliography therein). Within the framework 
of this model one describes the passage of the wave through a 
thin layer of a randomly inhomogeneous medium, such that 
the phase of the wave becomes randomly modulated, while 
the amplitude remains a definite function. The phase-screen 
model is used to describe the propagation of microwaves 
through the ionosphere and the flickering of stars in the ran- 
domly inhomogeneous interstellar and interplanetary medi- 

In addition, the propagation of a beam whose initial 
phase is a random function is included among the studies of 
the propagation of partially coherent beams4 

Different moments of a field are described in linear sta- 
tistical radiophysics either by averaging of the model equa- 
tions and solving the obtained linear equations for the field 
moments, or by averaging the exact solutions. In the nonlin- 
ear case, such as thermal self-action of light, averaging the 
model equations leads, by virtue of their nonlinearity, to the 
appearance of a coupled series of equations for the moments. 
To uncouple this system and to obtain a final closed system 
equation for the first, most interesting moments of the field, 
it is necessary either to terminate the chain at the required 
step and close the system, by introducing additional assump- 
tions, or introduce additional notions, which do not follow 
from the formulation of the problem, concerning the statisti- 
cal character of the solution. 

Averaging of the exact solutions of the model nonlinear 
equations seems to be more promising. The number of self- 
action models for which an exact solution for a sufficiently 
wide class of initial conditions is known is, however, rather 

small. In addition, in those cases when such a solution is 
known, for example in the case of cubic Kerr nonlinearity 
described by an equation of quasi-optic type with local cubic 
nonlinearity, there is no known averaging of the solution 
over the random initial data. The model solution of the Kerr 
effect was described by the inverse problem method,' and the 
complexity of the problem has not permitted so far an aver- 
aging, say, over the random initial phase. 

It is of interest in this connection to consider a simple 
model of thermal self-action of light, for which it is possible 
not only to obtain exact solutions, but also to average them 
in an exact manner over a random initial phase, and thus 
describe the average intensity and average phase, as well as 
the second moments and their spectra, for a sufficiently large 
class of initial conditions. 

We shall consider a two-dimensional model of station- 
ary thermal self-action of light in the geometric-optics ap- 
proximation. The random phase screen will be assumed to be 
Gaussian and statistically homogeneous, i.e., we shall as- 
sume that the initial phase of the beam is a statistically ho- 
mogeneous random function with a Gaussian distribution. 
We assume for simplicity that the initial average phase is a 
constant. In Sec. I1 we formulate the model equations of the 
problem and obtain exact solutions. In Sec. I11 we find ex- 
pressions for the average intensity and average gradient of 
the beam phase, of the second moment and of the intensity 
and its spectrum. In Sec. IV, using the general expressions of 
Sec. 111, we consider the behavior of concrete beams and 
compare the cases of a definite and random initial phase. An 
interesting feature of the considered model is that it is possi- 
ble to obtain in it moments of arbitrary order: 

where ui = u(q,xi) is the beam intensity and q, = q(z,,x,) is 
the gradient of the beam phase, but the expressions for the 
moments become much more complicated with increasing n 
and m. Nonetheless, the operation (...) of averaging over a 
random initial phase can be carried out in explicit form for 
any moment of the field. 
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IL MODEL EQUATIONS. EXACT SOLUTIONS 

To obtain the geometric-optics equations we shall use 
the quasi-optics equations and the stationary heat conduc- 
tion equation; these equations describe the effect of station- 
ary thermal self-action in an immobile m e d i ~ m . ~  We neglect 
the damping of the beam and take absorption into account 
only in the heat-conduction equation: 

Here E = + 1, where E = 1 describe self-focusing and 
E = - 1 the self-defocusing of the beam E; Tis the tempera- 
ture of the medium. Representing the field E in the form 

E=n'keiq, 1 E 1 2 , ~  

and 
neglecting the term d 2u"2/dx2, we obtain the geometric-op- 
tics equations that serve as the basis for the analysis that 
follows (q = dq/dx): 

Equations of this type were obtained in Ref. 7, which starts 
out with a cylindrically-symmetric analog of the system ( I ) ,  
and in which the damping of the beam is taken into account 
in the quasi-optics equation. In Ref. 7, however, is given an 
exact solution only for an initial beam with a planar phase 
front. To describe the model of a random phase screen it is 
necessary to know the solution at an arbitrary initial phase. 
We proceed now to the plan of the solution. 

