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The impedance oscillations of a compensated metal in the presence of open orbits are investigated 
theoretically and experimentally. The theoretical analysis is carried for a simple Fermi-surface 
model for which an exact analytic solution of the integrodifferential equation for the RF  field in 
the metal can be obtained at an arbitrary value of the Fuchs specularity parameter. The skin-effect 
components corresponding to the electric-field components along and across trajectories have 
different penetration depths. As a result, in nonspecular scattering of the electrons the amplitudes 
of the doppleron oscillations for the various diagonal impedance-tensor components are different, 
even though the doppleron modes themselves have circular polarization. The impedances of 
single-crystal cadmium and silver plates whose normals are parallel to the binary axes are studied 
experimentally. The measurements are performed in a magnetic field perpendicular to the plate 
surfaces. In cadmium plates, the impedance oscillations due to Doppler-shifted cyclotron reso- 
nance are observed predominantly for one of the linear polarizations of the exciting field. Helicon 
oscillations in silver are observed for both negative and positive circular polarization, although 
the amplitude of the latter is significantly lower. The experimental results are in agreement with 
the conclusions of the theory developed here. 

PACS numbers: 73.25. + i, 76.40. + b 

The skin effect and the Doppler-shifted cyclotron reso- 
nance (DSCR) were investigated1 in metals with open orbits 
in the case of specular carrier reflection from the surface. It 
was shown, in particular, that the presence of open orbits 
does not alter the polarization of the doppleron oscillations: 
when a plate is excited by a linearly polarized field the ampli- 
tude of the oscillations does not depend on the orientation of 
this field in the sample plane. It was demonstrated in Ref. 2 
that in the case of diffuse scattering the open orbits can alter 
substantially the amplitude and polarization of the oscilla- 
tions. In the present study we have investigated the influence 
of open orbits on the impedance oscillations of a plate at an 
arbitrary value of the specularity coefficient p. The presence 
of open trajectories increases the conductivity in the corre- 
sponding direction, and this decreases the depth of penetra- 
tion of the skin-effect component whose electric field is par- 
allel to these trajectories. Under conditions of nonspecular 
carrier reflection this makes the amplitude of the doppleron 
oscillations much smaller if the exciting electric field is ori- 
ented along the open trajectories. The same is valid also for 
the Gantmakher-Kaner oscillations. This effect is of parti- 
cular importance for compensated metals, in which imped- 
ance oscillations are observed in a wide range of magnetic 
fields. 

1. THEORY 

where g is the electric-field intensity, vaB is the nonlocal- 
conductivity tensor, and z is the coordinate along the propa- 
gation vector k. 

Let the constant magnetic field H be parallel to the vec- 
tor k and assume that on the carrier trajectories there are no 
points at which the velocity component v, reverses sign. 
Then gap depends only on the projection of the electron path 
on the z axis. 

We consider now a plate O(z<d. The current density j 
inside the plate is determined both by the electrons reaching 
directly the point z from the point z', and by electrons that 
are reflected in their path from the plate surface. The contri- 
bution of electrons that negotiate a path A as they move from 
the point z' to the point z and experience n reflections from 
the plate surfaces is equal to 

pn joa, ( z ,  a ' )  ) 8 s ( z 1 ) d z 1 ,  
0 

where p is the probability of specular reflection. Summing 
the contributions of all the electrons we find 

1. We derive an equation for the distribution of the elec- 
tric field in a metal plate at arbitrary p. In the case of an + 2 o ( ~ + ~ ' - 2 k d ) p l ~ - ~ l  8 ( z f )  dz t .  (2) 
unbounded metal the current density j in the equation for I,=-m 

I 
monochromatic waves of frequency o We consider antisymmetrical excitation of a plate, wherein 

$a (d - z)  = - ga (z). In this case it is convenient to make 
d Z 8 ( z )  4nio ---=-- i (z), (1)  in the second sum of (2) the substitution z f - 4  - z" and com- 

dzZ c2 bine the two sums. Substituting next in (1) the expression for 
is given by the expression ja we obtain the equation 
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2. In a constant magnetic field H perpendicular to the plate surface, Eq. (3) takes in dimensionless variables the 
form 

dz8a(S)  + i t  j 2 ( - p )  n l ~ . , ( ~ - ~ 1 - n L ) 8 D  ( t f ) d w  (a ,  P=X, Y), 
d t  

where 

u is the maximum displacement of the electrons during the 
cyclotron period, dS/dp, is the derivative of the area of in- 
tersection of the Fermi surface with the planep, = const,p, 
is the projection ofthe momentum on the magnetic-field di- 
rection, and N, is the electron density. 

