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A method is developed for calculation of cross sections for elastic scattering in a system of three 
particles at low collision energies. The method consists of expansion of the wave function of the 
system in an adiabatic basis and reduction of the ensuing multichannel scattering problem with a 
large number of closed channels (about 300) to an eigenvalue problem. The possibilities of the 
method are demonstrated by a calculation of the cross section for elastic scattering of mesic 
hydrogen by the nuclei of the hydrogen isotopes. 
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1. INTRODUCTION 

In various problems of the physics of mesic atoms it is 
necessary to know the cross sections for elastic-scattering 
processes in a three-particle system of the type 

where a and b are nuclei of hydrogen isotopes with masses 
Ma )M, ,p is a meson with mass m, , and n is the set of quan- 
tum numbers characterizing the ground state of the (up) 
atom. Examples of such reactions are the elastic scattering of 
mesic deuterium atoms by protons 

(dp)  I,+P+ (dpj  ,,+P, (24  

or of mesic tritium atoms by deuterons 

( t p )  ,,+a+ ( t p )  rs+d, (2b) 

scattering ofpp and tp atoms in the singlet hyperfine-struc- 
ture state by the nucleip and t: 

and so forth (see the reviews in Refs. 1-3). 
At low collision energies (E 5 100 eV) the best means of 

calculating the cross sections for such processes is the adia- 
batic representation in the three-body problem (see the re- 
view4). Starting with the work of Gershtein' and Cohen et 
U Z . , ~  during the last quarter century several such calculations 
have been made and their results agree to a great extent with 
experiment (see the reviews1-3). However in some cases, for 
example in calculation of the cross section for reaction (2c), 
the results of the earlier  calculation^^-^ disagree radically 
with the data of various experiments.&" These discrepan- 
cies, as will be shown, are due to the fact that in all previous 
calculations the approximation of two states of the adiabatic 
basis was used. 

In the present work we have made use of an algorithm 
for numerical solution of the multichannel scattering prob- 
lem which arises in the adiabatic representation of the three- 
body problem. This algorithm permits us to go beyond the 

framework of the two-state approximation and to calculate 
as accurately as is required the cross sections for low-energy 
elastic-scattering processes in a system of three charged par- 
ticles. 

The essence of the method presented for solution of the 
multichannel scattering problem consists of reduction of the 
problem to the solution of an eigenvalue problem for a sys- 
tem of ordinary differential equations describing the scatter- 
ing process in the adiabatic basis. This approach was used by 
Shore1* in solution of the one-channel scattering problem 
and is close to the approach of Ref. 13. Application of the 
proposed approach became possible after the development 
of effective algorithms14 for solution of the Sturm-Liouville 
problem for systems of differential equations in many di- 
mensions, and also for calculation of the effective potentials 
of the three-body problem in the adiabatic representation." 

The method developed in the present work has been 
used for calculation of the cross sections for elastic scatter- 
ing of mesic hydrogen atoms by nuclei of the hydrogen iso- 
topes. Knowledge of these cross sections is necessary for de- 
scription of the kinetics of muon catalysis of nuclear fusion 
reactions. l6 

2. FORMULATION OF THE PROBLEM 

In the adiabatic representation the wave function of a 
system of three particles with total angular momentum J and 
projection m,, Y i,(r,R), where r is the coordinate of the p 
meson and R= { R,O,p) is the radius vector joining nuclei a 
and 6,  is expanded in the complete set of solutions pm (r;R ) 
and pm (r;k,R ) of the discrete and continuous spectra of the 
two-center problem with sets of parabolic quantum numbers 

im= [nin2mpl, [n~mpl  

(according to the classification of separated atoms4*17): 

Y .: (r, R) = rp, (r, R) R-'G: (R) ~ m m :  ( t t  e.0) 
jm 
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the initial Schrodinger equation of a system of three charged 
particles 

( A - E )  Y (r ,  R) =O (4) 