An exact solution of the system (2) is obtained by using a 
nonlinear transformation of the coordinates (z,x) to reduce 
the nonlinear system (2) to a linear form. This transforma- 
tion was obtained by applying the Estabrook-Wahlquist 
method to the system (2), but it can be "guessed" directly. 
The gist of the methods is an algorithm for constructing the 
system, of the form 

such that the conditions of consistency of the system (3) coin- 
cide with the equations of system (2). For the sake of brevity 
we present only the result of the use of the Estabrook-Wahl- 
quist method, namely the conditions for the consistency of 
the system 

where y is an arbitrary constant, coincide with the system 
(2). Solving the first equation of the system (4) with respect to 
U, we obtain 

u(z, x) = (Ko(z) -79-)P (2, x) +yq+&y2F(z, x) G(z, x) . 
We have put here 

The initial conditions are assumed to satisfy the relations 

u(0, x) -+O, I-+*-, 
q(z, x) +q-=rtz+$l, x+-m, r,, - const, 
q (z, x) - t q + = ~ ~ z + $ ~ ,  x++m, rz, ,pz - const; 

r, and r, are determined from the initial conditions 

KO(~) is the constant of the integration with respect to x. 
We elucidate the behavior of U as x-+ + a. As 

x 4  - co we have 

U(z, x) +KO (z). 

Asx-t + W ,  

U(z, x) -+ (Ko(z) -yq-)F(z, +w) 

+y q++sy2P (z, +w) G (z, +-I. 

From the first equation of the system (2), which is simply a 
conservation law, it follows that 

Substituting the asymptotic forms of U as x-+ * 03 in the 
second equation of the system (4), we obtain 

aG (z, f a )  
(I-yri)Fo+yr~+~yzF~ az  = 1. 

We find now the expression for the function G (z, + w ) 

i-yrz-(l-~rl)Fo 
G (z, +w) = z+G (0, +w), 

ey2Fo 

If we now put y = iA and take the Fourier transform of 
G (z, + w ) with respect to A, we obtain 

OD 

j G (z, +m) e-'" dh 
- m 

(0 

= J'd~lT=(z, Y) 16(sTs(z, r)-r)q(z, y)=q(z,x) I = : ~ ~ ~ - , .  
- m 

( 5 )  
From a careful examination of (5) it is clear that this is in fact 
the sought nonlinear transformation. In fact, let us make a 
nonlinear transformation of the coordinates: 
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where r is defined as 

It is easy to show that 

d r 
-=- 

d r  
-EUq. EU, -- 

ax d  z 

Using (6) and (8) we easily obtain from the system (2) the 
following system in terms of the variables z and r: 

The initial conditions u(O,r), q(O,r), x(0,r) are determined 
from the initial conditions u(0,x) and q(0,x) with the aid of 
the transformation (5). If the initial intensity profile u(0,x) 
satisfies 
u(0, x) >O, Xi<x<x2; u(0, x) =o, xdXi, x>X2, 

(10) 
where X, and X2 can be either finite or infinite, we get 

Ill. PHASE-SCREEN MODEL 

We assume now that at the entrance into the nonlinear 
medium in which the thermal self-action takes place the 
light beam has a definite intensity profile u(0,x) and a ran- 
dom phase. Since the equations of the system (2) contain not 
the phase itself but its gradient q = aq/ax, we shall assume 
that the random function q(0,x) has a Gaussian distribution, 
a zero mean value, and a correlation function 

