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Pinning of an interlayer (domain) wall that separates layers with different directions of the Sasaki 
electric field by the free-electron density inhomogeneities is considered with the Sasaki multiva- 
lued effect as the example. It is shown that the walls are located at the density extrema, with a 
thick wall stable at the minima and a thin one at the maxima. Pinning produces in an inhomogen- 
eous semiconductor a number of variants of stable layered dissipative structures (in contrast to an 
ideally homogeneous material, where one or two of the simplest structures is stable). In the region 
of the anomalous Hall effect, an increase of the magnetic field, first, broadens the layers with the 
Sasaki field directed along the Hall field and narrows the layers with the oppositely directed 
Sasaki field; second, it leads to a jumplike rearrangement of the layered structure, accompanied 
by jumps of the transverse emf. 

PACS numbers: 75.60.Ch; 75.60.Ej, 72.20.M~ 

INTRODUCTION 

The anomalous Hall effect, (AHE), which consists of a 
steep dependence of the Hall emf on the magnetic field H at 
small H (Fig. l), turned out to be most convenient for experi- 
mental identification of the multivalued Sasaki effect (MSE) 
in Refs. 1-3. The AHE was predicted in Ref. 4 from the 
following considerations. The MSE in an ideally uniform 
semiconductor causes the latter to be stratified into layers 
with oppositely directed transverse electric fields (Sasaki 

At low rates of the surface intervalley relaxation, 
the stable structure is the simplest two-domain structure 
with an interlayer boundary in the middle. A weak magnetic 
field shifts the boundary and broadens the layer with the 
"correct" sign of the Sasaki field (the sign coinciding with 
that of the Hall field), and makes the layer with the "incor- 
rect" sign thinner. It is this which causes the AHE: the steep 
section in Fig. 2 corresponds to displacement of the inter- 
layer wall. Its steepness is a reflection of the fineness of the 
state with the wall exactly halfway in the sample. When the 
interlayer wall is moved out to the outer surface of the plate 
and the Sasaki field becomes of the correct sign in the entire 
sample, the AHE vanishes; further growth of H causes an 
increase of the normal Hall emf (gently sloping sections Fig. 

with a total electron density 2nCy), one-dimensionally inho- 
mogeneous along the direction of the Sasaki field (the y-axis 
direction; the current flows along x and the magnetic field is 
directed alongz). Just as in Refs. 4-6, the calculations are for 
a two-valley semiconductor. The two-valley-semiconductor 
model is qualitatively quite satisfactory in the case, e.g., of n- 
Si at a current along (1 10) (see Ref. 2). It will be shown that 
stable multilayer structures of the Sasaki field Ey are possi- 
ble in the presence of inhomogeneity. In the absen& of den- 
sity gradient averaged over the thickness ((dn/dy) = 0) 
there is likewise no Sasaki field, but in a magnetic fied the 
layered structure becomes rearranged, the fraction of layers 
with the correct sign of the Sasaki layer increases, that with 
the incorrect decreases, and it is this which leads to the 
AHE. The AHE region is limited by the total vanishing of 
the layers with incorrect sign of the Sasaki field. The slope of 
the 8, = 8, [Hz) plot in Fig. 1 in the region of the AHE is 
determined by the amplitude of the inhomogeneities. The 
results indicated are obtained assuming a smooth variation 
of the inhomogeneities: the characteristic scale is large com- 
pared with the drift length L, that determines the thickness 
of the "thick" interlayer walls. 

1. BASIC EQUATIONS 

1)- We start from the following expressions for the elec- 
'lots of ' Y  = * Y  (Hz ) t~ the One shown in Fig. tron fluxes in valleys 1 and 2, located in the xy plane symme- 

were observed in Refs. but their trically about the current direction (the axes) with the large- 
slopes on the AHE section were many times smaller than mass axes at angles & 450 to the axis: 
predicted by the t h e ~ r y . ~  According to the latter, the slope 
increases exponentially with increasing ratio d /L,, where d 
is half the thickness of the sample (in they direction) and L, is 
the length of the electron drift in the electric field (an exact 
definition is given below) and tends to infinity as d /L,-+m . 
Experiment reveals no such tendency. These and a few other 
deviations from the predictions of the t h e ~ r y ~ - ~  were attri- 

jIr> Hz 

buted in Ref. 2 to the influence of the sample inhomogeneity. 
An attempt is made here to take into account the influ- 

ence of the inhomogeneities on the layered structure and the 
AHE in the case of the MSE. A very simple model is used FIG. 1.  Hall emf vs the transverse magnetic field in the AHE. 
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E ,, are the heating fields in the valleys and given in our case 
by the equations 

