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The basic equations that describe quasisteady electrodynamic processes in a pulsar magneto- 
sphere filled with an electron-positron plasma are derived. Solutions of the equations are ob- 
tained, and these make it possible to determine the features of the magnetosphere structure. A 
relationship is obtained between the magnitude of the longitudinal current and the electric field in 
the magnetosphere. It is shown that in the boundary layer near the "light surface" there is strong 
acceleration of particles and a current jet arises which closes the longitudinal currents flowing in 
the magnetosphere. The pulsar energy losses are determined. It is shown that they are determined 
by the longitudinal currents flowing in the magnetosphere and not by magnetic-dipole radiation 
as hitherto usually assumed. 

PACS numbers: 97.60.Gb, 97.10.E~ 

A pulsar is a rapidly rotating neutron star with very 
strong magnetic field Bo- 10" G. Because of the rotation, 
there is also an electric field, which reaches values Eo - v B d  
c- 10" V/cm near the star. It is important that the electric 
field has a component parallel to the magnetic field.' Parti- 
cles entering such a strong field are accelerated and emit 
hard gamma rays, which, being absorbed in the magnetic 
field, generate electron-positron pairs.' In this manner is 
formed the pulsar magnetosphere, which consists of an elec- 
tron-positron plasma rotating in the magnetic field of the 
star. 

'The presence of the plasma has a decisive influence on 
the structure of the magnetic field at large distances r from 
the star. At comparatively small r the field is of dipole type, 
but at r-c/o (a is the rotation frequency of the star) the 
motion of the plasma causes the lines of force to be strongly 
deformed and drawn out so that they extend to infinity. 
Therefore, the far lines of force emanating from the regions 
in the neighborhood of the magnetic poles are not closed in 
the pulsar magnetosphere, as in the magnetospheres of the 
Earth or other planets. 

The electron-positron plasma escapes along the open 
lines of force. Therefore, in the pole regions it must be con- 
tinuously generated. This is the reason for the occurrence of 
the active regions near the poles which make it possible to 
detect pulsars. An energy source is required to sustain the 
active processes. The source is the rotation energy of the 
star. As will be shown below, the experimentally observed3 
slowing down of the rotation is entirely due to the pondero- 
motive effect of the electric currents that flow on the surface 
of the star, enter the magnetosphere, and return to the star. 
Thus, the electric currents determine not only the structure 
of the magnetic field but also the nature of the fundamental 
processes taking place in the pulsar magnetosphere, and also 
the rotation dynamics of the star. 

The theoretical description of the electric fields and 
currents in pulsar magnetospheres is a complicated nonlin- 
ear problem. In the magnetosphere models developed in the 
majority of earlier papers (see Ref. 3), this problem was in 
fact not solved. The most advanced studies on magneto- 
sphere electrodynamics have been made Mestel and Wang4p5 

and M i ~ h e l . ~  They succeeded in finding the magnetosphere 
structure in the simplest case when the axis of the magnetic 
dipole coincides with the rotation axis of the star, electric 
fields in the coordinate system rotating with the star and 
longitudinal currents are absent, and there is no slowing 
down of the pulsar. 

The aim of the present paper is to investigate pulsar 
magnetospheres in the general case when electric fields and 
longitudinal currents are present, and also for arbitrary an- 
gle of inclination of the rotation axis to the axis of the mag- 
netic dipole. 

In Sec. 1 we derive from the general system of kinetic 
equations and Maxwell's equations the basic equations that 
describe quasisteady electrodynamic processes in a pulsar 
magnetosphere. It is important that no special model as- 
sumptions are made in the derivation. We use only certain 
restrictions on the efficiency of the source of the electron- 
positron plasma. The obtained equations are solved in Sec. 2 
for the cylindrically symmetric cast when the rotation axis of 
the star coincides with the axis of the magnetic dipole. The 
structure of the magnetic lines of force is determined. A 
"consistency relation" between the magnitude of the longi- 
tudinal currents and the potential of the electric field is de- 
rived. It determines the energy losses. In Sec. 3, we investi- 
gate the boundary layer that arises near the "light" surface. 
We show that in this layer the electric currents are closed. At 
the same time, the electrons and positrons are strongly accel- 
erated. In Sec. 4, we determine the magnetosphere structure 
in the case of an arbitrary angle of inclination of the axis of 
the magnetic dipole to the rotation axis. We establish a "con- 
sistency relation" in the inclined case, which determines the 
connection between the electric field and the longitudinal 
current. In the final Sec. 5 we consider the slowing down of 
the pulsar rotation. We show that it is completely deter- 
mined by the longitudinal currents flowing in the pulsar 
magnetosphere, and thus fundamentally differs from the 
slowing down due to the magnetic-dipole radiation losses 
usually con~idered.~ The lost energy is expended on the gen- 
eratin of the electron-positron plasma, and also on the accel- 
eration of particles in the boundary layer and emission of 
MHD waves in the region outside the light surface. 
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91. BASIC EQUATIONS 

The dynamics of a pulsar magnetosphere is determined 
by the interaction of the electron-positron plasma with the 
magnetic field of the rotating neutron star. It is described by 
the system of Maxwell's equations for the electric, E, and 
magnetic, B, fields and the kinetic equations for the distribu- 
tion functions of the elecrons, F -, and positrons, F +, 

div E=4npe, (1) 

div B=O, 

Here, rll is a coordinate along a magnetic line of force, r, is 
orthogonal to it, P* (pll ,r,t ) are the electron and positron 
distribution functions with respect to the longitudinal mo- 
mentapll ,e is the electron charge, and n * and v * are the 
concentrations and mean velocities of the particles: 

Here, we have taken into account the fact that the spread 
over the transverse momentap, is slight, since E ~ / E ~ ~  4 1 by 
virtue of the manner in which the electron-positron pairs are 
generated.'-3 As the electrons and positrons are displaced 
from the generation region to regions further from the star, 
the magnetic field rapidly decreases, and accordingly the 
ratio which is proportional to B, becomes even 
smaller. Therefore, the velocity components v, orthogonal 
to B are determined solely by the hydrodynamic motion in 
the fields E and B, and only the longitudinal componentpll 
has a kinetic spread. 

Further, Q (pll ,r,t ) in Eq. (4) is the source ofthe electrons 
and positrons. According to the model of Ruderman and 
Sutherland,' the electron-positron pairs are produced by 
photons, which are themselves produced by the curvilinear 
motion of the electrons and positrons in the magnetic field of 
the pulsar (they are called curvature photons), and also by 
the synchrotron radiation of the pairs. We shall not here 
consider in detail the generation process but merely mention 
some general properties of the source Q (pll ,r,t ) used in what 
follows. First, pair is effective only in very strong magnetic 
fields with B > 10" G; therefore, the action of the source Q is 
localized in the neighborhood of the star at distances 
r - R 5 R (R -- lo6 cm is the radius of the neutron star). The 
mean energy 7 and the mean energy spread A y of the gener- 
ated particles is in accordance with Ref. 2 

We shall assume that the integrated intensity of the 
source is fairly large, 

but at the same time not too large, namely, is bounded by the 
condition 

Here, P = 2 ~ / 0  is the rotation period of the pulsar, and 
B, = B (R )is the magnetic field on the surface ofthe star. The 
condition (7) means that the source can fill the magneto- 
sphere with plasma. It is not satisfied for extinct or expiring 
pulsars. Condition (8) limits the amount of plasma in the 
pulsar magnetosphere. It means that the energy density of 
the plasma in the magnetosphere is much less than the ener- 
gy density of the magnetic field. In reality, this condition is 
evidently satisfied in the entire magnetosphere from the sur- 
face of the star at r z R  to the "light surface"" r-c/o. 

We now simplify the basic equations. We are interested 
in a steady solution. Under the conditions of a uniformly 
rotating star, such a solutin depends on the time t and the 
rotation angle q, in the combination q, - a t .  This makes it 
possible to eliminate the time t from the equations by making 
the substitution p-tg, - 0 t  and 

where V is an arbitrary vector. Then Eq. (2) becomes 

rot E=-rot [p,XB] . 
Here we have used the fact that divp, = 0. It follows from 
this that 

ly is the potential of the electric field in the coordinate system 
rotating with angular velocity 0. As is clear from (lo), the 
total electric potential in the nonrotating frame is 

Here, @, = p, .A is the potential of the uniformly rotating 
body, and A is the vector potential of the magnetic field: 
B = curl A. The potential Yshows how the actual motion of 
the plama in the magnetosphere differs from corotation with 
the pulsar2'; it reflects the interaction of the magnetic field 
and the currents with the plkama and is a very important 
characteristic of the magnetosphere. In what follows, to dis- 
tinguish Y and @, we shall call Y the potential, and Qi the 
total potential of the electric field. 

Using (lo), we obtain from Eq. (1) an expression for the 
charge density: 

7-Ay-lo2. (6)  Here,p, is the density of the corotation charge which arises 
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in a plasma rotating uniformly in a magnetic field: 

In pulsar literature, the densityp, is usually called the Gol- 
dreich-Julian density: p, = pGJ .' It  determines the charac- 
teristic charge density p, and the electric current density j, 
in the pulsar magnetosphere: 

j,=pcc=-PB/2n. (14) 

From Eq. (3), using (9) and (lo), we obtain 

4n 
rot B= - j-[P,X rot[P,X B] ] 4- V (P,V Y ) ;  div B=O. (15) 

P 

Thus, Maxwell's equations take the time-independent form 
(10),(15). 