We shall use a model2 in which the electron Fermi sur- 
face is a parabolic lens whose axis is parallel top, , and the 
Fermi hole surface is a cylinder parallel top,. The section of 
the cylinder in the pyp, plane is made up of two parabolas 
inverted counter to each other, with vertices on thep, axis. 
In this model the longitudinal velocities of the electrons are 
equal to + u,, the longitudinal velocities of the holes are 
equal to + u2, and the transverse velocities of the holes are 
directed along they axis. For purposes of compensation we 
introduce also local holes whose Fermi surface is a circular 
cylinder with axis parallel top,. 

The tensor saB (< ) is defined by its Fourier components, 

which take in our model the form 

where 

N ,,, ,m,,, and v,,, are the densities, masses and collision fre- 
quencies and of the holes having open orbits. We have taken 
into account the Hall conductivity 1 - p of the local holes, 
but neglected their collisions and the corresponding correc- 
tions to the conductivity. The terms, ins,, is the contribu- 
tion of the holes with open orbits. 

3. In circular polarizations 8, = gx + ig,, , 
s, = sxx + is,, the system (4) takes the form 

where 

In our model, the Fourier components sap (q) of the con- 
ductivity have only simple poles in the complex q plane. The 
integrals in (7) are expressed therefore in terms of exponen- 
t ia l~,  and the series in (13) can be easily summed. By way of 
example we present the expression for V+ : 

From (14) it follows that 

= i ( 1 + i y l ) 8 +  ( f )  . (15) 
Applying the differentiation operator to Eqs. (12), tak- 

ing their linear combinations, and using relations of the type 
(15), we transform the system of integrodifferential equa- 
tions into a system of two differential equations (of fourth 
and sixth order) with constant coefficients. These equations 
describe the natural modes of the electromagnetic field in an 
unbounded metal, and accordingly do not containp and L. 
They have only exponential solutions. We seek a general so- 
lution, antisymmetric about the point < = L /2, in the form 
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Substituting (16) in the differential equations, we obtain 
the characteristic (dispersion) equation 

[qz-iEs+(q)I [q2-iEs-(q) I-iEso(q) [q2-iEs=(q)I =0, 

(17) 

which defines the wave vectors k, = 2n-4, /u  (lm q, > 0) of 
the different modes, and the algebraic equations 

which determine their polarization. 
As a result of substitution of (16) in (12) the integrals in 

(12) are expressed not only in terms of the exponentials 
exp( + iq, f ) but also in terms of exp[ + i(l  + iyl)f] 
exp[ + i(l - iyl)f 1, and exp( f yf ). From the condition that 
there be no such terms in the current we get three algebraic 
equations for the coefficients a, and b,. Even though the 
coefficients in the kernels V in (12) contain the quantities 
exp[ f i(1 + iyl)L ] and exp( - yL ), the equations for a, and 
6, do not contain these quantities. Finally, two boundary 
conditions imposed on tT + and tT - on one of the surfaces of 
the plate yield two more equations. The result is a system of 
ten linear algebraic equations for the ten unknowns a, and 
6,. Introducing the notation 

we write this system in the form 

where tT1(0) = (dg/d{ )< = ,, , 

Bn+An 
I, = --- 

Bn-An ' 
(24) 

The elements of the plate impedance tensor Za8 are 
expressed in terms of the coefficient c, and d, by means of 
the equations 

where a = c2/40u.  
4. Analysis of the dispersion equation (17) shows that 

five of its roots with positive imaginary parts are divided into 
three types. The first comprises the roots (q, and 4,) whose 
values are close to + 1 in the magnetic-field region where 
64 1. The corresponding modes are dopplerons. Substitution 
of the exact expressions for q, and q, in (24) yields 

This means that the doppleron field q, has a "minus" circu- 
lar polarization, and that of doppleron q, a "plus" polariza- 
tion. 