<q(O, X) q(0, y) )=Q(x-Y) =Qob(x-y) b(0) =I; (15) 

Q, is the variance and (...) denotes averaging. Using the 
results of the preceding section, we find the average intensity 
(u(z, x)), the average phase gradient (q(z, x)),  the second 
moment of the intensity (u(z,x,)u(zg2)), and its spectrum. It 
will be made clear below that no basic difficulties are en- 
countered when finding (q(z,x)q(z,y)) and other moments, 
but the expressions become extremely cumbersome and will 
not be given here. 

To find the average intensity we use (13): 
I - 

( u ( z , x ) > = ( ~ ~ ) - ' l l ( J d r J  dhexp{ih[x(z,r)-XI)). 
I, -m 

We substitute for x(r,z) its expression from (12) and take the 
definite terms outside the averaging sign: - 

rzz 
(u (z, x) )= (2n) -" Jdr Jdh exp {ia +x (0, r) -XI } 

T I  -m 

1 1  

z(O,r)= J ~ ~ ~ ~ ( o ,  Y)a [ e j u ( ~ , t ) d t + r l .  X(exp {ihzq (0, r)) ). (16) 
XI XI 

We consider separately the averaged term, using (22): 
The solution of the system (9) for the initial conditions 

(1 1) is of the form (exp {ihzq (0, r) ) > 
!I (z, r) =rz+q (O,r), 

Xz 

d q  (0, r )  - i 
U - ~ ( O , ~ ) - ~ ~ - - ~ Z I  d r  2 ,  

(12) 
= (ex~{ihz XI J dyq (0, Y) U(O, Y) 6 [ E X, j U ( o ,  t ) d t + ; ~ ) )  

rz2 
x (z, r) = - +zq (0, r) +x (0, r) . 

2 

Relations (12) describe the solution of the system (2) in terms where we have put 
of the variables z and r, and to obtain a solution in terms of 
the initial variables z and x it is necessary to carry out a ~ (Y ,z , r , h )=hzu(0 ,~ )6  [I & u(o,t)d<+r]- (17) 
nonlinear transformation inverse to (6), namely - - 

TI We recall that u(0,x) satisfies (10). In this case we obtain 
u(z,x)=Jdr6(x(z,r)-x), (1 3) directly 

q ( z ,  x) = Jdrq (z, r) u-1 (z7 r) ti (x (z, r) -x) . (14) 
ri 

(exp {ihzq (0, r) ) ) =exp {-'/,h2z2Q (x (0, r) - y (0, r) ) ) 

Expressions (13) and (14) yield indeed the solution of the We substitute this expression in (16) and integrate with re- 
system (2) for the initial conditions u(0,x) and q(O,x), where spect to A. We obtain an expression for the average intensity 
the functions u(z,r), q(z,r), and x(z,r) are defined in (1 1) and (2n) -11, 'a [rz2/2+x (0, r) -xI2 
(12). We emphasize once more that (13) and (14) are exact (u(z, x))= Tj exp{- r .  (19) 

zQo 2z"o solutions of the two-dimensional model of stationary ther- T ,  

ma1 self-action in the geometric-optics approximation. We Transforming in (19) to integration with respect to the initial 
proceed now to use the obtained exact solutions in the model variable y = x(0,r) we obtain the final expression for the 
of the random phase screen. average intensity 
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We have put here 
+y-z ] ' ( ~ z ~ Q ~ ) - ' )  dy. 

N Z N  (z ,  r, x )  =rz2/2+x (0, r)  -x. 