We now take into account the presence of the electron- 
positron plasma. The plasma is polarized and screens the 
electric field. If the concentration of particles in it is suffi- 
ciently high, the polarized plasma becomes quasineutral. 
This means that the electron and positron concentrations of 
the plasma are nearly equal, n- =:n+ = n (nsp, /e), and the 
longitudinal (directed along the magnetic lines of force) elec- 
tric field E Il is 

Here, E~~ = m&2y is the characteristic longitudinal energy of 
the particles, and A is a dimensionless parameter that char- 
acterizes the concentration of the particles, A = en/p, . In 
accordance with (7), n zZB /cBo and 

Comparing the longitudinal field E Il with the characteristic 
field E (lo), we find that 

Here, we have noted that B (r)zBo(R /r)3 and that IE =: 10''- 
1016 ~m-~.sec-'is many orders of magnitude smaller than 
1, (7).3' The solution of the Poisson equation (12) can there- 
fore be sought in the form of a series in the parameter p, . In 
the zeroth approximation in p, we have El l  = 0, i.e., the 
potential Y depends only on r, : 

Y =Y (r,) , EB=O. (18) 

We now consider the components of the electric current 
orthogonal to the magnetic field B: 

The electron and positron velocities v: are of the order of 
the rotation velocities of the magnetic lines of force: v, -L?p 
@ is the distance from the rotation axis). Therefore, in the 
entire region from the surface of the star to the "light" sur- 
face v, < c. Under these conditions, the drift of the electrons 
and positrons in the crossed fields plays the principal part in 
Eq. (5): 

C 
V:=V;= - [EXB] . 

BZ (20) 

The corrections to v$ can be readily found from Eq. (5) by 
using an expansion with respect to the parameter a-': 

where 

P I * = ~ ~ ~ v ~ . * ,  y-'=I- (vlo2+vlle) Ice, 

dpJdt=[ (vo-cPr)x V lp,+c (p1V)Pr. 

Since dp, /dt=:L?p,, we have 

It  can be seen from this that the expansion parameter a-' 
has the order of the ratio of the Larmor radius r, -m&2y/ 
eB of a particle to the scale p -c/L? of the magnetosphere. 
This ratio is always small: a-'(1. Bearing this in mind, we 
represent the expression (19) for the current j, in the form 

It follows from this that the expansion (22) is in powers 
of the parameter p, = A  /a, which for pulsars is always 
small by virtue of the condition (8). In the zeroth approxima- 
tion in p, , the drift approximatin (20) is valid, and the cur- 
rent j, is given by the simple expression (22),(20),(10). With 
regard to the longitudinal component jll of the current, un- 
der the conditions of a collisionless plasma and the absence 
(18) of a longitudinal electric field it is free, i.e., determined 
by the conditions at the boundaries and the continuity equa- 
tion for the charge, which, with allowance for (9), is 

div (j-cp,Pr) =O. (23) 

Thus, in the zeroth approximation in the small param- 
eters pE (17) and p, (22) quasisteady electrodynamic pro- 
cesses in the pulsar magnetosphere are described by the 
closed system of equations (10)-(15),(18),(20)-(23). At the 
same time, the electric chargep, (12) and the current 

are complicated nonlinear functions of the fields B and VY 
[in the expression (24), the free longitudinal current iB is 
added to j, (22)J. We findp, and j explicitly. It follows from 
( 15) and (24) that 

Substituting this expression in (12), we determinep, : 

Note that the electric charge p, does not remain con- 
stant along the magnetic lines of force-it changes apprecia- 
bly in magnitude and may even change sign. This does not 
contradict the condition of constancy of the potential (18), 
since the relation (18) is valid only in the first approximation 
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in the small parameter (17). In the following approximation 
in pE there are corrections to the electric field, and these 
have longitudinal components. It can be shown that these 
ensure that the necessary charges remain on the lines of 
force. Thus, this expansion eliminates the difficulties with 
the electric charge that have frequently been discussed in the 
l i t e ra t~re .~ . '~  

The current j is described by the expression (24) with 
density p, determined in accordance with (25). Substituting 
it in (15), we finally arrive at the nonlinear equation 

It  must be augmented by the equation 

div B=O. (27) 

The system of equations (26),(27) describes the structure 
of the magnetic field in the pulsar magnetosphere with 
allowance for the electric field - V Y and the longitudinal 
current ill. 

We note that since the charge continuity equation (23) 
follows from Maxwell's equations it is not independent but 
follows from (26). Therefore, the longitudinal current i,, in 
the magnetosphere is also determined by Eq. (26) and the 
boundary conditions. The potential Y (r,) is constant along 
the magnetic lines of force. In Eq. (26), it and the longitudi- 
nal current ill (r) play the part of sources. We emphasize that 
the nonlinearity of Eq. (26) consists not only of the direct 
dependence of the coefficients on the magnetic field but also 
of the requirement of constancy of the potential Y on the 
magnetic lines of force, which are themselves determined by 
the solution of Eqs. (26) and (27). This leads, in particular, to 
a complicated nonlinear dependence of the solutions of Eqs. 
(26) and (27) on the conditions on the boundaries of the mag- 
netosphere. 

The boundary conditions for Eqs. (26) and (27) have the 
following form. Near the surface of the star, on the lower 
boundary S = S,(r) of the magnetosphere, we specify the 
magnetic field of the pulsar, which is determined by the cur- 
rents flowing within the star and on its surface: 

B 1 sa=Bo (r) - (28) 

In addition, we specify here the longitudinal currents that 
flow in an out of the magnetosphere: 

~ I I  I S@=~II (rL) Bo, (29) 

and also the potential of the electric field: 

At the same time, there is a great difference between the 
regions of closed and open (i.e., ones that go to infinity) mag- 
netic lines of force. Regarding the conductivity of the star as 
infinite (see Ref. 3), we can assume that in the regin S, of 

closed lines of force there are no longitudinal currents and 
the magnetosphere here rotates with the star (corotation). 
Therefore 

ill I s.=O, Y I s.=O. (31) 

This condition requires a special explanation. The point is 
that in the closed region of the magnetosphere the electric 
charge p, (13) is needed to produce corotation. Therefore, 
electric fields SYand currents Sill are also needed to sustain 
it. However, 6Y 5 m4'V/e 5 6 X lo7 V (6) ,  whereas poten- 
tials Y- 10'' V are needed for continuous generation of the 
electron-positron plasma on the open lines.' It can be seen 
from this that 

An estimate of the same type holds for the currents. The 
condition (31) is therefore satisfied everywhere in the closed 
magnetosphere in the zeroth approximation in the param- 
eter (32). An exception is possible only in the neighborhood 
of the magnetic equator, where the magnetic lines of force 
enter the double-layer region at the surface of the pulsar and 
it is difficult to maintain the corotation charge (13) on them. 

One further natural boundary condition arises on the 
surface Sd,  which is determined by the relatin 

1-~I?-+Br[VYXB]lB2=0, B,=[Bxr]/c. (33) 

On this surface, the right-hand side of Eq. (26) has a singular- 
ity. The requirement that the magnetic lines of force are able 
to intersect the singular surface Sd i.e., that the electric 
chargep, (25) and the current j (24) remain finite on it, is a 
natural boundary condition of the problem. Note that the 
form of the singular surface is determined by the total elec- 
tric field E = - fl, X B - VY. In the absence of the poten- 
tial Y, i.e., for VY = 0, the entire magnetosphere rotates uni- 
formly with angular frequency 0. Then the singular surface 
Sd (33) has the form of a cylinder of radiusp = c/o. On this 
cylinder, the total electric field is equal in magnitude to the 
magnetic field, E = B, and the drift velocity of the motion of 
the particles reaches the velocity of light. Therefore, in this 
case the singular surface Sd coincides with the "light sur- 
face" Sc . It is called the light ~ ~ l i n d e r ~ ' - ~  In the presence of a 
field VY, the magnetosphere rotates nonuniformly, so that 
in the general case the light surfce does not coincide with the 
light cylinder. It always lies further from the pulsar than the 
light cylinder, and further than the singular surface S,. 

We emphasize that near the light surface S, the drift 
velocity of the particles v z  (20) approaches the velocity of 
light. Therefore, the energy of the particles (i.e., the value of 
y) increases here and, accordingly, the expansion parameter 
pB (22) increases strongly. As a result, the conditions of ap- 
plicability of Eq. (26) are violated near Sc. There is formed 
here a singular boundary layer, in which it is not sufficient to 
consider the drift approximation (20) and a more accurate 
solution of the equations of motin (5) of the electrons and 
positrons is needed. 

92. THE AXlSYMMETRlC CASE 

We begin by considering the simplest case. We assume 
that the undisturbed magnetic field of the pulsar is a dipole 
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field, and that the dipole axis is parallel to the rotatin axis4' 
In this case, the problem is axisymmetric-all functions de- 
pend only on two coordinates: z, along the rotation axis, and 
p, orthogonal to it. 