The smallest root, q,, is determined by the relation 

where 

~~=p'Eli-qy.  (28) 

The corresponding modes represent the spin component. 
Substitution of (27) into the equation for J, leads to the 
expression 

We shall be interested hereafter in the region with not too 
weak magnetic fields, in which 

In this region 1 J31 4 1 and consequently Id31 4 1c31, i.e., the 
electric field of the q, mode is polarized predominantly along 
the x axis. 

The roots q, and q, make up the third type. In the region 
64 1 the expressions for them are 

Substituting (31) in (24) we obtain 

The character of the modes 1 and 2 depends on the magnetic 
field strength. In moderate fields, characterized by the ine- 
quality 

I E ~ ~ B I ,  (33) 

we get from (24) the relations 

I - I  J2=1, (34) 

which are valid also at 6- 1. In this region the mode 1, hav- 
ing a minus circular polarization, constitutes a helicon, and 
the mode 2 with plus polarization, a "damped helicon." 

In the region of stronger fields, where 
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it follows from (32) that 

1 J , p ]  >I 

Using expressions (26), (29), and (32) for J,  and solving the 
system (46) we obtain 

and both modes are polarized along they axis. Their wave 
vectors k, and k, are essentially complex and independent of 
H. Qualitatively these modes have the same character as in 
the anomalous skin effect. 

5. In the region (33) the system (22), (23) is greatly sim- 
plified as a result of (26), (24), and the inequality I J31 < 1. 
Solving this system and using the smallness of q,, we write 
the expressions for the elements of the tensor Zap in the form 

where 

Solution of the system of equations for y, yields 

where 6. Expressions (47)-(50), which determine the plate im- 
pedance in the field region (35), can be substantially simpli- 
fied by disregarding the intermediate values of the param- 
eters for which A6 It,I - 1. At A< It,[ % 1 we obtain 

6,=l+ihyt3. (44) 

We note that (39)-(41) do not contain the quantities S ,,, and 
S,,, , since their values differ very little from unity, and we 
have neglected these differences. 

To calculate Zap in the region (35), we represent the 
quantities c, in the form 

c,=-iB,'(O) x,+B,' (0) y, . (45) 

Substituting (45) in (22) and (23) and equating to zero the 
factors of g: (0) and 8; (0) in (22), we obtain equations for x, 
and y, . The system of equations for x, is 

5 

where 

I=l+t/2h ( t 5 - t 4 ) .  

In the opposite case A< It, 1 ( 1 we have 

We shall use the equations derived to describe the be- 
havior of the doppleron oscillations of the impedance of a 
compensated-metal plate. If the electron reflection is specu- 
lar, the oscillations of Zxx and Zyy are small and equal in 
amplitude. For nonspecular reflection they become stronger 
because of the presence of long-wave skin components of the 
field.3 In this case, owing to the difference between the skin- 
effects in the x and y polarizations, the oscillations in the 
elements Z,, and Z,,,, are generally speaking enhanced to 
different degrees. In accordance with Ref. 3, the enhance- 
ment of the amplitude of doppleron oscillations in nonspecu- 
lar reflection is determined by the square of the smooth part 

The system for y, differs from (46) in that the right-hand 
sides of the fourth and fifth equations contain zero and unity, 
respectively. 

The elements of the tensor Zap are expressed in terms of 
x, and y, as follows: 

I 
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of the plate impedance. For x polarization, the enhancement 
factor is 

and for y polarization, 

We consider the change of the oscillation amplitudes with 
change of the magnetic field, assuming A to be fixed. It fol- 
lows from (54) and (55) that at A f  It+ 1 > 1 the gain of the oscil- 
lations in Z,, and Zyy is the same and equals 6 -'. Therefore 
the observed impedance oscillations, just as the doppleron 
modes themselves, have circular polarizations. In the field 
region where the following inequalities hold 

I tSI -'<<kg<< I t+ I - I ,  (56) 
the gain of the oscillations in Zyy , due to the thinner skin 
layer, is characterized by a factor I/Zt+/(l + /Z )I2, which is 
substantially smaller than the gain of the oscillations in Z,, . 
As a result, the amplitude of the oscillations in Zyy decreases 
with increasing H. The ratio of the amplitudes of the oscilla- 
tions in Zyy and Zxx in the region (56) is of the order of 
1Af t+ 1'. Finally, in the region lilct, 14 1 the oscillations in 
Zxx also stop growing with increasing magnetic field and the 
ratio of the oscillation amplitudes becomes equal to It+/t, 1'. 