FIG. 2. Qualitative plots of r ( 8  ), r'(8 ) and r (9  )/8 in the MSE. 

here n'192' are the electron densities in the valleys, 6 "." are 
their diffusion coefficients, are their mobilities. It is 
assumed that the heating-up change of the diffusion and mo- 
bility coefficients is immateeal and can be neglected. For the 
components of the tensors ,LL".~' we have 

(,,2)- ( , , 2 )  - ( 1 . 2 )  - ( 1 . 2 )  - 
P= -pvv  - P ,  P U X  -* a ~ - - a ~ ,  pxar --* a ~ + a p ,  (3) 
where OGaG 1, and a is the Hall angle and is proportional to 
H z .  Similar relations hold also for the D components. Ac- 
count is taken in (1) and (2) of the homogeneity of the prob- 
lem along the current direction. 

Denoting n"' + d2' = 2n, n"' - d2' = 2nf, we have 

n('v2)=n(l*f) ,  I f  1 < I .  (4) 

In the stationary and quasistationary cases considered 
below we can assume that there is no transverse current, 
/;' +/:I = 0, so that 

where 9 = Ey /Ex. The Hall angle that represents the mag- 
netic field in Eqs. (3)  does not enter explicitly in (10). 

The essential assumption made in this paper is that rela- 
tions (9) and (10) are preserved for the spatially inhomogen- 
eous situation. We note that the B @) distributions obtained 
here agree with this assumption, since they are combinations 
of regions of very gradual variation of 9 ,  in which the gradi- 
ent terms of the fluxes are small, and regions with very dras- 
tic variation of 9 ,  in which the fluxes J;"' are conserved, so 
that the exact form ofR (f) does not play a special role. Simi- 
lar assumptions are frequently made in theories of domain 
instability .8 

In view of the adoption of relations (9) and (19), it is 
convenient to transform in (7) to the variable 9; we then have 
in place of (7) 

1 d2ai 3 a ,  d a ,  + --+- ( ~ - a + ~ ~ ) ~  { p2 at2 ap 

- a ,  [ i  (6-a +F 
v , + Y ~  a6 

= r ( 6 ) - -  
2v (Ex) ( a  + F ) + a T ,  

where 

the difference between the transverse electron fluxes can be We are interested next only in the case of a weak mag- 

written in the form netic field la 1 < 1 and a smooth inhomogeneity la, I< 1. 

a f 
Equation (1 1) generates two characteristic spatial scales: 

. (1) . ( 2 )  
v I = - 2 ~ n  [- + 1 ( 1 - f 2 )  ] , a u (6) El=l/P=DIapExL, E2-fi=apEx/2v (E,) L, 

- 

where y = apEx /D;  the field Ex is assumed hereafter strict- the first of which, [,, is much smaller in the considered range 

ly specified. with allowance for (41, the continuity equation of electric fields than the second 12. (In dimensional units the 

for the difference flux (6) is of the form first scale L ,  = 6,L is the "contracted" diffusion length op- 
posite to the field aEx, and the second, L, = [,L is the drift 

a [- af +Y . ( 1 - f )  -I + [, a f  + ( 1 - 1 2 ) ]  1 dn - = R)  + I 3, length in the field over a time 1/2v(Ex ). The range of fields 

8~ Y 12 dy D Ot Ex in which [,)[, is determined by the condition 

(7) fi2=yZL2>> 1. (12) 
where The condition la, I g 1 denotes smallness of the change of n({ ) 