The function 

G;(z, x; 0, Y )  

(20) 
Using (1 8), we can easily show that 

<q (0, r) exp {ihzq (0, r )  ) > =ihzQo exp {-'I2Q0h2z2), 

( aq(07r)  a r 
exp {ihzp (0, r)  )) -0, 

can be interpreted as the "probability Green function" of the 
system for the average intensity 

It follows from (19) and (20) that the average intensity 
( ~ ( z j ) )  is everywhere a finite smooth function. The spec- 
trum of the average intensity can be easily shown to be given 
by the expression 

We obtain now an expression for the average gradient of 
the phase: 

( q  (2, x )  ) 

( q (0, r)  exp {ihzq (0, r) ) ) -0. 

Thus, P, = P, = 0, and for the average phase gradient we 
obtain 

NZ 
(n2-N) exp - - 

r, 
2 { 2z2Qo 

Transforming, as in the case of the average intensity, to inte- 
gration with respect to the variable y = x(O,r), we obtain for 
the average phase gradient 

-1 
rt 

= (2n)-% ( J drJ dhq(z, r )  u-((z,  r)exp{ih[x(z,  r) - X I ) ) .  
(22) 

We find now an expression for the second moment of 

Using (12), we get 
4 

rs 

"' ) e " ~ q  (0, r)exp (ihzq (0, r) ) ). = (2n)  -.hJ drJd~ (u- l , ,  r)- - 2 
TI 

the intensity 

(U (~1x1) u (~2x2) ) 

vx - 
= (2n) - ' J  J dr dp J J  dl  dprikN~i~N2(erp{ihz,g(0, r)  

, - w  

+ipzzq(O, P )  ). 

(23) 

We have put here 

N i = N ~ ( Z ' ,  - r, zl)=rzi2/2+x(0, r)-x!,  N ~ E N z ( z z ,  P ,  ~ 2 )  

=pz,'/2+z(o, p )  -"2. 

Considering the averaged term, we can find 
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( e x p  {ihzlq ( 0 ,  r )  +iyz2q ( 0 ,  p) 1 ) If, using (25), we consider the mean square of the inten- 
sity, we obtain 

< u 2 ( z , x ) )  
b=b(x(O,  r ) -x (O,  p ) ) .  

(2n)- '  
= x J J d ~ t ' d 2  ~ ( 0 ,  y 1 )  ~ ( 0 ,  y2 )  Substituting the last expression in (23), integrating with re- [ I -b2] '"  

spect to A and p, and changing to the integration variables -=I - - 
y ,  = x(0,r) and y, = x(O,p), we obtain for the second moment 
of the intensity 

(Ni-Nz)2+2NiNz(l -b)  
exp {- 

2z2Q0 ( I - b 2 )  

< u ( z , ,  x i )  u(z2,xz) >= - u ( 0 , ~ l ) u ( o , ~ 2 )  
(2n) - t  Z I Z ~ Q O  { j a y t  d ~ 2 [ 1 - b 2 ( y 1 - y 2 )  ] 1 ~ 2  We make the change of variables: 

In this case N, and N, take the form 

At z, = z, = z the expression (24) takes the form 

( u ( z , x I ) u ( z , ~ Z ) Y  

A function of the form 

can be interpreted in analogy with the function (21), but now 
already as a "two-point probability Green function" of the 
second moment of the intensity, in which case we have, natu- 
rally, 

~t ( z ,  x ;  0 ,  Y )  = JG(Z,  x,  21 x2;  0 ,  Y ,  0 ,  y2)dx2,  

1f J- u ( o ~ ) d ~  = 1. The spectrum of the second moment of the 
intensity is equal to 

Sz (21, zz, k i ,  k2) 