Suppose the relation f @,z) = const determines the mag- 
netic surfaces, where f @&) is some scalar function. Then 

Using (34), we can represent the magnetic field in the form 

Here, e, is a unit vector in the direction of the rotation angle 
p, and a@,z) and g@,z) are arbitrary scalar functions. Using 
the condition (27), we find that a= l/p. Thus, 

By virtue of(18), the electric potential Pis  constant along the 
magnetic lines of force, and therefore, 

Y=Y ( f ) .  (36) 

Substituting now (35) and (36) in the basic vector equation 
(26), we arrive at three equations for the scalar functionsf, g, 
and ill. Two of them, corresponding to the components of 
Eq. (26) with respect t o p  and z, can be represented in the 
form 

It follows from this that '' g = glf), 

(38) 
Writing down now the equation corresponding to the com- 
ponent of Eq. (26) with respect to e,, and eliminating ill in it 
by means of (38), we reduce it finally to the form 

Here, we have used dimensionless functions and variables 
(primed): 

MQ" B= - 52 MQ4 , 
B', ill= - illr, p,= 7 pe , c3 4n 4nc (40) 

where M is the magnetic moment of the dipole (in what fol- 
lows, the prime is omitted). 

Thus, the problem has been reduced to the single equa- 
tin (39) for the scalar function f @J). The equation is nonliner 
and depends essentially on the functions Y (f) andglf), which 
play the part of sources in it. In the absence of the sources, 
Y = 0 and g = 0, Eq. (39) takes the simple f ~ r m ~ - ~  

The actual form of the functions Y (f) and glf) in Eq. (39) is 
determined by the boundary conditions. Indeed, the func- 
tion Y If) is given directly by the condition (30) on the lower 
boundary So of the magnetosphere. With regard to glf), it 
must be borne in mind that the boundary So corresponds to 
values p S R and, therefore, p' = Jlp/c+O. With allowance 
for (40), the relation (38) on So therefore takes the form 

It follows from this that the function dg/df is determined 
directly by the longitudinal current on the surface So, which 
is given by the boundary condition (29). The total current 
flowing over the surface of the pulsar in the case of isotropic 
conductivity of the surface is described by the function glf): 

I .=MQEg( f ) /2c .  (43) 

We recall that the field Y and the longitudinal currents in the 
pulsar magnetosphere are determined by the conditions (29) 
and (30) only on the open lines of force; on the closed lines of 
force we have in accordance with (3 1) 

'4' ( f )  = g ( f ) = O ,  f W .  (44) 

Here, f = f * is the separatrix between the regions of closed 
and open lines of force. Bearing in mind that under steady 
conditions the total current to the surface of the star from the 
magnetosphere must be equal to zero, we obtain 

g (f ' )  =g (0) 9 

and, using (44), we have the following condition at the pole: 

g(f) If-0=0. 

The boundary condition for Eq. (39) is determined in 
accordance with (28). In the limit do2 + z Z ) 4 ,  the magnetic 
field must be a dipole field corrected by the longitudinal cur- 
rent ill,, (42). In the absence of a current, this leads to the 
condition 

In addition, the function f @,z) must not have divergences on 
the singular surface (33), 

i.e., as follows from (39), 

In addition, it is obvious that f @,z) must be symmetric about 
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the equatorial plane: D (A) =2"h (1-p) e-', 

The relations (45)-(48) form a complete system of boundary 
conditions for Eq. (39). 

We now turn to the solution of this equation. Note that 
it simplifies appreciably if the source functions !P (f) and g( f )  
are chosen in the form 

These relations have a simple physical meaning. According 
to the first of them, the total electric field (10) in the magne- 
tosphere is E = - (1 - /3 )VJ: In such a field, the plasma ro- 
tates with constant angular frequency 0 ' = R (1 - /3 ) (when 
the influence of the longitudinal current is ignored). There- 
fore, the parameterfi describes the slowing down of the rota- 
tion velocity of the magnetosphere plasma (B > 0 always). As 
is clear from (42), the second relation in (49) corresponds to 
the flowing of a constant longitudinal current io at the sur- 
face of the pulsar. Equation (39) with allowance for (49) takes 
the form 

It has the following scaling property: in the variables 

it depends only on the single parameter a, = i i /(l  - P)'. 
Equation (50) for the function f is linear. It is natural to 

seek its solution by an expansion in a Fourier integral with 
respect to z. Going over to the variables (5 1) and using (48), 
we represent the solution in the form 

OD 

f (x ,  z i )=  ~ R ~ ( X ) C O S [  (hz+at)*zildh. (52) 
0 

For the functions R, (x), we obtain from (50) 

The boundary conditions (45) and (47) for RA(x) take the 
following form: as x-0 

K,(Ax) is a Macdonald function of the first order. In addi- 
tion, from (53) and (55) we obtain the following asymptotic 
expression for the functions RA (x) as x+l: 

Rr=D (A) lo [ (A2-aiz/4)"' (1-2) ] exp [-ai ( I - x )  /2] , (56) 

where Io(y) is a Bessel function of imaginary argument and 
D (A ) is a constant. We note also the asymptotic expressions 
for large values ofA) 1 that give the constant D (A ) and RA (x) 
in theregionA - ' < x <  1 - A  -I: 

The solution of Eq. (50) can be represented in the form 
of a series in powers of 1 - x2: 

where the coefficients a, are connected by the recursion re- 
lations 

(4n2-at)  an+ (at+hz) aWi 
& + I =  

4(n+1)2 3 

At the same time, it follows from (55) that a, = - a,/4. 
Using the expression (54) to find RA (x) at the point x = 0, for 
D (A ) we obtain the relation 

which takes for A)  1 the asymptotic value given by (57). 
The solution of Eq. (53) was found numerically by sum- 

ming the series (58) and integrating (52) using the asymptotic 
expressions (54), (56), and (57). The results of the calculations 
for the case a, = 0 8  = Ore shown in Fig. 1. The dashed line 
in Fig. 1 shows the singular surface (46) and the light surface 
coincident with it-the cylinder of radius p = 1. As can be 
seen from the figure, the magnetic lines of force are divided 
into two classes: for f > f *, they are closed and do not reach 
the singular surface; for f < f *, they are open, i.e., they inter- 
sect the singular surface and go away to infinity. The separa- 
trix dividing these two classes corresponds to the value 
f = f * = 1.592. At the intersection of the separatrix and the 

FIG. 1. Lines of force of the magnetic field f = const in the axisymmetric 
case in the absence of a longitudinal current and accelerating potential 
(i, = 0, /3 = 0). The numbers are the values off on the given line of force. 
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light cylinder, i.e., at z = O g  = 1, there is a singular point of 
the magnetic field-the so-called zero point B = 0 (in fact, of 
course, it is a zero line, a circle lying on the light cylinder 
z = 0, p = 1, O<q<27r).11 The separatrices intersect at the 
zero point (see Fig. 1). The tangent tan S ofthe angle between 
the intersecting separatrices and the invariant 

which together characterize the behavior of the lines of force 
in the neighborhood of the zero point [see (57) and (59)], 

were found to be 

1 -  
tan 6=212, A')=-- J D(h)Pdi=-4.008, 

2 

OD 

f.= J D (h) dh=1.592. (61) 
0 

The results shown in Fig. 1 agree with those obtained earlier 
by Mestel and Wang5 and Miche16 by numerical solution of 
Eq. (41). 

We now turn to the solution of the main problem-the 
allowance for the longitudinal currents and the electric field 
Y. Wenote first that theexpression (49) forglf) and P (f) when 
io#O# #O does not satisfy the condition (44). In accordance 
with (M), the field Y and longitudinal currents are absent in 
the region f > * of closed lines of force, and there Eq. (41) is 
always valid. On the boundary f = f *, its solution must be 
matched to the solution of Eq. (50). At the same time, by 
virtue of (49) and (44), the functionglf) must change abruptly 
on the boundary f = f * from the valueg( f * - 0) = io f * to 
the valuegv* + 0) = 0. Here, the derivative dg/df increases 
strongly in magnitude, i.e., a jet of a reverse longitudinal 
current arises: 

ill,,=-iof"6(f-f). (62) 

This corresponds to the following picture of the currents in 
the pulsar magnetosphere: In the entire magnetosphere, the 
current flows in one direction, and the reverse current, as 
will be shown in the third section, always forms an intense 
current jet net the boundary f = f *. The electric field also 
has a similar rapid variation at the boundary f = f * in the 
case (49) that we consider: dY /df = - P for f = f * - 0 and 
dY/df = 0 for f = f * + 0. Accordingly, the density of the 
electric charge here increases sharply: 

In contrast the potential of the electric field is always contin- 
uous as f-f *: P If)-&, Yo = Pf [see (49)l. 

In matching the solutions in the closed and open re- 
gions, we assume in accordance with (61) that the boundary 
between these regions is always the separatrix 
f = f = 1.592. In othe words, we shall ignore the change in 
the shape of the closed region of the magnetosphere, which 
strictly is valid only in the case of small values of the curent 

and the electric field. The separatrix f = f * ends at the sin- 
gular point z = O p  = 1. Therefore, in the considered ap- 
proximation both the solution of Eq. (41) for the closed re- 
gion as well as the solution of Eq. (39) for the open region 
must have a singular point at z = 0, p = 1. Bearing this in 
mind and also the fact that near the singular point (Vf 12-+0, 
we obtain from (39) and (60) as p+l, z-0 in the region of 
open lines of forces as f-tf * - 0 

This is the condition of consistency of the solutions in the 
closed and open regions. It establishes a connection between 
the electric field and the longitudinal current in the pulsar 
magnetosphere. In the particular case (49) that we consider, 
it takes the form 

p=l-  (l-aio2)", a=f'll AOf] =0.40. (64) 

We emphasize that all quantities vary near the singular point 
most strongly. Therefore, the matching at the singular point 
plays a leading part and in conjunction with the fixing of the 
initial behavior of the separatrix near the surface of the pul- 
sar (f= f *) is sufficient for complete determination of the 
boundary. We illustrate this by an example. We consider the 
point at which the magnetic line of force f = fo reaches the 
light cylinderp = 1. It is determined by the expression 

Here, we have used the fact that the initial coordinates of the 
lines of force, in terms of the variables (40), are z-0 and 
p-0. Determiningp-'df /dp near the boundary f = f * from 
Eq. (41) for fo = f * + 0 and from Eq. (50) for fo = f * - 0, we 
have 

Bearing in mind that in accordance with the solution in the 
closed region (Fig. 1) Sz,+ = 0, we find that the condition of 
matching of the boundaries has the form Sz; = 0. Then 
from (65), using Eq. (41)@ 

we have 

It is important that the constants C and A are determined 
here by integrating the displacement z along the complete 
limiting line of force: 
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However, both integrals diverge logarithmically near the up- 
per limit, i.e., near the sungular point, since herep-1 and 
(af /azL, -0. Therefore, in the relation (66) only their ratio, 
which is determined by the behavior of the solution in the 
neighborhood of the singular point, is important. From (60), 
we have 

Substituting these values in (67), we find 

AIC-lIAOf. 