1 
(8) 

over lengths of the order of the second (stretched-out) scale: 
R ( f )  = - [ (vi+v2)/+ (v1-v2) I ,  D 1 dn  

l a , ~ = a  lE2- - -1  I .  
n dE 

(13) 
v,,, are the frequencies (reciprocal times) of the electron 
transitions from alleys 1, 2 into valleys 2, 1; in the region of We are interested in magnetic fields for which la1 is of the 
existence of the MSE they increase rapidly as the electron Same order as lal[. Therefore, taking (12) and (13) into ac- 
gases in the valleys become heated.' count, we can simplify (1 1): 

28 8 6  6' We use below the model considered in Ref. 7 for the 
8% + _ +-,, - - a , ( F )  

- -) spatially homogeneous situation, when a E" d E  a2 
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We consider only a range of fields in which the MSE 
takes the simplest form-the equation r ( 9 )  = 0 has three 
roots: 0, a , ,  and - 8, (Fig. 2). 

2. INFINITE HOMOGENEOUS SAMPLE WITH A SINGLE 
INHOMOGENEITY 

We list first the results obtained for an infinite homo- 
geneous sample without a magnetic field (a = 0, a, = 0). 
Equation 14 has then the following stationary solutions. 

1. Uniform distributions (Fig. 2): 9 = 0, 9,, - 9,.  A 
solution with a Sasaki field (9 = 0) can be readily verified 
directly to be unstable, with a characteristic dimensionless 
fluctuation growth rate 

- -~=-rl(O) =-dr/d6 I e=o>O 

(Fig. 2); the solutions 9, and - a , ,  however, are stable with 
a characteristic fluctuation damping decrement. 

e=rl (6%) =dr/d6 1 e=e,>O. 

2. Distribution with a single interlayer wall. There exist 
two types of such distributions: a) solutions with a thin wall, 
to the left of which 9 = - 9, < 0 and to the right 6 = 9, 
(Fig. 3a); b) solutions with thick wall, to the left of which 
9 = 9, > 0 and to the right 9 = - 9, (Fig. 3b). The charac- 
teristic size of the thin wall is f,, and that of the thick one is 
f,, i.e., the thick wall is thicker than the thin one by -P 
times. It is easy to verify that in the spectrum of the intrinsic 
fluctuation damping decrements of the fluctuations for the 
distributions with a single wall there is contained a minimal 
decrement equal to zero. It corresponds to the fluctuations 
of the shift of the distribution as a whole along the f axis: the 
interlayer wall occupies in space a position of neutral equi- 
librium. All other fluctuations are rapidly damped. 

3. Periodic distributions. In an infinite sample there ex- 
ist distributions with arbitrary dimensionless spatial periods 
exceeding 

Emi,=2n [-r' ( 0 )  ] -'la. 

Distributions with small amplitude amax (9, have a period 
close to fm,. As amax approaches 9 ,  the period of the spa- 
tial oscillations increases, reaching and exceeding f2%fmin . 
At periods greatly exceeding f,, the amplitude amax is less 
than 9, by an exponentially small value. Figure 3c shows 
spatial oscillations of 9 with a period considerably larger 

than f2. This structure constitutes in practice an alternation 
of layers with 6 = 9, and - a , ,  separated by single thin and 
thick walls. 

The spectrum of the intrinsic decrements for all these 
distributions contains also a decrement E = 0 corresponding 
to a neutral position of the entire structure in space as a 
whole. It is easy to verify, however, that the zeroth decre- 
ment is not a minimum: there exists an infinite number of 
negative decrements (growth rates), meaning instability of 
all the periodic structures. They are unstable in a variety of 
manners. Structures with small amplitude and with a period 
close to the minimum are just as unstable as the homogen- 
eous unstable solution 9 = 0. With increasing period, the 
maximum growth rate decreases, and for structures of the 
type shown in Fig. 3c it is exponentially small, i.e., such 
structures should be long-lived. 

The solitary inhomogeneity (SI) of the density, intro- 
duced here and added to the homogeneous density 
(n(f ) = no + Sn(f)) satisfies the conditions Sn( f w ) = 0, 
d (&)/dl = 0 at f = f w and at one other single point cho- 
sen to be the origin (f = 0). In this case a,({ ) has the "dipole" 
form shown in Fig. 4, where case a corresponds to a single 
maximum (Sn(f)>O) and case b to a single minimum 
(Sn(f) < 0). 