(5) takes as R-+ m, with accuracy to terms of order R - 
form 

.2, the 

( R )  = { j J  (k.vR) - t i t  ( k ~ )  n~ ( ~ N R )  I 
R> I 

after substitution into it of the expansion (3) and averaging 
over the coordinates r, 8, and q, reduces to a system of 2N ---t sin (kNR--ln/2+6 (kN) ) , 

R-== ordinary differential equations for the function x,(R) 
=x Jm (R ),xjlm (k,R : 

Here 2N is the number of terms in the expansion (3), The leading terms of the asymptotic form of the solutions 
xib (R ) have the form 

x1b(R) =A exp i -GR) ,  

wherexi, (R ) andxi, (R ) are the radial wave functions of the 
relative motion of the nuclei and correspond in the asympto- 
tic region R-+CQ to the subsystems (up) + b and 
(bp) + a, Uiajb (R ), and so forth are the effective potentials 
constructed in Refs. 15 and 18, the asymptotic behavior of 
which has the [In the Appendix it is shown that terms proportional to R - ' 

in the nondiagonal potentials Uij (R ) do not change the 
asymptotic behavior of the solutions (9).] 

The asymptotic expressions (9) for the solutions x,(R ) 
and xib(RT) of the system of equations (5) have been 
matched to the boundary conditions of the scattering prob- 
lem (4) for processes (2a)-(2e)4.22: 

where 

where $, (ra) is the wave function of the isolated (up) atom in 
the ground state, R, is the vector connecting nucleus b and 
the center of mass of the (up) atom, and k, is the momentum 
of their relative motion: $j (r) = lim qjm ( r ;  R )  

R-r m 

are the wave functions of the (up) mesic atom in state j. 
The quantities k are defined as follows: The partial elastic-scattering cross sections d, calculat- 

ed from the system of N pairs of equations (5) with the 
boundary conditions (9) are: 

where E, is the energy of the isolated (up) atom in state i, 

In the limit N-a, the following relations are valid4v2': 
N N h'f' h:;' 

i m  4 = lim 4 =El, 
N + -  Ei-E' 

i= 2 
N+ oo 

i s 2  
E,-Ei 

is the energy of the (bp) atom with accuracy -(Z/M)~,  
E = E - Eia is the collision energy measured from the value 
E,, ,4.20-22 and 

( x z ) i ,  kN2+ k l . ' = 2 W .  M=M,Im,, M,-'=Ma-'+Mb-', m,-l=m,-l+M,-l. ( 8 )  M N + A a = M  1- - 
4M 

(In the following we shall use the system of units e = f i  
N2+ ~ ~ ~ ~ = - 2 d b  (&+EIo-E1b). db - '=  (Mb+mr) -'+Ma-'. 

= ma = 1.) In the case in which only one reaction channel is 
open (k 2, > 0, k < 0, i# 1, k < 0) it follows from the re- The elastic-scattering cross section is (lib) 

sults of Refs. 4 and 22 that the asymptotic behavior of the u' (8) = lim a,  '. 
s o l u t i o n s ~ ~ ~  (R ) of the 2N-dimensional system of equations N + -  (13) 
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3. METHOD OF SOLUTION 

To find the T-matrix parameters t,,(k,) or the phase 
shifts S (k,) corresponding to them one usually solves the 
Cauchy problem for the 2N-dimensional system of Equa- 
tions (5) and then determines the values oft, ,, comparing the 
asymptotic solutions (9) with the numerical solution of the 
system (5). However, numerical solution of the Cauchy prob- 
lem in the presence of closed channels involves certain diffi- 
cultiesZ3 since such problems have simultaneously the fea- 
tures of scattering problems and of eigenvalue problems, for 
the solution of which one usually uses fundamentally differ- 
ent calculation schemes. 