Thus, although the dopplerons have circular polariza- 
tion, in the magnetic-field region I/Z(t+ 1 ( 1 the doppleron 
oscillation should be observed predominantly in the compo- 
nent 2,. This is the result of the fact that the presence of 
open orbits decreases the thickness of the skin layer whose 
electric field is polarized along they axis. 

Equations (37)-(44) allow us to study the behavior of the 
impedance oscillations in the region of magnetic fields (33) in 
which the modes 1 and 2 are helicons. Analysis leads to the 
following result: the field region in which the oscillations in 
Zyy become much smaller than in Z,, is determined by the 
inequality It,] < 1 which, as a matter of fact, coincides 
with the second inequality of (56). In other words, the transi- 
tion region can be located in the strongest as well as in mod- 
erate fields, and is not connected with the character of the 
modes 1 and 2. 

A distinguishing feature of the model considered by us 
is the absence of branch points ins , (q) and accordingly the 
absence of the Gantmakher-Kaner effect. In the case of more 
realistic Fermi surfaces, Gantmakher-Kaner oscillations 
(GKO) exist besides the doppleron oscillations. It is quite 
obvious that the conclusions drawn above will be qualita- 
tively valid also for these oscillations. 

2. EXPERIMENT AND DISCUSSION 

We investigated in the experiments the impedance fea- 
tures of cadmium and silver plates in a geometry wherein the 
Fermi surface has open orbits. In the case of cadmium the 
constant magnetic field H i s  oriented near the (0001) plane, 
and in the case of silver we have Hllnll[110] (n is the normal 
to the plate surface). We have undertaken a detailed study of 
the oscillations in cadmium not only with an aim at elucidat- 
ing the role of the open orbits, but also in connection with the 

existing contradictions in the interpretation of the nature of 
the oscillation in the Hllnll [1120] geometry. Oscillations un- 
der these conditions were first observed in Ref. 4 and inter- 
preted as the Gantmakher-Kaner effect. It  was shown later 
in Ref. 5 that at ~lln11[1120], in fields above a threshold 
value H, =. 2.5 kOe/MHz'I3, a doppleron is also excited and 
is connected with the DSCR of the lens electrons. Since, 
however, the authors of Ref. 6 did not observe a dependence 
of the oscillation amplitude on the sign of the circular polar- 
ization, they reached the conclusion that there is no dop- 
pleron in this geometry. It follows at the same time from the 
theory developed above that in the presence of open orbits 
both doppleron oscillations and GKO exist predominantly 
in one of the linear polarizations. Therefore when the plate is 
excited by a circularly polarized external field the signal re- 
corded is practically independent of the field-rotation direc- 
tion, and the use of circular polarization in this case does not 
permit separation of these two types of oscillation. 

1. The impedance measurement procedure is described 
in Ref. 7. The measurements were made in the frequency 
range 0.1-1.0 MHz in fields up to 50 kOe at temperatures 
1.5-4.2 K. The use of an amplitude bridge permitted a 
hundred-fold change of the frequency without the need for 
changing the measurement coil. The cadmium plates, 0.3- 
1.2 mm thick and of area 4 X 12 mm, were cut by the electric- 
spark method from a single crystal with a resistivity ratio 
p300 /p4.2 =. 3. lo4. The normal to each of the plates coin- 
cided accurate to 2" with the [1120] or the [10i0] axis. The 
measurements were performed in a linearly polarized elec- 
tromagnetic field. The direction of the electric field E in the 
sample plane could be varied by rotating the coil. The orien- 
tation of the field H along the C2 axis was determined from 
the symmetry of the angular dependences of the impedance. 