The SI introduced in this manner influences most ap- 
preciably the position of a single wall. Taking the position of 
the wall f,, to mean the coordinate of the point where 
9 (lo) = 0 we obtain in the case of an arbitrarily small in- 
homogeneity the only possible finite position of the wall: 
f o z O .  Let us demonstrate this. 

We seek the distribution 9 (f ) in the presence of a small 
SI in the form of a sum of a certain distribution a0(f ) in its 
absence with a small increment 8 (f ) added: 

.It. ( E )  =so (,) +0 (El 9 (15) 
where 9 (f ) satisfies Eq. (14) with a = 0 amd d / a r  = 0, and 
a0(f ) satisfies the same equation also with a, = 0. We have 
then for 0 (f ) 

We consider first the increment 8 in the case when 
&(f ) = 9, > 0 is a homogeneous solution of the problem: 
r(9,) = 0. Then a solution of (16), which decreases to zero as 
f-+ + w , takes the form 

K (6 , )  = (r' ( 6 , )  +fi2Bi2/a2) Ib. (17) 

FIG. 3. Distributions 9 (g ) with single interlayer walls and with large spa- Satisfaction of the condition 
tial period: a) thin wall, b) thick wall, c) distribution with large spatial 
period. p2Ba2r' ( 6 1 ) / 6 1 2 ,  
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i.e., the narrow wall should be located at co=:O (Fig. 4). The 
corrected Eq. (23) takes the form 

FIG. 4. Two types of SI: a) single maximum b) single minimum. 

which is the most accurate concrete modification of (12), 
enables us to write in place of (17) 

Finally if 

(a condition close to (1 3)), we have 

i.e., it is a solution of (15) with the derivatives crossed out. 
The approximate formula (19) remains fully in force for 

the increment B to the solution a,([) = - 6,;  it is necessary 
to replace 6, by - 6, in the argument of the exponential in 
the exact Eq. (17), and we obtain in place of (18) 

We proceed now to the solutions 6,(6), which contain 
the wall. Since the wall position 6, is arbitrary, it is necessary 
to find that unique value of 6, at which the increment B ({ ) 
turns out to be small. This is simplest to do with the example 
of a thin wall, whose thickness can be completely neglected if 
(12') is satisfied, i.e., we regard it as an abrupt step. It follows 
then from (1) that it is necessary to satisfy on its boundaries 
the flux-continuity condition 

to the left and to the right of the position go in (21) it is 
necessary to substitute for 9,(6 ) the values - 9, and a , ,  and 
for B (J ) respectively the right hand sides of Eqs. (20) and (1 8). 
The first term (dB /dg ) can be neglected. The equation that 
determines the unique thin-wall position 6, at which the 
small inhomogeneity a,(6 ) disturbs the distribution 8 (6 ) lit- 
tle takes the form 

At all other wall positions, the inhomogeneity shifts the posi- 
tion itself, i.e., has a strong influence. 

When the condition (13') is satisfied, Eq. (22) reduces 
approximately to 

at (Eo)xO, (23) 

We proceed now to the situation with the thick wall. 
The latter is described in the unperturbed system by the 
equation 

For 8 (6 ) we have in the same approximation 

p (6.d =rt (%) -r (Bo) lea. 
The solution of (25) which behaves correctly as {+ a, and is 
similar to (1 8), 

behaves just as correctly also as 6- - a, if 

YJJIti r 

Tt ,,,...,,tdition replaces (22) in the case of a thick wall. When 
a condition of the type (13') is satisfied the position of the 
thick wall is determined by the same equation (23) as for a 
thin wall, and a B (6 ) dependence similar to (19) is obtained 
directly from (25) if the first term on the left is neglected: 

To the left and to the right of the inhomogeneity, Eq. (28) 
goes over into (19), since r( + 9,) = 0. The denominator in 
(28) is positive everywhere except at the point 6 = 0 where it, 
as well as the numerator, is equal to zero. 

Thus, a small SI has transformed a problem with infi- 
nite degeneracy (relative to the wall position) to a problem 
with only double degeneracy: the wall can be located only at 
f,=O, but can be either thin or thick (with alternating solu- 
tions + 6, in these cases). 