With allowance for this, the relation (66) becomes identical 
to (64). 

Thus, in the presence of a longitudinal current (io#O) 
and a field #O) we must find a solution of Eq. (50) for f < f * 
and match it to the solution of Eq. (41) for f < f * using the 
relation (64). The solution constructed in this manner is 
shown in Fig. 2. The dashed line and dashed curve in Fig. 2 
show the singular surface S, and the light surface Sc . It can 
be seen that, as before, the magnetic lines of force are divided 
into two groups. The closed ones are situated in the region 
p< 1 and do not reach the singular surface. The open ones 
pass through the singular surface and the light surface and 
go away to infinity. As before, the zero point of the magnetic 
field is a t p  = 1, z = 0. 

On the singular surface x = 1, the electric field is 
E = B x e, , but since the current is not equal to zero, and 
also B, #O, we have IEI < IBI. Therefore, the drift velocity 
of the particles is here less than the velocity of light. The 
surface at which the particles reach the velocity of light and 
]El = IBI (the light surface) is given by the relation 

soz ( z )  = I  + al (I -B)zP(xO,  Z )  , xo>l. 
[ Vf (lo, 2) IZ 

At small currents a l ( l ,  this surface is close to the singular 
surface x = 1. To find the values of the field in the neighbor- 
hood of the light surface at small currents, we use the series 
expansion (52),(58) of the function f (x j , )  in powers of 

FIG. 2. Structure of the magnetic field in the presence of a longitudinal 
current (i,, = 1). The electric field is chosen on the basis of the "consistency 
condition" (B = 0.275). The chain curves correspond to the position of the 
line f = 1.592 for = 0 (upper curve) and /3 = 0.35 (lower). 

(1 - x2). Then the fields are represented in the form 
OD 

B,= (1-8)' J D ( A )  h sin (LZ.) dA., (69) 
0 

0 

B.=a,"'(f -$) J D ( A )  cos (hz,)  dh. (71) 
0 

It can be seen from (69)-(72) that in the considered case 
B, (B, (B, . To characterize the spiral nature of the mag- 
netic field in the neighborhood of the light surface, it is con- 
venient to introduce the parameter xo(zl) = B,xo,z,)/ 
B, (x,,~,), which for small currents is equal to 

0 OD 

alls 
x0 ( z l )  = - ( j D ( A )  cos (hz.) dh / D (h)  h sin (hz,) dh) 

(1-$1 , 0 

The coordinate x,(z,) can be expressed in terms of xo(zl) by 
the relation 

xOZ=l+xoZ. (73) 

At large values zl% 1 all the fields decrease exponential- 
ly. This is due to the fact that all the odd derivatives of the 
function D (A ) at the point A = 0 vanish. The dependence of 
the field B, on z can be expressed in the form 

B, ( z> l )  me-Pz. 

In particular, p = 3.0 for the case io = 0 and p = 3.1 for 
io = 1. Hence and from (73) it follows that xo tends to the 
constant limit a;"/p for z> 1. 

In a numerical calculation, one can directly verify the 
consistency relation (64). If it is not satisfied, then the limit- 
ing line of force f = f * in the solution of Eq. (50) either keeps 
close to the boundary of the closed magnetosphere or devi- 
ates strongly from it (chain curves in Fig. 2)." Thus, the con- 
nection between the electric field and the longitudinal cur- 
rent for the solution of Eq. (50) can be established on the 
basis of only a numerical calculation by choosing the values 
offland io in such a way that the boundaries of the closed and 
open regions coincide. The numerical dependence of fl on io 
obtained in this way agrees with sufficient accuracy with 
(64). 

We emphasize the importance of the consistency rela- 
tion (63),(64), which establishes the connection between the 
electric field and the longitudinal currents in the pulsar mag- 
netosphere. It plays the part of a nonlinear Ohm's law and 
determines the energy losses of the pulsar. In addition, it 
follows from (64) that the dimensionless longitudinal current 
io = g(f*)/f * cannot exceed the critical value i, . As can be 
seen from (64), its numerical value is ic = a- ' I2  = 1.58, but 
it must be borne in mind that the relation (64) itself at large 
i, - ic is approximate, since it does not take into account the 
change in the boundary f * of the closed region of the magne- 
tosphere, which may lead to a change in the value of the 
parameter a. In the dimensional quantities, using (40) and 
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(43), we obtain from this a restriction on the longitudinal 
current in the magnetosphere and on the total current on the 
surface of the pulsar: 

It can be seen that the limiting value of the longitudinal cur- 
rent is of orderj, = - OB /2.n (14). It also follows from (63) 
and (64) that the electric field always slows down the rotation 
of the magnetosphere (dY /df <O). This slowing down in- 
creases with increasing longitudinal current. As io-+i,, the 
total electric field 

vanishes, i.e., the plama in the magnetosphere is stopped. At 
the same time, the singular surface moves away to infinity. 

We emphasize that in deriving the consistency relations 
we have used only general conditions connecting the open 
and closed regions of the magnetosphere. Simlar relations 
can evidently be obtained for any magnetosphere in which 
there are closed and open regions and the conditions ( 17) and 
(8) are satisfied (i.e., the Debye radius is small compared with 
the dimensions of the magnetosphere, and the plasma pres- 
sure is small compared with the magnetic field pressure). 
Such conditions are usually well satisfied, for example, in the 
magnetospheres of the Earth and the planets. The necessity 
as follows from (63) for the existence of a longitudinal differ- 
ence of the potentials P between the surface of the body and 
the magnetosphere in the presence of a longitudinal current 
dg/df is a striking and, evidently, general property of magne- 
tosphere~. In particular, in the magnetospheres of the Earth 
and the planets the occurrence of the longitudinal potential 
difference in the regions in which the longitudinal currents 
flow leads to the continuous acceleration of electrons and 
ions, i.e., it serves as the source of the aurora polaris and the 
radio emission of the planets. 

53. THE BOUNDARY LAYER 

The solution constructed above is valid only up to the 
light surface (68). On the light surface, the total electric field 
becomes equal in magnitude to the magnetic field: E = B. 
Therefore, near the light surface the drift velocity (20) of the 
particles tends to the velocity of light and their energy in- 
creases sharply. At the same time, the conditions (8) and (22) 
cease to hold, and Eq. (26) becomes invalid. Thus, near the 
light surface there is formed a singular boundary layer, in 
which the drift approximation (20) is insufficient and a more 
accurate description of the motion of the electrons and posi- 
trons is required. 

Under the conditions (7), the thickness of the boundary 
layer is always small compared with the scale of the magne- 
tosphere-it is of order 1//1 (16) (this will be shown below). 
Therefore, under steady conditions all quantities in it change 
appreciably only in the directionp of the normal to the layer. 
Bearing this in mind, we write Maxwell's equation in the 
boundary layer in the form 

dB, 4 n .  dB, 4n -=- 
a 

I., 
aP 

i,, -(pB,) =Q, 
ap c C aP 

The distribution of the electrons and positrons is de- 
scribed by the kinetic equation (4),(5), in which the source Q 
is equal to zero (plasma is generated only near the surface of 
the pulsar). We take into account the fact that near the light 
surface the particles are strongly accelerated. At the same 
time, their initial spread with respect to the longitudinal mo- 
menta is of little importance, so that we can set 

Substituting (76) in the kinetic equation and retaining only 
the derivatives with respect to the coordinatep, we obtain 

Equations (75) and (77) form a complete system describing 
the distribution of the plasma and the field in the thin bound- 
ary layer. 

For simplicity, we shall consider the case of weak longi- 
tudinal current in (70) and (7 I), a, ( 1, or 

In this case, the component B, (and the light surface near it) 
is small, B, =B,X$ (70), and it can be ignored. Using also 
(79, we represent the magnetic field in the boundary layer in 
the form 

B=B, (2) { U x ,  x ,  0), x=x (2) =B,(x)/B,, (78) 

where x is a dimensionless coordinate: x =pOc-'(1 - 8 )  
(5 I), and B, is the value of the radial magnetic field on the 
surface x = 1. The dependence of B, on z is determined by 
the general behavior of the solution up to the region of the 
boundary layer x=: 1. In accordance with (72), the electric 
field E in the boundary layer can be expressed to the same 
accuracy -xi  in the form 

Introducing the dimensionless variables y = y0y1 and 
p = m,y,,cpl and using (78) and (79), we transform the system 
of equations (75) and (77) into (omitting the primes) 
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Here, we have used the dimensionless parameters a (2 1) and 
R (16): 

Under the conditions of the pulsar magnetosphere, it follows 
from (7) and (21) that A)  1,a) 1 always. Of course, Eqs. (80) 
are valid only in a thin boundary layer Ax near the light 
surface: 

It follows directly from (80) that 

i.e., the component F of the magnetic field can be expressed 
directly in terms of the Lorentz factor y of the plasma parti- 
cles, in accord with Ref. 13. In the drift approximation, 
when a/A-+oo (22), the solution of Eqs. (80) has the form 

In the last expressions, we have used the fact that xo > 1. It 
can be seen that as the light surface is approached, x-+xo, the 
energy of the particles in the drift approximation becomes 
infinite as (x, - x)-'/'. At the same time, the drift approxi- 
mation (22) breaks down. 