We obtain then the following estimate for the mean square of 
the intensity 

We recall that b (0) = 1. For the correlation function, which 
behaves near zero like 

b ( y ) = l - y e ,  y 2 < l ,  (26) 

we obtain 

This means that the exact geometric-optics value of the 
mean squared intensity behind a random phase screen with a 
correlation function of the type (26) has in the case of ther- 
mal self-action a logarithmic singularity everywhere at z > 0 
for all x and for any admissible profile of the initial beam 
intensity. To obtain the final value of the mean square inten- 
sity we must go outside the framework of geometric optics. 
We shall not deal here with these questions. We refer only to 
an investigation9 of a linear medium, where an expression 
was found for the mean squared intensity in a randomly in- 
homogeneous medium in the quasi-geometric-optics ap- 
proximation. The result contains a term the form Indo, is a 
small quantity, and can be interpreted as the minimum ad- 
missible area of the light tube. In the linear case9 we have 
do = 2L.dk12, where k is the wave number, I is the microscale 
of the inhomogeneity of the medium, and Lo is the length of 
the route. In our problem, apparently, to obtain the final 
value of the mean square of the intensity we can introduce a 
similar small parameter. 

We note also that if the correlation function b behaves 
near zero not like (26), but is of the form 

b ( y ) = l - y 2 " ,  n a 2 ,  
this corresponds to the random function q(0,x) being a ran- 
dom quantity: 
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and we obtain a situation that coincides fully with the defi- 
nite case, when ~ ( O J )  = 0. 

IV. EXAMPLES OF CONCRETE BEAMS 

In this section we consider briefly the behavior of con- 
crete beams in the phase-screen model for thermal self-ac- 
tion, and compare them with the case of a definite initial 
phase. 

Consider a rectangular beam with intensity profile 

Everywhere in this section we consider the case of symmetri- 
cal temperature, i.e., we assume that r ,  = - r,. This means 
that we disregard deflection of the beam in the nonlinear 
medium. In the definite case, i.e., whenq(0,x) = 0, we obtain, 
using the results of Sec. 11, 

The beam, as can be seen from (28), retains its rectangular 
form, and in the case of self-focusing (E = 1) the intensity 
becomes infinite at z = fl. 

We see now what happens when ~ ( O J )  is a random func- 
tion with a Gaussian distribution, zero mean value, and cor- 
relation function (15). Using (19) or (20) we can obtain 

In the case of self-focusing at z = fl we find 

< u ( z ,  X )  ) I .=/;= (nQo) -Ih exp {-x2/4Qo). 

As Q0+m this expression tends to a 8-function. The average 
intensity on the beam axis is 

The spectrum of the average intensity is of the form 

Qok2z2 sin k (4-ez2/2)  
S, ( z ,  k )  =2 exp - - 2 k ( l - e z2 /2 )  ' 

Investigation of the integrals in (19) and (20) for more 
general beams is a rather difficult task, and the use of a com- 
puter is preferable. For a beam whose initial profile is of the 
form 

u(0, x ) = ( l - x Z ) 0 ( I - 1 x 1 ) ,  

a computer was used to calculate the integrals (20) and to 
construct the beam-intensity profiles for different values of 
z. Both in the case of self-focusing ( E  = 1) and in the case of 
self-defocusing (E = - 1) a stratification of the beam was 
observed, similar to that noted in Ref. 10. A numerical inves- 
tigation of the two-dimensional problem of thermal self-ac- 
tion was carried out in Ref. 10 on the basis of Eqs. (I), with 
the initial field a random function with a Gaussian distribu- 
tion. 

V. CONCLUSION 

The reported investigation of the model of a random 
phase screen in the problem of thermal self-action of a light 
beam was based on solution of the Cauchy problem of the 
system (2)-a two-dimensional geometric-optics approxi- 
mation of the thermal self-action problem in an immobile 
medium. It turns out that the system (2) is used, in addition, 
to describe entirely different physical effects. 11.12 In Ref. 1 1 
it is considered as a one-dimensional Newtonian approxima- 
tion of general relativity theory, and in Ref. 12 almost the 
same system is used to describe one-dimensional motion of a 
plasma with cold ions. Consequently the results of the pres- 
ent paper can be used not only in nonlinear optics. 

The author thanks V. V. Vorob'ev, V. I. Tatarskii; I. G. 
Yakushkin, as well as V. I. Talanov for helpful discussions 
and for interest in the work. 
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