We show now that only one of the two indicated distri- 
butions is physically realized, only a thick wall is stable at 
an(() < 0 (a single minimum), only a thin wall is stable at 
an(() > 0 (a single maximum). We consider the evolution of 
an arbitrary deviation SB (6,O) from the distribution (15). We 
seek it in the form 

(\8 (E, T) =6e ( E )  e ~ p  (-ET) , 

where we obtain for 68  (6 ) the equation 
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Equation (29) with zero right-hand side determines the ei- 
genfunction of the unperturbed problem with zero eigenval- 
ue E;  this function is 

60o=d.8.oIdt (30) 

and corresponds to the aforementioned neutral position of 
the wall. The perturbed value of this lowest eigenvalue is 

At f o  = 0 the product a,(f )%(f ) is of constant sign and 
positive in the case of a thick wall at a single maximum and of 
a thin wall at a single minimum (cf. Figs. 3a, b with 4a, b); 
these are unstable solutions: E < 0. It is of interest to estimate 
the real values of the decrements (growth rates) from Eq. 
(3 1). In the case of a thin wall we can obtain approximately 

after which the integrals in (31) (at a1(f)~al1(O)f) can be 
calculated exactly: 

E=-u,'(O) lab. (33) 

In the case of a thick wall we have with allowance for 
(24) 

where f (6 ) is obtained from the relation 6 = a0(f ). An esti- 
mate of E from (34) yields values of the same order as ob- 
tained from (33), but of opposite sign. 

3. SINGLE INHOMOGENEITY IN A BOUNDED SAMPLE. 
AGGREGATES OF SINGLE INHOMOGENEITIES 

Distinguishing features of a finite-thickness sample are 
the boundary conditions on the outer lateral surfaces 
f = 6, where S = d /L. The simplest boundary condition 
is a complete absence of additional (surface) intervalley re- 
laxation on the surface. Then not only the total transverse 
current, but also each of its components j;'~~' = 0 are absent 
from the surface. When such conditions are imposed on both 
surfaces of a homogeneous sample, the problem of the distri- 
bution of 6 (,$ ) has a unique solution4 characterized by a thin 
domain wall in the middle (go = 0, Fig. 5a). 

We shall show that a single inhomogeneity of the gen- 
eral position alters this picture radically. We recall that we 
are considering sufficiently smooth inhomogeneities whose 
size exceeds the size of the inhomogeneous regions near the 
surfaces (Fig. 5a). It appears that in those cases when the 
distribution contains only thin walls, this condition is not 
necessary. 

The procedure of obtaining the distribution is the fol- 

FIG. 5. Distributions of 9 (6 ) in a bounded sample in the absence of inter- 
valley relaxation on the surface: a) ideally homogeneous sample, b) sample 
with single maximum, c) sample with single minimum. 

lowing. Weobtain two solutions 6 "'(f )and 6 '2'(f ) ofEqs. (24) 
and (25). These solutions satisfy the conditions 6 "'(6 ) = 1 
and 6 '2'( - S ) = - 1. We determine next the positions fo  of 
the thin wall that separates the regions with these solutions. 
On the thin wall there should be satisfied the flux-continuity 
condition, which reduces to 6 'l'(,$o) = - 6 '2'(fo). 

In the case of a single maximum [Fig. 5b) the solution 
passes over 6, everywhere at f > f ' and under it at f < f '; 
similarly, 6'.2'(f)> -6, at g > f '  and 6 '2 ' ( f )<  -6, 
at f >  f '. Therefore the only position of the thin wall is 
f o  = f ' ;  the single maximum has drawn the thin wall into 
itself. 

In the case of a single minimum (Fig. 5c) the solution 
6 '"(5 ) passes over 6, everywhere at f <f ', and also on a cer- 
tain section f > f " near the sample surface f = 6. In the in- 
terval f ' < f < f " the solution 6 "'(f ) < 6,. The solution 
I? '2'(f )passes under - 6, at< > f ', and also at f < f " near the 
surface f = - 6; in the interval f " < f <f ' we have 
9 '2'(f ) > - 6, .  It follows therefore that three positions of the 
thin wall are possible: go--,{ ', lo = lo"' < f '", f o  = fon > { " 
(Fig. 5c). The first of these positions (thin wall in a single 
minimum) is unstable; the two others can be easily shown to 
be stable. These two distributions, which contain a thin wall 
either near the surface f = - 6 or near f = 6 are by far not 
all the physically realizable distributions: one more stable 
distribution is possible, containing both thin walls and a 
thick wall between them at f z f '  (the distribution 
1 - 2 - 2' - 3 - 3' - 4 - 4' - 5 in Fig. 5c). 