To find the solution near the singularity, we introduce 
the new variables 

Bearing in mind that y )  1, we rewrite Eqs. (80) and (82) in the 
form 

It follows from (84) that 

Therefore 

Finally, we find from (84) that 

r=2- [4- (s-s~) 21 l h ,  

where so is the value of s at which T 4 .  Matching the solu- 
tions (85) and (83) with respect to the value of r and the 
derivative d r  /ds, we find 

~ ~ = - , 5 ~ ,  sl=-a, ~ = 2 ' ~ ~ ~ ' f ~ ~ - ~ ~ ~ ~ ~ , ,  1 -lxp. 

Here, s, is the matching point, which is valid for a < 1. 
The obtained expressions describe completely the dis- 

tribution of the particles and the magnetic field in the bound- 
ary layer on the light surface. 

It can be seen above all from (83) and (85) that in the 
boundary layer the energy of the electrons and positrons in- 
creases sharply: 

8=&,[1- (1- ( s - s o ) ~ / ~ ) ' ~ ] ,  

where 

The limiting energy ?Ym is proportional to the current 
strength I, (43) on the pulsar surface and is inversely propor- 
tional to the density of particles in the magnetosphere: R -n 
(81). Under optimal conditions, when the maximal value of 
the current I, reaches the value (74) and A - 1, the particles 
are accelerated to values y- 1O7BOlz P -2, where BOI1 is the 
value of the field on the surface of the pulsar in units of 1012 
G, and P i s  its rotation period in seconds. 

The momentum p, of the particles in the direction of 
rotation increases in proportion to the energy (80). The mo- 
mentump, in the radial direction behaves in a more distinc- 
tive manner: 

It increasesp,, = g, Jx 5, J/4c at s - so = t/5, and then de- 
creases and on the boundary s = s, = 2 + so vanishes. The 
particles are reflected by this boundary and move in the op- 
posite direction, continuing to be accelerated in the z direc- 
tion. We emphasize that the physical situation in the region 
directly near the boundary S, is quite different from the situ- 
ation in the main magnetosphere. The energy density of the 
particles is here comparable with the magnetic field energy, 
and the Alfv6n velocity becomes equal to the velocity of 
light. Therefore, magnetoacoustic waves can be generated 
here.'' Particles enter the regions 2sc together with the radi- 
ation. Their mean energy remains of order gm (86). The 
condition (8) is violated at the boundary s, and in the radi- 
ation region s > s, , so that our original equation (26) is here 
invalid. 

The motion of the particles in the z direction is impor- 
tant only in the boundary layer. The momentm p, here in- 
creases most strongly: 

Its main feature is that the particles with opposite sign of the 
charge, the electrons and positrons, move in oppositez direc- 
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tions. This means that in the thin boundary layer there is a 
strong electric current. Here there is formed a jet of surface 
current flowing in the z direction along the light surface. The 
intensity of the current jet is 

Because of the presence of the intense surface current J j  (87), 
there is rapid variation in the boundary layer of the q, compo- 
nent of the magnetic field: 

here, BVc is the field in the magnetosphere on the boundary 
of the layer. It can be seen that already at s =so + v3 the 
component B, vanishes and changes sign, and at 
s = s, = so + 2 it reaches the value - B,=. The vanishing of 
B, corresponds to complete closing by the current jet in the 
boundary layer of the longitudinal currents flowing in the 
magnetosphere. Therefore, the currents for s > so + v3 can 
be nominally regarded as belonging to the current system in 
the radiation region. 

Physically, the process of closing of the current in the 
pulsar magnetosphere and the acceleration of the particles in 
the boundary layer can be readily understood. For this, let us 
compare the distribution of the total potential of the electric 
field (1 1) on the surface of the star, 

and in the magnetosphere: 

this being shown in Fig. 3. Concretely, in Fig. 3 we consider 
the case, which will also be discussed below, when the coro- 
tation charge p, (13) in the polar region has positive sign 
(n*M < 0). In this case, the surface of the body on the open 
lines of force, f < f *, has an appreciable positive potential 
relative to the magnetosphere (the broken line in Fig. 3). 
Therefore, only electrons can reach the surface of the pulsar 
from the magnetosphere, so that the longitudinal current in 
the complete region of open lines of force in the magneto- 
sphere always has the same direction, away from the pulsar, 
as is shown in Fig. 4. In the boundary layer near the light 
surface the drift approximation (20) is violated, and the par- 

FIG. 3. Total potential @ of the magnetosphere dash-dot line), potential of 
the star (dashed line), and the potential Y as a function off. 

FIG. 4. Schematic representation of the currents flowing in the pulsar 
magnetosphere. 

ticles are displaced across the equipotential surfaces. In do- 
ing so they acquire energy. As is clear from Fig. 3, the posi- 
trons, if they are to acquire energy from the electric field, 
must be displaced in the direction of increasing5 and the 
electrons in the opposite direction. As a result, there arises 
the intense current jet (87) in the boundary layer, which car- 
ries positive charges in the direction of increasing f (Fig. 4). 
As f-tf *, as can be seen from Fig. 3, the potential difference 
between the magnetosphere and the surface of the star van- 
ishes [see (44)]. At the same time, the positrons of the magne- 
tosphere acquire become capable reaching the surface of the 
pulsar. Therefore, at the position of intersection of the light 
surface with the line of force f = f * the current jet bends and 
returns to the surface of the pulsar along the separatrix (Fig. 
4). The magnitude of the reverse current jet on f = f * is 

It cancels completely the direct longitudinal current I, flow- 
ing in the entire magnetosphere of the pulsar. 

Note that a singular boundary layer also arises near the 
surface of the pulsar. This is a Langmuir double layer, in 
which the total electric potential changes from the surface 
potential (88) to the magnetosphere potential (89). By virtue 
of the condition as 1 (21), the concentration of charged par- 
ticles in this layer is negligibly small, and it is therefore called 
the "vacuum As follows from (12), the electric field 
Y in the layer as p,+O, flr4 is described by the Laplace 
equation 

The boundary conditions for the potential Yare 

d Y  
Y! (z=O) =o, -(z=zo (p) , p) =o. 

az 

Here, we have used the dimensionless variables (40), r, is the 
dimensionless radius of the star, ro = f2R /c, and z,@) is the 
upper boundary of the gap, on which the longitudinal elec- 
tric field vanishes. In addition, since p < ~$'~<r,, the normal 
to the surface is parallel to thez axis. The solution of (90) for 
IdY/df 141 has the form 
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and the surface rob) is the ellipsoid 

The maximal height of the "gap" is H = vf */2)'12r0312. It is 
in the field (91) that the particles acquire the energy needed 
for the generation of electron-positron pairs in the magneto- 
sphere. 

94. ARBITRARY ANGLE BETWEEN THE ROTATION AXlS AND 
THE MAGNETIC AXlS OF THE PULSAR 

We assumed above that the rotation axis O of the pulsar 
and the axis M of its magnetic dipole moment coincide. This 
made the problem symmetric and therefore led to a number 
of important simplifications in the construction of its solu- 
tion. In the present section, we consider the general case of 
arbitrary anglex between the rotation axis and the magnetic 
axis. 

As before, an important part is played by the limit of 
complete corotation, when no longitudinal currents flow 
from the surface of the pulsar and in the magnetosphere 
there is no electric field: Y = 0, ill (S ) = 0. At the same time, 
we note that by virtue of (23) 

CP. 
div{i ,~ - 8-[ VYXB] (92) 

In the absence of an electric field (Y  = 0), it follows 
from this relation that dill/drll = 0, i.e., ill remains un- 
changed along a line of force. Therefore, in the absence of a 
field and of a longitudinal current flowing from the pulsar 
surface, ill (S ) = 0, the longitudinal current ill in the complete 
magnetosphere is equal to zero: 

Thus, we consider first the case of compl :uiotation 
(93). The system of equations (26) and (27) with dllowance for 
(93) takes the form 

rot Go=O, Go=B (1-prZ) +PI (BPI), div B=O. (94) 

The solution of (94) can obviously be represented in the form 

where h is some scalar function. In the dimensionless cylin- 
drical coordinates (40), p' = Op/c, z' = Oz/c, and q ~ ,  the 
magnetic field can be expressed in terms of the dimensionless 
effective potential h by 

where Be = Mf2 '/c3. The equation for h follows from (94). 
We have 

The boundary conditions for the effective magnetic po- 
tential h are determined in accordance with (27) and (33). It 
follows from the condition (27) that in the limit p 4 ,  z 4  
the magnetic field (95) must become a dipole field, i.e., 

z 
hp+o,r+o = GOS X -1 

(p"z2) 'I)" 
'Os sin%. 