In Ref. 13 the scattering problem was discussed as an 
eigenvalue problem. In this approach the collision energy E 

is found as the eigenvalue of the Sturm-Liouville problem 
for a given value oft,, with boundary conditions (9a) and (9b) 
forR = R m > l  andx,(O) =O. 

Using the asymptotic form of the solutions (9) of the 
system of equations (5), the problem can be further simplified 
by choosing the boundary conditions at some point R = R, 
in a form which does not require specifying t,,: 

The condition x,(R,) = 0 is equivalent to replacement of 
the true potential in the first channel by a potential with an 
infinite wall at2'R = R, , which is well known to correspond 
to the discrete spectrum of eigenvalues da)(Rm), a = 1,2, ..., 
which depends on the choice of R, (see Fig. 1). The eigen- 
functions of the Sturm-Liouville problem (5) and (14) con- 
tain information on the scattering phase shifts of the prob- 
lem (5) and (9). (Usually at low collision energies it is 
sufficient to consider just the first eigenvalue with a = 1.) 
After solving the problem (5) and (14), we determine from 
relation (9a) the value t ,  : 

In the case J = 0 Eqs. (15a) and (15b) are equally suit- 
able for determination of the phase shifts 6, and the error in 

FIG. 1 .  Diagram of energy levels &'"'and wave functions of the problem (5) 
and (14). Variation of the spectrum E'"' is achieved by shifting the integra- 
tion limit R, 

calculation of the phase shifts due to the finite integration 
interval [0, R ,  ] does not exceed the value 

(see Ref. 25). For J # 0 the error in calculation of 6 by means 
of Eq. (l5b) is 

and therefore Eq. (15a) is preferable since it takes into ac- 
count exactly the phase shift of the long-range centrifugal 
potential. 

With the exception of the resonance energy region, the 
scattering phase shifts are small (Sxl),  and therefore from 
Eq. (15b) one obtains the useful relation 

which permits an approximate choice of R, corresponding 
to a given collision energy E. From Eq. (15b) it also follows 
that for calculation of the phase shifts S, with accuracy of - lo-' the momenta k, must be found with high accuracy - 10-4-10-5, since they are multiplied by the large quantity 
R, 2 100. 

In particular, it is impossible to neglect the difference 
- (2M)-' between k,, and k, [see Eqs. (7) and (9)], since the 
difference 

at low collision energies E is comparable in order of magni- 
tude with the scattering phase shift S (k, ). In addition, in the 
calculation of the phase shifts from Eq. (15) for E = 0 the 
necessary relation t, , (k,  ) = 0 is satisfied, whereas t, ,( kia ) 
# 0. 

For solution of the system of equations (5) with bound- 
ary conditions (14) we used the program VAAR14 which per- 
mits the eigenvalues for the Sturm-Liouville problem to be 
found for a system of about 300 equations with absolute ac- 
curacy - 10-4-10-5. All subsequent calculations were car- 
ried out with N = 1,3,6 and N = NB, i.e., with inclusion of 2, 
6, and 12 states of the discrete spectrum of the adiabatic basis 
in the expansion (3) for the wave function Y &(r,R ), and also 
with inclusion of the continuous spectrum of the two-center 
problem for NB = (6 + 75) and NB = (9 + 119) respectively 
for the cases J = 0 and J = 1. The value NB = 128 corre- 
sponds to inclusion of the states lsu, 2pu, ..., 4 f?r, Sg?r of the 
discrete spectrum (N = 9) and of the states Is) = 1 1) ... 16) of 
the continuum (see Ref. 4). 

The effective potentials Uij(R ) of the system of equa- 
tions (5) have been calculated in Refs. 15 with absolute accu- 
racy 10-'-lo-'. 
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a,, cm2 
2.o -I 

FIG. 2. Cross section for elastic scattering u,(e) in the reaction 
dp +@p + p  with J = 0; N is the number of pairs of equations in the 
system (5).  For E = 0 we have u,(O) = 4nnz = 2 ~ r - 1 0 - ~ ~  cm2. 