Another reliable and simple type of boundary condition 
is infinite rate of intervalley relaxation on the surfaces, when 
6 ( f 6 ) = 0. In this case, in a homogeneous sample, two qua- 
si-single-layer structures are stable ? in one case we have 
almosteverywhere6 (f ) =6,,andintheother6 (f ) = - 6,. A 
single inhomogeneity, preserving the stability of these struc- 
tures, adds one more to them. In the case of a single maxi- 
mum of the density this is a structure with a thin wall at the 
point f = f ', where a(f ') = 0, and in the case of a single mini- 
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mum, a structure with a thick wall near < = J'. 
Thus, the influence of the SI was reduced to merely a 

shift of the interlayer wall only in the case shown in Fig. 5b. 
In all other considered cases the SI increased the number of 
possible stable distributions. 

More vital than the SI are random large-scale distribu- 
tions of n(6 ), which are characterized by alternation of maxi- 
ma and minima. We assume that the distance between them 
exceed as a rule 6, considerably. At each maximum (mini- 
mum) of the density there can then be located a thin (thick) 
interlayer wall, and furthermore any distribution 9 (6) in 
which thin and thick walls alternate in succession is stable 
with respect to small fluctuations. By way of example we 
consider variants of such alternations in the case of isolated 
inhomogeneities (clusters) of two types, maximum-mini- 
mum and maximum-minimum-maximum. For the first 
type (Fig. 6a), besides the quasi-homogeneous distributions 
1 - 3 - 6 - 1' and 2 - 4 - 5 - 2', there appear two-layer 
distribution with one interlayer wall, 1 - 3 - 4 - 5 - 2' 
and 2 - 4 - 5 - 6 - 1', as well as distributions 
1 - 3 - 4 - 5 - 6 - 1' with an internal layer (domain). For 
the second type (Fig. 6b) are possible two quasi-homogen- 
eous distributions 1 - 3 - 6 - 7 - 1 '  and 
2 - 4 - 5 - 8 - 2', three distributions with one wall: 
1 -3 -4 -5 -8 -2 ' ,  1 - 3 - 6 - 7 - 8 - 2 '  and 
2 - 4 - 5 - 6 - 7 - l', two distributions with two walls 
1 - 3 - 4 - 5 - 6 - 7 - 1 '  and 
2 - 4 - 5 - 6 - 7 - 8 - 2', and one distribution with three 
walls: 1 - 3 - 4 - 5 - 6 - 7 - 8 - 2 ' .  

It is easy to determine the number Pn of the possible 
stable distributions in the case of a cluster with n nodes of the 
functiona,g ):Pn = Pn - , + Pn - , . In particular, a ten-wall 
cluster realizes 144 different stable distributions. The real- 
ization of each of these distributions is determined by the 
prior history (initial conditions and peculiarities of the turn- 
ing-on process). Neither these questions nor questions of 
long-time stability of the structures will be considered here. 

4. QUALITATIVE PICTURE OF THE AHE 

Once a magnetic field is applied (a #O) the interlayer 
walls shift from the positions a,(l) = 0, and the character 
and magnitude of the shift are different for thin and thick 
walls. 

Let us calculate the position of a thin wall. In the pres- 

FIG. 6. Distributions 9 (g ) in the case of paired (a) and tripled (b) inhomo- 
geneities. 

ence of a magnetic field the increments 8 (g ) to the homogen- 
eous solutions + 9, are given by (cf. Eq. (19)) 

The continuity conditions for the fluxes on the thin wall, 
obtained from (21) by replacing here 8 (lo) by 8 (go) - a ,  lead 
in place of (23) to the condition 

0 (to) =a; (36) 

from (35) and (36) we obtain for the position of the thin wall 

The right-hand side of (37) is positive at a > 0, since the 
ratio (v, + v,)/(v, - v,), which is infinite at Q+O, decreases 
with increasing 9 and tends to unity. It can be seen from (37) 
that a thin wall in an infinite sample exists only for sufficient- 
ly weak magnetic fields determined by the amplitude a&). 
In a homogeneous sample, however, an arbitrarily weak 
magnetic field excludes the existence of stable walls. 