(p"z2) " 
It is natural to seek the solution of the linear equation (96) 
with the boundary condition (97) in the form 

h(p, z, cp) =ho (p, z) cos x+h, (p, z) cog cp sin X. 

The potential h, describes the axisymmetric case Cy = O), 
and the potential h, cosp the case of mutually orthogonal 
axes and M. The potentials h, and h ,  satisfy the equations 

with boundary conditions as p a ,  z 4  

The second boundary condition (33) for h, and h, is the ab- 
sence of singularities on the light surface: 

ahO/ap=ahtldp=O for p=l.  (101) 

The solution of the linear equations (98) and (99) is 
found by separation of the variables, as in Sec. 2. It is clear 
from symmetry considerations that h, is an even function of 
the coordinate z and h, an odd functin, so that 

and the functions [,@,A ) and [,@,A ) satisfy the equations 

As follows from (loo), (102), and (103), the boundary condi- 
tions as p 4  have the form 

In the limit p 4 1 ,  the solutions of Eqs. (104) with allowance 
for (101) are 
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It can be seen from this that on the light cylinder p = 1 not 
only ah /dp = 0 but also h = 0, i.e., the magnetic field is di- 
rected only along p: 

This agrees with the results of Henriksen and Norton.14 
For arbitrary values ofp, the eigenfunctions go and 6, 

can be represented in the form of the expansions 

where b, = a, = 1, and b, and a, satisfy the recursion rela- 
tions 

n (2n-3) 4 (n-1) (n-2) -AZ 
(Ir:+i= an - an-$ 

nz- 1 4 (n2-1) 

Further, the functionsD,(A )and D,(A )in (1 07) [see also ( 106)] 
must be chosen such that the expansion (107) satisfies the 
boundary conditions (105) as p 4 .  For this, using the 
asymptotic expressions for the functions KO and K ,  a s p 4 ,  
we find 

Do-' (A) = - b.,(A) ( ~ - P ~ ) ~ I ~ - O ,  
21L ln p 

n-2 

Graphs of these functions are shown in Fig. 5. For A )  1 ,  

The obtained expressions completely determine the so- 
lution of Eq. (96). The structure of the magnetic field in the 

FIG. 6. Structure of the magnetic field for different angles of inclinationx. 
The longitudinal currents and the accelerating potential are equal to zero. 

pulsar magnetosphere for different angles of inclinationx of 
the axes is shown in Fig. 6. For x = 0", the solution is natu- 
rally the same as that obtained in Sec. 2. It can be seen that 
with increasing angle x the region of the closed magneto- 
sphere increases and is inclined to the rotation axis. At the 
position at which the closed magnetosphere touches the light 
cylinder there is, as in the axisymmetric case, a singular zero 
line. Here, the magnetic field vanishes, B = 0. 

The form of the zero line for different angles of inclina- 
tion of the axes is shown in Fig. 7. The zero line is quite close 
to the ellipse formed by intersection of the light cylinder with 

FIG. 5. Form of the functions D (A ): curve 1 )  D (A ) (58), 2) D,(A ), 3)  D,(A ) FIG. 7. Position ofthe zero line as a function of the cylindrical coordinate 
(108). p: 1) x = 30",2) x = 60", 3) x = 70". 
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the plane. In the limiting casex = 90°, the zero line degener- 
ates into a vertical straight line. Near the singular points 
lying on the zero line the limiting lines of force separating the 
regions of the closed and open magnetosphere converge at 
the constant angle 6, which depends neither on the angle p 
nor the angle of inclinationx: S = 70.5" (61). 

On the light cylinder, only the z component of the elec- 
tric field and thep component of the magnetic field are non- 
zero, and in accordance with (10) they are equal in magni- 
tude: 

The charge density on the light cylinder is 

0 

P dB, 
- c o ~ q s i n ~ j ~ ~ ( h ) k s i n ( k z ) d h  =--, 1 8nc dz 

0 

As we move away in the z direction from the zero line the 
magnitudes of the fields first increase and then decrease. At 
the point of the extremum of the magneic field, the charge 
density changes sign. At large z, both the magnetic field and 
the charge density decrease exponentially. This is due to the 
fact that, as can be seen from (108), D,(A ) is an odd function 
of A and D,(A ) an even. For example, for the magnetic field 
when z) 1 we obtain in the dimensionless variables (40) 

The polar cap, i.e., the region on the surface of the star 
on which open lines of force arrive, is in the axisymmetric 
case a circle of radius 

where f,* = 1.592 is the value off for the separatrix that 
divides the regions of closed and open lines of force. If there 
is an inclination between the axes f2 and M, the polar cap is 
deformed, retaining elliptic symmetry [to accuracy --(OR / 
c ) ~ ' ~ ] ,  and its boundary is 

Here, p' and q' are polar coordinates with respect to the 
magnetic pole, and u is the area of the polar cap. As the angle 
of inclination changes, the area a gradually increases from 
the value 

u=u0=nfoPRSIc 
at x = O" to a = 1 .23u0 at x = 90". The ratio of the principal 
scales of the ellipse changes in the same limits-from 1 to 
z 1.2. 

We now consider the general case when in the magneto- 
sphere there is a longitudinal current ill # O  and potential 

Y #O. Let f (p ,  z, q ) = const and O ( p ,  z, p ) = const deter- 
mine twosystems ofmagnetic surfaces, f ( p,z, q ) and O ( p, z, 
q ) being certain scalar functions. The intersections of the 
magnetic surfaces f and O are the magnetic lines of force. 
Using (27), we determine the magnetic field B as 

Here and in what follows, we use dimensionless variables 
and the functions (40). Taking into account (18), we can as- 
sume that the potential of electric field is constant on the 
surfaces f = const, and therefore Y = Ylf). Since at the 
same time the right-hand side of Eq. (26) is orthogonal to the 
vector Vf, one of the components of the vector equation (26) 
takes the form 

rot GVf=div [GxVf] =O. (111) 

We obtain the second component by multiplying (26) scalar- 
ly by B: 

i,,=B-2 (rot GB) . (112) 

This relation determines the longitudinal current ill . Finally, 
multiplying Eq. (26) by VO, we obtain the third component 
in the form 

V 8  rot G 

The current ill is here eliminated in accordance with (1 12). 
Equations (1 11) and (1 13) with allowance for (1 10) form a 
complete system determining the functions f ( p,z,p ) and 

( PS,P). 
In the axisymmetric case, the function f depends on two 

variables f = f ( p j ) ,  and 

For arbitrary angle of inclinatin X, the coordinate O pre- 
serves its cyclic nature and natural normalization 

Bearing this in mind, we obtain from the expression (1 10) 

Here, the integration is over the surface of the section lying 
within the region f ( p,z,q ) = const. Since the magnetic field 
in the polar region of the star can be assumed to be constant, 
B = B,, the value off is proportional to the area in the polar 
region bounded by the curve f = const. Therefore, in the re- 
gion of the open lines of force f varies in the range 
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where Q ) is the area of the polar cap, a, = a k = 0"). The 
value off * k )  varies from 1.592 a t x  = 0" to 1.95 a t x  = 90". 

In the axisymmetric case, the total current in the region 
bounded by the magnetic surface f = const is constant and 
equal to g(f) in the dimensionless variables (40). A similar 
current conservation relation holds for arbitrary angle of 
inclinationx of the axes, which can be directly seen from the 
expression (24) (the current cannot intersect the surface 
f = const). It takes the form 

Near the surface of the pulsar, the second term in (91) and 
(1 14) is small, and here the current ill along a magnetic line is 
force is conserved. In the axisymmetric case, it does not de- 
pend on the angle p and is equal to dg/df (42). For arbitrary 
angle of inclination x of the axes, the longitudinal current 
near the star may depend on the coordinate O. In the bound- 
ary condition (29), it is therefore convenient to separate the 
symmetric and antisymmetric parts of the current: 

By virtue of the relation (1 14), 

As we shall see in what follows, the asymmetric part of the 
current is small compared with the symmetric. 

The system of equations (1 1 I), (1 13) for ill #O,Y #O is 
valid only in the region of open lines of force. On the closed 
ones, we always have ill = O,P = 0 in accordance with (3 1). 
Therefore, assuming, as in the axisymmetric case, that the 
closed region of the magnetosphere is unchanged, we must 
match the solution of Eqs. (1 1 1) and (1 13) on the separatrix 
f = f '  k) to the solution in the closed region obtained at the 
beginning of this section for arbitrary angle of inclination x 
of the axes. It is important that at almost all angles of inclina- 
tion the region near the separatrix f is strongly distin- 
guished, since it is only here that the reverse current flows, 
forming, as in the axisymmetric case, a narrow and strong 
current jet. Indeed, it follows from the expression (13) that 
the charge density p, near the magnetic pole has constant 
sign (provided fk-B # 0, i.e.,x # 90"). It follows from this that 
in the complete region of open lines of force the potential Y 
has constant sign, and the longitudinal current constant di- 
rection. Therefore, the reverse current flows only at the se- 
paratrix, where Y vanishes (see Figs. 3 and 4). 

To match the current region to the quiescent region of 
the magnetosphere, it is most important to match the mag- 
netic surfaces near the singular points lying on the "zero" 
line, since there even small changes inf, which characterizes 
the magnetic surface, lead to appreciable deviations in the 
position of the surface itself. Indeed, it follows from the solu- 
tion found in the first half of this section that a line of force 
near the singular point z = z,(p ) is described by the equation 
[cf. (6011 

where 

at the point z = z,(p ),p = 1, and f * is the value off on the 
singular line of force. Hence, it can be seen that 

tends to infinity at the singular ~ o i n t  f = f * ,p-1. Here, the 
situation is entirely analogous to the axisymmetric case, 
where almost the entire deviation of the magnetic surface 
occurs in the neighborhood of the singular point, since it is 
there that (df /dzlf. 4, i.e., dz/df-oo . 