4. ELASTIC SCATTERING OF MESIC ATOMS OF THE 
HYDROGEN ISOTOPES 

The proposed method of solution of the scattering prob- 
lem has been used for calculation of the phase shifts and 
cross sections for elastic scattering in reaction (2). 

In Fig. 2 we show the results of the calculations for the 
process (2a), in the cross section of which the Ramsauer ef- 
fect, well known from the time of Refs. 6 and 7, is observed. 
It can be seen that taking into account higher states of the 
two-center problem shifts the location of the minimum in the 
scattering cross section for (2a) from the collision energy 
~ ~ = 0 . 6 e V ( a t N =  l ) t o ~ , =  1.5eV(atN=NB).(InRefs. 6 
and 7 values E~ = 0.2 and 0.6 were found, respectively.) In 
addition, for E-a the cross sections calculated for N = 1 
and N = N, differ by a factor of three. 

In Fig. 3 we have shown the functions tN(kN) for reac- 
tion (2a). Up to energies ~ ~ 0 . 2  eV the t,(k,) dependence 
can be represented with accuracy - lo-' by the expansion 
(t t , ,  k zk , ,  a=aN, M =MN) 

which is well known from the theory of single-channel scat- 
teringZ6 by a potential U (R ) with asymptotic behavior 

The scattering lengths a, for various N are respectively: 
a , =  -1.1, a ,= -1.4, a,= -1.5, and a ,=  -1.6. 
However, it should be noted that the region of applicability 
of the concept of scattering length, i.e., region of energies in 

FIG. 3. The scattering parameters SN(&) for the reaction dp + p 4 p  + p  
forJ=OandN=1,3,andNB =81 .  

FIG. 4. Partial and total cross sections for the scattering tp + d-+tp + d. 
Partial cross section uB = uB(J = O)-cuwe 1, uB(J = l)-curve 2, total 
cross section u = uB(J = 0) + uB(J = I)-curve 3. The dashed line shows 
thep-wave cross section u,(J = 1) calculated with N = 4, M = 11.1, 
x = - 0.197. 

which the relation a, = &a; is valid, is very limited 
(E 5 0.05 eV, k 51 lo-'). 

The validity of the expansion (1 8) in the case of the mul- 
tichannel problem (5) and (14) indicates that in spite of the 
presence of terms - R -' in the matrix of the potentials 

of the system (5) for R+m, it is equivalent to some effective 
polarization potential (19) in the open channel. [We recall 
that the first two terms of the expansion (20) provide the 
correct momentum k,, for N - + m  in Eq. (1 lb).] 

For reaction (2b) the effective potentials Uij(R ) differ 
from the similar potentials for reaction (2a) only by the ob- 
vious substitutions of the particle masses. In Figs. 4 and 5 we 
give the cross sections for reaction (2b) with J = 0 and J = 1 
as a function of the collision energy E and the dimension N of 
the system of equations (5). 

The behavior of the s-wave cross section is determined 
to a significant degree by the level (J = 0, v = 1) of the mesic 
molecule dtp with a relatively low energy e, =. - 35 eV. 
Since variation of N changes the energy of this level relative- 
ly weakly [E~"(N= 1) = - 32.2 MeV, eJ,(N 
= N,) = - 34.9 eV; see Ref. 181, in the region of collision 

energies E 5; 5 eV we have u1 zUB,  
In contrast to this, the cross section in the wave changes 

qualitatively as a function of N (see Fig. 5): for N = 1 there is 

FIG. 5. Elastic scattering cross sections for tp + d+tp + d for J = 1 as a 
function of the number of pairs N = 1,3, and N, = 129 of equations to be 
solved in the system (5). 
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TABLE I 