We proceed now to thick walls. Their existence is due to 
the equality of the second pair of the separatrices of the sad- 
dles 9 "'g ) and 9 ','g ), which requires that the position of the 
middle (unstable) quasi-homogeneous root 8,(l) coincide 
with a in the presence of inhomogeneity in the magnetic 
field: 

It can be seen from (39) that stable thick interlayer 
walls, just aS thin ones in the presence of a magnetic field, 
exist in an infinite sample only on account of the inhomo- 
geneities, and a change of the magnetic field shifts their posi- 
tion. With increasing a >O, Eqs. (37) and (39) give the 
growth of a,(lo) (we recall that r1(O) < 0; see Fig. 2), but the 
growth rates are given by different expressions and are in 
general different. Since thick and thin walls exist and are 
stable at different points of the sample (at the minima and 
maxima of n ( l ) ,  respectively, it can be easily seen that the 
magnetic field shifts them in different directions, i.e., 
counter to each other: at a > 0 the thick walls are shifted to 
the right everywhere on Figs. 5 and 6, and the thin ones to 
the left. This shift broadens the layers with 9 ( 5 ) ~ 9 , ,  i.e., 
with the "correct" sign of the Sasaki field, and makes thinner 
layers with9 (5 )=:a,, i.e., with the "incorrect" sign. Thecon- 
tinuous process of narrowing of the layers with the incorrect 
Sasaki field continues, however, not until they thin-out com- 
pletely. With increasing a ,  one of the interlayer walls mov- 
ing counter to the other reaches a position in whch a,(J ) has 
a local maximum. This occurs, for example, when the thin 
wall 5-6 in Fig. 6a, after shifting to the left, occupies the 
position 6 ', , or else the thick wall 3-4 in the same figure 
occupies after shifting to the right the position 5 ", . These 
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positions of the interlayer walls are the limits. Further in- 
crease of a causes either a jump of the wall to a new position 
with conservation of the previous sequence of alternation of 
the thin and thick walls (a possibility of which appears on 
Fig. 6a), or eliminates the wall completely. In the former case 
one of the layers with the incorrect sign of the field becomes 
narrower jumpwise, after which a more radical rearrange- 
ment of the layered structure takes place, wherein at least 
one of the layers with the incorrect sign of the field vanishes. 

The AHE comprises thus a superposition of two pro- 
cesses: 1) a smooth thinning of the layers with incorrect sign 
of the field and a thickening of the ones with the correct sign; 
a jumpwise thinning or vanishing of the layers with incorrect 
sign of the field. The processes of the second kind should 
appear when the characteristics of the AHE are carefully 
and continuously recorded in experiment, and should lead to 
singularities analogous to the Barkhausen effect in ferro- 
magnets. 

CONCLUSION 

1. Realization of concrete layered structures from 
among the multitude of the possible ones is determined, as 
already noted, by the singularities of the transient process. 
We point out a circumstance that favors the formation of a 
distribution with a maximum possible number of layers. Pri- 
or to application of the heating electric field Ex there exists 
in the sample an electric field 

kT 1 dn E "=---- 
e n a y '  

due to the inhomogeneous distribution nly) and differing 
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only by a constant negative factor from a , ( l ) .  At different 
points this field is so directed that when a strong heating field 
Ex is applied to the sample and when transverse fluxes f Y s 2 )  
connected with Ex appear, the field serves as trigger for a 
structure with a maximum number of layers, when walls are 
produced at each zero of the function al(g ). The role of the 
trigger is played here by the heating (cooling) action of the 
powers E $y.2'. 

2. Since the is performed under condi- 
tions of weak ionization of the donor levels in silicon, the 
inhomogeneity can be caused not only by the technological 
inhomogeneity of the sample, but also by the non-uniformity 
of the temperature. Temperature gradients, by causing den- 
sity gradients, influence sensitively the layered structure. 

The author thanks V. A. Kochelap for a discussion. 
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