Typical plots of the real and imaginary parts of the par- 
ticle impedance are shown in Fig. 1. The ordinates are the 
quantitiesR (H ) = R (0) (a) and X (H ) - X (0) (b). The imped- 
ance calibration methods are described in Ref. 7. At f = 510 
kHz the value of Z(0)  is approximately (4r/ 
c)(l - i~'3).5.10-~. Curves 1 correspond to the polarization 
EI/C6, at which the current is perpendicular to the direction 
of the open trajectories, while curves 2 correspond to E X 6 .  
It can be seen that in these cases the behavior of the imped- 
ance is significantly different. In the first case R and X vary 
approximately like H ', and in the second they depend little 
on H and their values are of the same order as in the anoma- 
lous skin effect (H = 0). The small deviation of E from the 
direction of the open trajectories leads to an abrupt increase 
of the impedance in the region of strong fields. All these 
regularities are in qualitative agreement with the conclu- 
sions of the theory (see, e.g., (5 1)) at A 6  It+ 1-4 1. The abrupt 
angular dependence of the impedance was used to determine 
the orientation of E relative to the crystallographic axes. The 
impedance of the plates with n11[10i0] behaves similarly. 

2. The plate-impedance oscillations were investigated 
by a modulation technique. A signal V2 at double the modu- 
lation frequency was separated in the experiment. The am- 
plitude of the modulation field was set close to the value 
0.48AH at which the recorded signal reaches a maximum 
( A H  is the period of the oscillations). Figure 2 shows plots of 
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FIG. 1 .  Surface resistance (a) and reactance (b ) 
of a cadmium plated = 1.14 mm thick as a func- 

7.0 - tion of the magnet& field. Frequency 5 10 kHz, 
T =  2 K, Hlln11[1120]. Curve 1-EIIC,, curve 
2-ElC,. 
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the oscillations in the cases EIIC, (curve 1) and ElC, (curve 
2). Both plots were obtained at the same gain. It can be seen 
that when E is oriented along open trajectories the oscilla- 
tions have a considerably lower amplitude that at EIIC, and 
exist only in the region of relatively weak magnetic fields. At 
H > 3 kOe the difference between the amplitudes exceeds 
two orders. The oscillations cruve 1 have practically a con- 
stant period AH = 70 Oe (d = 1.14 mm), corresponding to a 
value (dS/dp, ),, = 1.22fi k L .  Actually the structure of 
curve 1 is more complicated: besides the oscillations with the 
indicated period, it contains also oscillations of much larger 
period but of smaller amplitude (see subsection 4 below). 

The oscillation period for plates with n11[10i0] also cor- 
responds to the value (dS/dp, ),, cited above (see Fig. 3). 
This is evidence that the fundamental oscillations for all 
samples are connected with the DSCR of the lens electrons, 
for which C, is a rotation axis. This is also confirmed by the 
fact that when the vector H is deflected from the normal the 
period of the oscillations in the hexagonal plane decreases in 
proportion to the cosine of the angle between H and n. 

The curves of Figs. 2 and 3 show clearly the oscillation 
beats. The inclination of the magnetic field in the hexagonal 
plane has practically no effect on the beat picture. On the 
contrary, the envelope of the oscillations changes noticeably 

when the field is inclined to the lens plane. Thus, for samples 
with nl([ll20] the beats vanish when H is deflected from the 
(0001) plane by about 25". The positions of some of the nodes 
and antinodes of the oscillation curves do not depend on the 
frequency. These data give grounds for assuming that the 
beats are due to the presence of two close singled-out values 
of the function ds/dp, in a geometry in which the vector H 
lies in the plane of the lens. It appears that these values corre- 
spond to the limiting points and to the lens section on which 
the function ds/dp, has a maximum. 