Keys I 0 , 1 0 - 2 1  cm2 

Cross section for elastic scatteringpp(t 1) + p  
Source 
cm2 
Zel'dovich and Genhtdn (1960) 
Cohen er 01. (1960) 
Dzhelepov era/. (1965) 
Matveenko and Ponomarev (1970) 
M a t v ~ k o  er a/. (1975) 
Ponomarev eta!. (1978) 
Present work* 

*The result was obtained at energy E = 0.04 eV and N = N, ; for N = l ,3 ,  
and 6 the calculated cross sections are respectively a ,  = 0.1, a, = 8.4, 
a, = 12 (see Fig. 6). 

a resonance in the cross section at energy E = 0.46 eV which relativistic corrections to the potentials only the contact 
disappears on enlargement of the system (5) up to N = 3, and term. Numerical checks showed that the relative contribu- 
with further increase of N the cross section changes only tion to the cross section from the discarded terms due to 
quantitatively. (The fictitious nature of the resonance at interaction of the muon and nucleus spins does not exceed 
N = 1 has already been pointed in Ref. 27.) For N>3 the - lop3. 
cross section uN (J = 1) is determined by the energy E, of the It can be seen from Fig. 6 that in the transition from 
weakly bound state (J = v = 1) of the dtp mesic molecule, N = 1 to N = 3 the calculated cross section for reaction (2c) 
which for values N = 3 and N = NB = 128 is respectively changes by about 100 times, and with further increase up to 
E ,  = - 0.11 and - 0.64 eV. The total cross section for re- N = N, it rises another factor of two. It follows from this 
action (2b) u = a(J = 0) + a(J = 1) for N = NB is given in 
Fig. 4. 

The results of many years of experimental and theoreti- 
cal studies of reaction (2c) are given in Table I. Note the large 
spread of the data. 

The system of equations for description of this reaction 
is given in Ref. 5. For reaction (2c) the effective potentials - 
Uij(R ) in the system of equations (5) are obtained from 
Uij(R ) by the transformation5.' 

that the two-level approximation used in all previous calcu- 
lations is utterly inapplicable in the present case. We note, 
however, that the cross sections calculated in the so-called 
simple approach of Ref. 28, which differs from the usual 
two-level approximation only in the substitution M - + d , ,  
differs by less than a factor of two from the values of the 
present work for N = N,  (see Table I and also Fig. 5). 

In Figs. 7 and 8 we show the quantities tN and a, 
= - tN/kN for reaction (2c). The curves a,(k,) reveal a 

characteristic maximum which corresponds to the point of 

U=BUB-', Bij = ) , (21) inflection of the functions tN in Fig. 7. From comparison of 
Figs. 3 and 7 the reason for the rapid dependence of the 
results of the calculations on the number of equations N in 

and the of y: in (9H I) is given by the for- the case of reaction (2c) becomes clear. It  can be seen that in 
mula this case we have a situation which for N = 1 simulates the 

yNZ=-2M,  (E-AE), Ramsauer effect, but this is just as fictitious as the resonance 
in the p wave of reaction (26 ) at N = 1 and disappears in 

where AE = 0.182 eV. In constructing the effective Poten- exactly the same way on enlargement of the system of equa- 
tials (21) for reaction (2c), we have used from among the tions (5). 

In Fig. 9 we show the energy dependence of the elastic 

A scattering cross section for reaction (2d). Note the steep de- 

FIG. 6. The cross section a,(&) for the reactionpp(1 I )  +p+pp(~,I) + p  FIG. 7. Elastic-scattering parameters 6 , ( ~ )  for the reaction 
for N = 1,3,6, NB = 81 (J = 0). Thedashed portions areextrapolat~ons of pp(1 I )  +p-*pp(f I )  + p  with N = 1,3, and NB = 81 (J=  0). The dashes 
a,(&) to E = 0. are extrapolations of 6,(&) to E = 0. 
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FIG. 8. The functions a,(k,) = - t,(k,/k, calculated for the reaction 
pp(T t )  +p-+pp(t 1) + p  with N = 3,6, and N, = 81 ( J =  0).  The scatter- 
ing lengths a ,  = lim,a,(&) were obtained by extrapolation to E = 0. 

pendence of the cross section on the collision energy and also 
its anomalously small value for ~4. From Fig. 10, where 
we have shown the functions a, = - t,/k,, we can see that 
in this case the region of applicability of the scattering- 
length concept (E 5 2.lOP4 eV, k ,< loT3) is already narrower 
than in the case of the reactions (2a)-(2c). 