To make the matching, we first solve Eq. (1 11) in the 
neighborhood of the singular point z = zo(p )g = 1. For this, 
it is convenient to go over in (1 11) from the variablespj ,~ to 
fg ,p  and regard O (f,p,p ) as an unknown function. Then Eq. 
(1 1 I )  takes the form 

Bearing in mind that dz/df cc (1 - p)-"in the neighborhood 
of the singular point, we represent the solution of Eq. (1 18) as 
an expansion in powers of E = 1 - p: 

(119) 
Substituting the series (1 19) in Eq. (1 18) and equating the 
coefficients of different powers of E,  we obtain 

whereg,(f,p ) andg,(f,p ) are arbitrary functions; the analog 
ofg, of the axisymmetric case isg( f ), and ofg, is the angle p. 
The magnetic field on the light surface near the singular 
point is 

It can be seen from this that the field here is parallel to the 
zero line. From Eq. (117) and the condition of absence of 
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divergences on the light surface, i.e., a@ /dq, # co for f = f * , 
p = 1, it follows that 

Substituting the solutions (120) and (121) in Eq. (1 13) 
and retaining there only the terms of first order in E,  we 
obtain the following connection between g,(f) and dY/df: 

We can express golf) in terms of the total electric current 
flowing in the p direction near the singular zero line of the 
magnetic field between two closely spaced magnetic surfaces 
fand f ': 

Substituting (curl G), with allowance for the expansion (120) 
in (123), we obtain 

Since the electric current flowing out of the pulsar does not 
intersect the magnetic surfaces f = const, the current I ( f )  
(123) is related to the total current gx (f) flowing within the 
complete magnetic tube f (1 14) by 

Hence and using (124), we obtain 

Integrating now (122) over p, we arrive at the final relation 

This is the "consistency relation" connecting the total cur- 
rent g, and the electric field dY/df in the magnetosphere of 
the pulsar at the boundary f in the inclined case. It is entire- 
ly analogous to the relation (63) in the axisymmetric case. 
Only the coefficients aCy) and b (X), which are shown in Fig. 
8, are changed. 

It follows from (125) that for any angle of inclinationx, 
as in the axisymmetric case, a limiting current exists. In the 

FIG. 8. Graph ~fthede~endenceofthecoefficients: 1) aly), 2 )  b ly)  (125),3) 
iocly) (126) on the angle of inclination X.  

case of the linear dependence gx (f) = i, f [cf. (49)], the total 
current g, (f* ) is bounded: 

gx ( f * )  <g,= ( f ' la)  iu<ioc= (af') -"I. (126) 

The dependence of the limiting current ioc(126) on the angle 
x is also shown in Fig. 8. It can be seen that the limiting 
current decreases with increasing X. The maximal value 
(dY /df b. of the electric field is equal to b (X). The rotation 
velocity of the magnetosphere decreases in magnitude and is 
deflected in direction from the axis of the magnetic dipole 
with increasing currentg, . However, even when the limiting 
current is attained the magnetosphere is completely stopped 
only in the axisymmetric case x = 0". 

Our matching of the solutions for the closed and open 
magnetosphere presupposed that the presence of the longi- 
tudinal current (1 15) in the region of open lines of force does 
not perturb the fields in the region of closed lines of force. 
For this, the magnetic field flux produced by the longitudi- 
nal currents flowing in the magnetosphere must vanish on 
the singular magnetic surface f = f . In the axisymmetric 
casex = O" this is obviously so, since the jet of the symmetric 
reverse current flowing along the separatrix f * (62) com- 
pletely screens the magnetic perturbations. In the case of an 
inclination x #0° of the axes, the picture is not axisymmet- 
ric, and a special analysis of the conditions of screening of 
the field is required. However, it is clear that if the magnetic 
field produced by the current flowing along the open lines of 
force is not to penetrate beyond the surface bounding the 
polar cap, its component normal to the surface must vanish. 
The solution of the equations for the magnetic field B, of the 
current in the polar region, 

rot BC=4nc-'illBu, div B,=O, (127) 

leads under this condition to a relation between the asymme- 
tric and symmetric currents (1 16): 

i,,,=i,,, [L (cp') lL- 11 . (128) 

Here, the function L (p ') is determined by the shape of the 
polar cap ( 109): 

1 d q 2  1 d 1 d q  
~ ( c p 7 =  [ I + ( - _ )  11 dcp ---(--)I/ 2 drp' q drp' 7,'. 
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For simplicity we have assumed here, as in (49) and (126), 
that the magnitude of the symmetric longitudinal current ill, 
is constant and equal to io in the complete polar region, and 
also that the shape of the curve f = const on the surface of 
the star is similar to the boundary of the polar cap (109). In 
the axisymmetric case ~r 1 and, therefore, ill, =O. Since, as 
we have seen, the ellipticity of the cap is fairly weak in the 
general case too, the asymmetric longitudinal current is al- 
ways small compared with the symmetric. 

It should be emphasized that the analysis made in this 
section is based essentially on the circumstance that the lon- 
gitudinal current at the surface of the star has one direction 
in the entire polar cap, and the reverse current penetrates 
only in a narrow region near the boundary of the cap. This is 
true for all angles of inclination ,y of the axis except those 
near 90" as long as 

tan X< (QRlc)  -". (1 30) 

If the condition (130) is not satisfied, 90" -X < (OR /c)'12, 
the reverse current occupies an appreciable part of the polar 
cap, exactly half of it when x = 90". 

Thus, our construction in the neighborhood of the se- 
paratrix f = f proves completely the existence of a solution 
of Eqs. (26) and (27) in the entire region of open lines of force 
that satisfies the above requirements, so that the pulsar ener- 
gy loss can be determined. The general structure of the mag- 
netosphere and the picture of the currents flowing in it for 
arbitrary angle of inclination of the axes can be readily repre- 
sented on the basis of the solutions obtained earlier (Figs. 1- 
7). 

95. PULSAR ENERGY LOSSES 

We now turn to the determinatin of the loss of rota- 
tional energy of the star. The deceleration of the star is due to 
the currents J, flowing on its surface. The moment of the 
forces acting on the star is 

4 .  
K = -  

C 
[rx[JsXB0(s) llds. (131) 

Here, Bo(s) is the magnetic field on the surface of the star: 
The projection of K onto the rotation axis f2 determines the 
loss of kinetic energy of the star: 

Here, J, is the moment of inertia of the star. The other com- 
ponents of the vector K determine how much the rotation 
axis turns relative to thedirection ofM, i.e., it determines the 
change in the angle of inclination X. 

To find the surface current, it is convenient to separate 
its irrotational and solenoidal parts'? 

J,$' = grad c, J," = 

where < is the potential of the surface current, which is deter- 
mined by the longitudinal currents flowing from the surface 
of the star: 

The solenoidal part J: of the current depends on the ratio of 
the Hall component 8, ~ n d  the Pedersen component 8, of 
the conductivity tensor Z of the star. The irrotational cur- 
rent J: does not depend on the conductivity. We find it, us- 
ing the expressions (128) and (129) for the magnitude of the 
longitudinal current ill : 

Here, we have used the fact that because of the similarity the 
form of the curves f = const on the surface of the star is 
determined by the relation 

wherep' is the distance from the axis of the magnetic dipole, 
and ~ ( p ' )  is the function that describes the boundary (109) of 
the polar cap. The solenoidal current J: does not directly 
contribute to the moment K, and determines only the pertur- 
bation of the magnetic moment of the star: 

Under the condition 8, /X, ((OR /c)-~,  the perturbation of 
the magnetic moment of the star can be ignored. 

Substituting (132) in (131) and integrating, we find the 
moment of the forces < 

Here, io is the dimensionless longitudinal current: ill, = Oio/ 
  IT. We emphasize that the terms of higher order [by (c/ 
OR )'I2 times greater] that arise in the derivation of the 
expression (133) and are related to the asymmetric current 
and asymmetry of the polar cap are completely compensated 
under the conditions considered here. 

It follows from (133) that apart from the slowing down, 
i.e., the decrease in the angular frequency by 

there will also be an increase in the angle of inclination of the 
axes, similar to that noted by Heintzmann16: 

sin  sin xo (QO/Q) .  (135) 

Here, x0 and R, are the initial values of the angle of inclina- 
tion and the angular velocity. We recall that in our treatment 
the current io is bounded, io(ioc, the value of the critical 
current ioc depending strongly on the anglex (Fig. 8). The 
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quantity (z)-' is actually near unity, since for an ellipse it is 
equal to (z )- ' = 21 /(1 + I), where 1 is the ratio of its axes, 
and for I = 1.2 we have (El-' = 0.98. 

It follows from the expressions (134) and (135) that the 
deceleration tends to zero when the angle x approaches 90" 
and R approaches Ro sin x,. Note that at angles near 90" the 
condition of applicability of the obtained expressions (1 30) is 
violated. The characteristic time of variation of the angle of 
inclination ,y of the axes and the angular velocity R of the 
star is in order of magnitude 1 I P B cZ2 million years. 