The necks of the surface-resistance oscillations on the 
V2(H ) curves corresponding to the orientation EIIC,, marked 
in Figs. 2 and 3 by a thick arrow, are not nodes of the beats. 
In contrast to beats, whose position does not depend onf, the 
position of these necks varies with frequency approximately 
like f 'I2. They are located near the field value H,  at which ' 
R (H ) has a maximum. In accord with the theory, HM is pro- 
portional to f 'I2. In the vicinity of the point HM the values of 
R and X turn out to be close. And it is precisely in this field 
region that the amplitude of the oscillations of the surface 
resistance decreases almost to zero, and their phases change 
smoothly by T. On the contrary, the amplitude of the reac- 
tance oscillations near the field HM reaches a maximum. 
This behavior of the oscillations is similar to the properties 

FIG. 2. Oscillations of the surface resistance of a cadmium 
plate at a polarization of the field E perpendicular and parallel 
to the direct~o_n of the open trajectories. Thickness d = 1.14 
mm, Hllnll[ll20], f = 98 kHz, T = 2 K. 
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FIG. 3. Oscillations of @ace resistance (1 )  and reactance (2) of a cad- 
mium plate at Hlln11[1120]. EIIC6. Thickness d = 0.68 mm, f = 650 kHz, 
T =  2. 

of the GKO following excitation by a nearly polarized field 
in the absence of open orbits.' 

3. On curve 1 of Fig. 2 and on curve 2 of Fig. 3 ,  in the 
vicinity of the field marked by a dashed arrow, and abrupt 
increase of the amplitude of the oscillations is observed. 
These values of H agree well with the doppleron threshold 
field HL = 2.5 ~ o ~ / M H z ' / ~  obtained in Ref. 5. With in- 
creasing frequency, the extrema of the oscillations in the nar- 
row region H)HL shift towards stronger fields. In weaker 
and in stronger magnetic fields the position of the extrema is 
independent of frequency with good accuracy. This indi- 
cates that the contribution of the doppleron is significant 
only in a narrow field region above the HL threshold. 

4. Besides the fundamental oscillations connected with 
the DSCR of the electrons, oscillations with a large period 
were observed in the HII[llZ0] geometry (see Fig. 4). Their 
maximum amplitude was smaller by at least an order of mag- 

FIG. 4. Surface resistance (1 )  and-its oscillations (2) for a cadmium plate: 
d = 1.14mm,n11(1120], <(H,[1120]) = 5.8",H1C6, f = 104kHz,T= 2K. 

nitude than the maximum amplitude of the fundamental os- 
cillations. These oscillations could be separated by choosing 
a field-modulation amplitude such that the fundamental os- 
cillations were suppressed. The long-period oscillations 
have the largest amplitude in the case EIIC, and are practi- 
cally absent in the case ElC,. Their period is constant. They 
exist an an angle up to 7" between the vector H and the [11Z0] 
axis, and their amplitude varies slowly with the field. Near 
the maximum of R (H ) the amplitude of the oscillations has a 
minimum as a function of H.  These properties of the long- 
period oscillations allow us to conclude that they are GKO. 
In the Hllnll [10i0] geometry such oscillations were not ob- 
served, but they can be seen for plates with n11[10i0] in an 
oblique field when H is close in direction to [1150]. A distin- 
guishing feature of the oscillations is the strong anisotropy of 
their period and amplitude (Fig. 5). The dashed sections of 
the curves in this figure correspond to the angle region in 
which beats of the oscillations are observed. Deflection of 
the vector H from the hexagonal plane by an angle 2" led to a 
decrease of the amplitude by approximately 10 times, while 
the period changed little. 

The anisotropy of the oscillations gives grounds for as- 
suming that they are connected with DSCR of the monster 
holes. The inset of Fig. 5 shows the intersection of the mon- 
ster with the plane, and the thick lines indicate the proposed 
regions where the resonant carriers are located. The value of 
(dS/dp, ),, for q, = q,, = 5.8" is 1 1.M A-'. The relative 
change of (dS/dp,),, is described by curve 1 of Fig. 5. 

It can thus be seen from the presented results that all the 
observed oscillations have a maximum amplitude when E is 
oriented transverse to the open trajectories. This is in full 
agreement with main conclusion of the theory. 