We note also the threshold dependence29 in the cross 
section for reaction (2d), which was noted in Ref. 7. On en- 
largement of the system of equations this feature is pre- 
served. 

In Figs. 2-10 we can trace the dependences of u, and t ,  
on the number of pairs N of equations (5) used in their calcu- 
lation. It is easy to see that in all cases considered in the 
transition from the two-level approximation (N = 1) to the 
multilevel case (N = 3, 10, N, ) the behavior of the cross sec- 
tions as functions of the collision energy E changes qualita- 
t i~e ly .~ '  The greatest qualitative changes are observed in the 
transition form N = 1 to N = 3 (or to N = 4 for J = 1) and 
with further increase of N only quantitative changes of the 
scattering parameters occur. In all reactions considered, the 
contribution of continuum states (N> 10) to the elastic scat- 
tering cross section amounts to about 40% of the contribu- 
tion of all states in the range 2<N( 10, i.e., it is of the same 
order as the contribution of the continuum to the binding 
energy of the mesic molecule.1s 

In Table I1 we have given the cross sections and scatter- 
ing lengths for the processes (2) found from the system of 

FIG. 9. Cross section u,(E) for the reaction tp(t  I )  + t+tp(t 1 )  + t with 
N =  1 ,  3, and N,  = 81 ( J =  0) .  The value uB(0)  = 2.10-23 cm2 was ob- 
tained by extrapolation to E = 0. 

FIG. 10. The functions aN(kN)  = - tN(kN) /kN calculated for the reac- 
tion. 

equations (5) with N = N,. The scattering lengths given 
were used for calculation of the cross sections u = 4ra2 at 
E = 0. 

The error in calculation of the elastic scattering cross 
sections for the reactions (2) in our opinion amounts to about 
10% and is determined both by the error in approximation 
of the initial infinite system of equations by the finite system 
(5), and by the accuracy of the computational scheme used to 
find the states E$). 

The algorithms used14 permit calculation of E$) and the 
scattering phase shifts with an absolute accuracy - 
Algorithms of higher order of accuracy have been described 
in Ref. 30. The results of calculations carried out in this 
approach with N = 1 agree with similar calculations carried 
out by the method of phase functions25 (the variable-phase 
method) with a relative accuracy 10-2-l~-3. For calcula- 
tion of the contribution of higher states of the two-center 
problem to the reaction (2) scattering cross sections it is pos- 
sible to use also the method proposed in Ref. 3 1 for the extra- 
polation N-t co in calculation of the energy levels ofp-mesic 
molecules. 

5. CONCLUSION 

In the present work we have developed a method of 
solution of the multichannel problem of scattering with one 
open channel and many closed channels. The method per- 
mits generalization to the case of several open channels, 
which will permit calculation of cross sections for inelastic 
processes. The effectiveness of the method has been demon- 
strated with calculation of elastic-scattering cross sections in 
a system of three charged particles as an example. However, 
the method itself does not depend on the specific properties 
of the adiabatic basis used for solution of the initial scatter- 
ing problem. One of the advantages of the method developed 
is that it permits solution of the Cauchy problem for a system 
of equations even in the presence of strong coupling of chan- 
nels in the asymptotic region, which for most methods pre- 
sents substantial d i f f i c~ l t i e s .~~ .~~-~ '  The basic idea of the 
problem-reduction of the Cauchy problem to the Sturm- 
Liouville problem for a system of equations of large size-is 
carried out here for the first time. 
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TABLE I1 

'The c r w  sections are given units of cm', and the scattering 
length in maic atom unitsp = ff/m,e2 = 2.559.10-" cm. 