The energy removed from the star consists of two 
parts-the energy carried by the electromagnetic field and 
the energy used to generate the plasma. The particles that 
generate the electron-positron plasma acquire energy at the 
jump of the potential Y in the double layer ["vacuum gap" 
(91)] at the surface of the pulsar. The total energy loss here is 

In the case of a linear dependence of P on f (49), A sP. The 
energy transported by the electromagnetic field is 

c f" Bo2SZ'R6 w,=-J [EB]ds=-- 
8L c3 

io (cos x-A) . (136) 
4n 

Of course, Eq. (136) is valid only when We, > 0, i.e., 
cosx>A. Note that in accordance with (125) the maximal 
value A = A,,, z b  l;y) is approximately proportional to 
cosx. We see that the particles in the magnetosphere carry 
away from the pulsar only part of the energy, and for A(l 
their fraction is small. However, in the boundary layer near 
the light surface the electrons and positrons are accelerated 
and acquire the energy g, (86). Then the power expended 
on their acceleration is 

Here, the integration is over the light surface. Bearing in 
mind that in the expression (8 1) for n, at nonvanishing angle 
of inclination x we must add cos X, we obtain 

Thus, the energy lost by the pulsar is transmitted to the elec- 
trons and positrons and then, in the radiation region, partly 
goes over to MHD waves. 

We now compare the energy loss (134) with the loss of a 
magnetic dipole rotating in vacuum," 

which is generally used to estimate the slowing down of pul- 
s a r ~ . ~  We see first that there is a different dependence of W 
on the angle of inclination x of the axes, namely, the dipole 
losses are maximal for orthogonal axes and completely dis- 
appear as ~ 4 .  In contrast, the losses (134) (we shall call 
them the "current losses") are maximal in the axisymmetric 
case and decrease with increasing anglex. Such a decrease of 
the losses is entirely natural. The point is that the origin of 
the losses is the need for continuous plasma generation on 
the open lines of force, and the amount of plasma, which is 
proportional to p, , decreases with increasing angle x [see 
(1311. 

The most important difference between the current and 
dipole losses is that they are proportional to the longitudinal 
current flowing from the surface of the pulsar, which is ex- 
pressed in (134) by the dimensionless factor 

io=2 cos x ( j l j , )  ; 

here, j is the current density and jc is the characteristic cur- 
rent determined in accordance with (14): jc = cos X. The fac- 
tor io cannot exceed the critical value iOc(126). In the limit 
io-+ioc, the current losses are of the same order as the dipole 
losses; for io( 1, the current losses are much smaller. In parti- 
cular, in the complete absence of a current (io = 0) a star 
surrounded by a plasma magnetosphere does not lose energy 
at all, irrespective of the angle of inclination x of the axes. 
The physical significance of this can be readily understood 
by considering the energy flux for the complete corotation 
solution obtained in Sec. 4. In this case, the Poynting vector 
in the magnetosphere and on the light cylinder has, as can be 
seen from (lo), only a q, component; therefore, the flux of 
energy leaving the star is zero. In the complete absence of a 
longitudinal current, the magnetosphere plasma is polarized 
in such a way as to completely suppress radiation. 

Note that the possibility of an appreciable suppression 
of the dipole radiation due to a change in the value of the 
permittivity by the presence of plasma was pointed out by 
Ginzburg." However, Gunn and Ostriker19 showed that if 
the intensity of the radiation is very high, as can be in the 
case of pulsars, then by virtue of the nonlinearity a not too 
dense plasma is not capable of significantly changing it. In 
our case, the dipole radiation is suppressed for a different 
reason-the change in the conditions in the near zone. 

It is important that the total current io is related by 
virtue of the consistency condition (125) to the potential Y of 
the electric field. In turn, the potential is determined by the 
conditions of production of the electron-positron pairs. 
Thus, it is ultimately the generation of plasma on the open 
lines of force that, through the consistency relation, deter- 
mines the current io and, therefor, the slowing down of the 
pulsar. A detailed discussion of the slowing down of pulsars 
for specific mechanisms of generation of the electron-posi- 
tron plasma and comparison of the results of theory with 
observational data are the subject of a separate paper. 

We thank V. L. Ginzburg and D. A. Kirzhnit for a help- 
ful discussion. 

"Indeed, taking in accordance with Ref. 3 B,=: 1012 G, R=: lo6 cm, 
P = 0.66 sec, and y = y=: lo2, we have I, = 3 X 10'' crn-'.sec-l, 
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I, = 2X loz7 ~m-~-sec - ' ,  I,/I, = 6X lo5. For the total number of 
particles ejected by the pulsar when I = I, we then obtain (dN/ 
dt ), = 2 x 103'sec- I. This value is very large; according to the usual 
estimates, the outflow from pulsars is smaller: dN/dr<(dN/dt ), (see 
Ref. 7). It is also important that. as is clear from (8), (dN/dt ), increases 
strongly with decreasing rotation period as -PP4. Therefore, although 
the number of ejected particles is usually greater for rapidly rotating 
pulsars than for slow ones, the value of (dN/dt ), for them is higher, so 
that the condition (8) remains valid. Thus, for the pulsar in the Crab 
Nebula, which is the most active and has period P = 0.033 sec-I, we 
obtain (dN/dt ), = 3 X lo4' sec- I, whereas according to Ref. 7 for this 
pulsar (dN/dt)zz lo4' sec-I. The most rapid of the known pulsars has 
period P = 1.5 msec.' The flow of plasma from this pulsar, as can be 
deduced from its deceleration P = 1.3 X (Ref. 9) is also much less 
than (dN/dt ), . 

*'By corotation one means motion of the plasma as a rigid body fixed 
firmly to the rotating pulsar, i.e., rotation of the complete plasma with 
angular frequency 0. 

3'Note that since the electrons and positrons move in the same direction 
with velocity near c, to ensure quasineutrality we require the additional 
condition A>y. 

4'Note that the assumption of a dipole nature of the undisturbed magnetic 
field of the pulsar in the problem of the magnetosphere structure is en- 
tirely natural. Indeed, a strong perturbation of the field by the magneto- 
sphere currents appears at distancesp-c/o, which are always much 
greater than the radius R of the star; usually, c/OR - lo3. The multipole 
fields of the currents flowing on the surface of the star or within it fall off 
rapidly at large distances r>R. Therefore, for R<r<c/0 the dipole field 
is always predominant. This is confirmed by data of observations of the 
radiation of  pulsar^.^.^ 

5'It is easy to prove this relation by introducing a coordinatex, that lies on 
the magnetic surface and is orthogonal to e,. By virtue of the axial sym- 
metry g = g(xl.f); then it follows from (37) that ag/dxl = 0, i.e., g = glf ). 

@Equation (41) is used here in the determinatin ofA f to simplify the calcu- 
lations. Complete analysis on the basis of Eq. (50) alone with allowance 
for the divergence of the integrals (67) leads to the same results. 

7'The attempt made in Ref. 12 to find a solution to the problem in the 
presence of longitudinal currents but in the absence of a field Y led the 

authors of Ref. 12 to a contradiction. This must be, since the condition 
(64) is not satisfied in this case. 

"In the case of rigorous axial symmetry, radiation is absent by virtue of the 
vanishinn of the oscillatina comvonent of the electric current. Therefore. - - - 
instabiity of the axisymmetric structure in the radiation region is impor- 
tant. In the case of rotation of an inclined dipole, there is no axial symme- 
try and radiation is generated freely. 

'P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969). 
'M. A. Ruderman and P. G. Sutherland, Astrophys. J., 196,51 (1975). 
3R. N. Manchester and J. H. Taylor, Pulsars, W. H. Freeman (1977)[Rus- 
sian translation published by Mir, Moscow (1980)]. 
4L. Mestel, Astrophys. Space Sci. 24, 289 (1973). 
5L. Mestel and Y.-M. Wang, Mon. Not. R. Astron. Soc. 188, 799 (1979). 
6F. C. Michel, Astrophys. J. 180,207 (1973). 
7W. Kundt, in: Pulsars, Proc. IAU Symp. No. 95, Dordrecht, Reidel 
(1981), p. 57. 

'D. C. Backer, S. R. Kulkami, C. Heiles, M. M. Davis, and W. M. Goss, 
Nature 300,65 1 (1 982). 

'D. C. Backer, S. R. Kulkarni, and J. H. Taylor, Nature 301,314 (1983). 
'OF. C. Michel, Rev. Mod. Phys. 54, l(1982). 
"S. I. Syrovatskii, Izv. Akad. Nauk SSSR, Ser. Fiz. 43, 695 (1979). 
I2L. Mestel and J.-M. Wang, Mon. Not. R. Astron. Soc. 198,405 (1982). 
13H. Ardvan, Astrophys. J. 204, 889 (1976). 
I4R. N. Henriksen and J. A. Norton, Astrophys. J. 201, 719 (1975). 
I5A. V. Gurevich, A. L. Krylov, and E. E. Tsedilina, Space Sci. Ref. 19,59 

(1976). 
I6H. Heintzmann, Nature 292, 81 1 (1981). 
I7L. D. Landau and E. M. Lifshitz, Teoriya polya, Nauka, Moscow 

(1973);English translation: The Classical Theory of Fields, 4th ed., Per- 
gamon Press, Oxford (1975). 

I8V. L. Ginzburg, Usp. Fiz. Nauk 103,393 (1971) [Sov. Phys. Usp. 14,83 
(1971)l. 19J. Gunn and J. Ostriker, Astrophys. J. 165, 523 (1971). 

Translated by Julian B. Barbour 

253 Sov. Phys. JETP 58 (2), August 1983 