5. The model used above can be easily modified to de- 
scribe uncompensated metals. Such a description, however, 
turns out to be unsatisfactory. The point is that real colli- 

FIG. 5. Dependence of the period (1 )  and of the maximum amplitude (2) of 
thelong-period oscillations on the angle between the field H and the 
[I1201 axis in the hexagonal plane. The plots are in relative units. 
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sionless absorption connected with open orbits leads to a 
rapid decrease of the oscillation amplitude in a rather nar- 
row interval of H  beyond the helicon threshold H, . In addi- 
tion, only dopplerons corresponding to the minimum of d S /  
dp, are observed in such metals. These dopplerons appear 
predominantly in the field region below H I .  In our model, 
however, owing to the absence of collisionless absorption on 
the open orbit and owing to the fact that the resonant singu- 
larity in the conductivity is pole-like rather than root-like, 
the maxima of the amplitudes of both the helicon and dop- 
pleron oscillations occur in fields greatly exceeding H I .  

In view of the unsuitability of the model, we can use 
only general considerations. In real metals the conductivity 
along open trajectories has the same character as under con- 
ditions of the anomalous skin effect at H  = 0. Therefore the 
corresponding element of the impedance tensor Zyy does not 
depend on the magnetic field. On the other hand the conduc- 
tivity transverse to the open trajectories decreases with in- 
creasing H, as a result of which the element Zxx is a growing 
function of the field. It appears that a common property is 
also the fact that in nonspecular reflection of the electrons 
the amplitudes of the oscillations in the impedance elements 
increase together with the smooth parts of the corresponding 
elements. Thus one should expect the ratio of the oscillating 
part of Z ,  to the oscillating part of Zyy to increase with H.  
Since helicon and doppleron oscillations in noble metals are 
observed at HII[110] in relatively weak fields and do not go 
far beyond the helicon threshold, the ratio AZxx /AZyy does 
not differ greatly from unity. Under these conditions the use 
of linear polarizations of the exciting field is not effective. It 
is convenient to choose two elliptic polarizations that differ 
only in the direction of the field rotation. The major axis 
should be paralled to they axis, and the axis ratio must be 
chosen such that oscillations of a given type are not excited 
for one of the polarizations. The possibility of such a choice 
is due to the fact that despite the presence of open orbits the 
helicon and doppleron propagating in the metal have circu- 
lar polarization. The ratio of the axes of the exciting field will 
be called the ellipticity of the oscillations (it must not be 
confused with the polarization of the corresponding mode). 
On the basis of the statements made above one can expect the 
ellipticity of the helicon and doppleron oscillations to de- 
crease with the magnetic field. 

The experimental results for silver, shown in Fig. 6, 
confirm this conclusion. A silver plate 0.8 1 1 mm thick with 
normal n11[110] was produced by the technology described 
in Ref. 9. This sample was used earlier in Ref. 10. The polar- 
ization of the field of the crossed coils was chosen to match 
the doppleron. The plots shown in Fig. 6 were obtained for 
opposite directions of the magnetic field H, with curve 2a 
plotted with a gain 50 times larger than curve la. From a 
comparison of these curves it follows that the error in the 
choice of the polarization of the doppleron oscillations does 
not exceed 1-296. Practically all the doppleron oscillations 
lie substantially lower than the helicon threshold. It must 
therefore be assumed that they are circularly polarized. 

FIG. 6. Oscillations of surface resistance in silver. Hllnll[l lo], d = 0.81 1 
mm, f = 300 kHz, T = 4.2 K, curves la and lb  correspond to a circular 
polarization plus, and 2a and 2b to a circular polarization minus. All the 
plots were obtained at a field modulation 186 Oe. 

Curves lb and 26 are continuations of curves la and 2a, 
respectively. The gains for the curves 2b and 16 are respec- 
tively 10 and 100 times larger than for curve la. The oscilla- 
tions on curve 26 are connected with the helicon. Similar 
oscillations are observed also in the plus polarization (curve 
lb ), and their amplitude is 5-10% of the amplitudes of the 
oscillations on curve 2b. Since this value exceeds consider- 
ably the possible error in the choice of the polarization, it 
follows that the polarization of the helicon oscillations is not 
circular. It can be seen here from curves lb  and 2b that the 
deviation of the polarization from circular increases with H. 
By varying the amplitudes and the phases of the voltages on 
the crossed coils we attempted to choose a polarization such 
that there would be no helicon oscillations. It turned out that 
for such value of the magnetic field there exists an amplitude 
ratio that satisfied this requirement, and this ratio (and 
hence the oscillation ellipticity) depends on the value of H. 
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