E ,  eV 

0 
0.04 
0.10 
0.15 
0 . 3  
0.5 
1 
3 
5 

10 
Scattcnng length , male atom units 

ml"lma 

The proposed method possesses sufficient generality 
and can be used for solution of diverse problems of atomic 
and nuclear physics, in wave-propagation theory, solid-state 
physics, and so forth. The natural region of application of 
the method is in scattering at low energies when only a few 
partial waves contribute to the cross sections, i.e., just the 
energy region in which approximate methods of solution of 
the scattering problem turn out to be ineffective. 

The examples considered by us from the field of mesic- 
atom physics demonstrate the substantial diversity of the 
possibilities of the method: it permits description in a unified 
manner of various physical phenomena-the Ramsauer ef- 
fect, threshold behavior and resonances in a cross section, 
and also effects due to the influence of closed channels (such 
as Feshbach re~onances~~).  

In conclusion the authors express their gratitude to S. I. 
Vinitskil, I. V. Puzynin, and L. N. Somov for helpful discus- 
sions at various stages of the work. 

APPENDIX 

P1occss I 1 I t p + d I t p + d I t P + d  pr( t1)  + P t ~ ( t i ) +  t d ~ +  P ( J = o )  ( J  = i) 

For R+a, the nondiagonal matrix elements2* are 

2.0  
1 .9  
2 . 4  
3.1 
- 
- 
- 
- 
- 
- 

-1 6 
1.113 

and the system of equations (5) breaks up into two subsys- 
tems. We shall consider the subsystem which in the asymp- 
totic region describes the relative motion of (ap) + b. for this 
subsystem the system of equations (5) for J = 0 has the form 

d 1 +EZ-2Q(O) - -Hci) -) X-0, 
dR R (Al) 

where 

0.002 
0.62 
1 .2  
1.6 
- 
- 
- 
- 
- 
- 

0 05 
1.038 

( 0 9 1 2  q13  . . . qIN 1 
912  0 o . . .  0 

H(') = 2 ( I  4- x )  913 0 0 I. . . . . . : I. 1 -  
QIN 0 0 " .  O J  

2.4 
1 .6  
1.2 
1 . 0  
0.65 
0.38 
0.07 
0.18 
4.00 

11.9 
-1.7 

1.056 

12 
16 
17 
18 
21 
22 
24 
25 
24 
19 
3 .8  
1.038 

' 912  913 . - qiN 

Here we have used the property HI.! = 2Q 8, i <j4 Using the 
results of Ref. 22, we find with accuracy to terms of order 
(2M)-2 

Q ' " = ( I + ~ )  

2 ( 1 + x )  qi, 
Xi = 

0 
0 
2 
4 
9 

14 
26 
34 
3 4 
32 
- 
- 

- 9 1 2  0 o . . .  
-913 0 o... 0 , w2) 
. . . . . . . . . . . . 

Substituting (A3) into the first equation of the system (Al), 
we obtain 

12 
16 
19 
22 
30 
36 
50 
59 
58 
51 
- 
- 

\ - - Q l N  0 0 ..' 0 j 

x x1=0. 

Using the operator equality 

we arrive at the equation 

In the limit N+CO we have according to Eq. (1  lb) 

From this it follows that 

This result agrees with the conclusion of Ref. 21. 

"I. V. Kurchatov Institute of Atomic Energy. 
''This procedure was used previously in the solution of the one-channel 

scattering problem (see for example Refs. 12 and 24). 
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"We re~al l '~ .~ '  that in calculation of the energy of weakly bound states of 
mesic molecules it is just the inclusion of terms of order (2M)-' in the 
potentials Uij (R ) which leads to appearance of a new level (J = v = 1) in 
the dtp mesic molecule. 
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