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Solitons in a uniaxial antiferromagnet are investigated. One-dimensional and also three-dimen- 
sional, centrally symmetric solutions describing the soliton are obtained. Two-parameter solitons 
are considered to which a magnetization oscillation corresponds that possesses a frequency o in a 
reference system, moving together with the soliton with a velocity v. The parameters v and w turn 
out to be connected with the integrals of motion of the antiferromagnet field equations in a natural 
way. That is, they are connected with the energy E, the momentum P and the projection z of the 
magnetization N (the z axis is taken to be the axis of the antiferromagnet). The stability of the 
solitons is investigated by the direct Lyapunov technique. It is shown that one-dimensional soli- 
tons are stable relative to perturbations that do not violate the one-dimensional character of the 
problem, the values of the parameters w and u being arbitrary. The range of values of the param- 
eter w for which the three-dimensional solitons are stable is found. 

PACS numbers: 75.60.Ej 

In the description of essentially nonlinear systems, an 
important role is played by solitons-localized states of the 
corresponding field. The solitons in nonlinear systems play 
the same role as quasiparticles in linear systems and are just 
as important for the study of the physical characteristics of 
the system. 

The origin of our understanding of solitons is connected 
with the analysis of one-dimensional systems, in particular, 
systems that allow complete integration by the method of the 
inverse problem of scattering theory.' However, for the de- 
scription of real cases, analysis of solitons in three-dimen- 
sional systems is necessary. The analysis shows that in the 
three-dimensional case, the solitons are frequently unsta- 
ble,' and the search for systems that allow the existence of 
stable three-dimensional solitons is important. 

Among the essentially nonlinear systems, we note mag- 
netically ordered media, the nonlinearity of which is deter- 
mined by the geometric properties of the dynamic variable. 
At the present time, the analysis of solitons, including non- 
one-dimensional, in ferromagnets has been carried out in 
sufficient detail (see the reviews in Refs. 3 and 4). It is impor- 
tant that in a number of cases, stable three-dimensional soli- 
tons do exist in the ferr~ma~net;~- '  therefore, magnetic sys- 
tems are especially vital for the analysis of solitons. 

In the present research, we have investigated the non- 
linear dynamics of antiferromagnets (AFM). The analysis is 
carried out on the basis of the effective equations obtained in 
Refs. 6-8 that described the dynamics of the AFM ir, terms 
of the normalized (unit) antiferromagnetism vector 1. 

Periodic nonlinear waves and solitons in uniaxial AFM, 
including three-dimensional solitons, have been investigat- 
ed. On the basis of the direct Lyapunov technique, we have 
obtained stability criteria of solitons of any dimensionality. 
It  is shown that the one-dimensional dynamic solitons are 
stable to perturbations that do not violate the one-dimen- 
sionality of the problem, at all values of the parameters of the 
soliton. 

We have investigated three-dimensional, centrally sym- 

metric solitons and found the region of parameters in which 
the solitons are stable. 

1. NONLINEAR DYNAMICS AND INTEGRALS OF MOTION OF 
UNIAXIAL AFM 

The state of an uniaxial antiferromagnet in the model of 
two sublattices is described by specifying the sublattice mag- 
netization densities M,(r,t ) and M,(r,t), M: = Mi = M i  .9 It 
is convenient to introduce the magnetization vector and the 
antiferromagnetism vector: 

Under the assumption that I M I ( I LI , which is a natural 
one for AFM, we can describe the dynamics by a single dy- 
namic equation for the normalized antiferromagnetism vec- 
tor 1,1= L/IL1.G8 This equation can be written down in the 
form' 

agz aw. 
- - cZ (IH) [IXHJ - [IX-] a1 = O. 

Here c is the characteristic velocity, which is identical, 
at H = 0, with the minimum phase velocity of spin waves of 
the linear theory, 

a and 6 are constants of the inhomogeneous and homogen- 
eous volumes, respectively (see Ref. 7), g is the gyromagnetic 
ratio, H is the external magnetic field, M i  w, (1) is the energy 
density of the AFM anisotropy, and A is the Laplace opera- 
tor. 

A consistent description of the dynamics includes an 
expression for the magnetization of the AFM in the form 

In what follows, we limit ourselves to the study of pure- 
ly uniaxial AFM, i.e., we shall assume that w, depends only 
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on 1: (the z axis is the chosen axis). Moreover, we shall as- 
sume that the field H is parallel to the chosen AFM axis. 

It is convenient to write down Eq. (2) in angular varia- 
bles for the unit vector 1: 

l,=cos 0 ,  l,+il,,=sir~ 0 exp (icp). ( 5 )  

In the uniaxial AFM, w, = w, (8 ) and Eq. (2) takes the 
form 

We now investigate the nonlinear periodic waves of 
magnetization of the AFM. It is easy to establish the fact 
that the following solution of (6) corresponds to them: 

cp=k.z--at,  cons con st. (7) 

The dependence of the frequency of the nonlinear wave 
on its wave vector k and its amplitude 0, is determined by 
virtue of (6) by the equation 

d w. c2 
( o + g H ) 2 = ~ Z k 2  + - 

d 0  a sin O0 cos 0 ,  ' 
If we choose the anisotropy energy in the simplest form 

p(1,2+1,2)/2= ( P / 2 )  sin2 0 ,  

as is usually done in uniaxial magnetics, we then obtain the 
result that the frequency of the nonlinear wave of arbitrary 
amplitude does not depend on the value of the amplitude. 
This is a rather unusual situation for nonlinear systems and 
indicates a specific degeneracy of the AFM as a nonlinear 
system in the case of this choice of the anisotropy (we recall 
that in a ferromagnet, even an isotropic one, the frequency of 
the nonlinear wave depends on its amplitude, w a cos 19,). In 
particular, the Lighthill criterion for the stability of the non- 
linear wave in such a system does not allow us to draw any 
conclusion on the stability of the nonlinear wave. 

This degeneracy appears also in the properties of soli- 
tons'' and vanishes upon consideration of the more general 
form of the anisotropy energy. Therefore, we shall not, for 
the time being, specify the form of w,(0 ), but in specific cal- 
culations below we shall assume 

In such a case, we obtain for the frequency of the nonlin- 
ear wave 

( o + g H )  =f [ a , z + ~ Z k Z - 2 ( ~ ~ 1 2 - w , z )  sinZ 0 0 ]  "'. (10) 

Here we have used the notation 

o , = g H i ,  o t = g H t ,  

H,=Mo(P6)"' /2 ,  11, = M , ( ( P - b / 2 )  6 )" ' /2 .  (1 1) 

The quantity w, is identical with the frequency of the 
homogeneous linear antiferromagnetic resonance at H = 0 
in the collinear phase of the AFM, which corresponds to 
0 = Oor 0 = P. The characteristic value of the field H, deter- 
mines the field of the lability of the collinear AFM phase; 

this phase is stable at H < HI.  H,. If b > 0, then HI < H,.  The 
quantity H, determines the field of the first-order transition 
from collinear to spin-flip phase of the AFM, in which 
0 = ~ / 2  (for more detail, see Ref. 9). It is easy to see that if 
HI < H I ,  then dw/deo < 0, which, in correspondence with 
the Lighthill criterion, indicates the instability of the period- 
ic nonlinear waves relative to self-modulation, i.e., the for- 
mation of solitons. In what follows, we shall assume b > 0 
and H < H,; the cases b < 0 and H > H, were considered in 
Ref. 10. 

Equations (6) can be obtained as the Euler-Lagrange 
equations from the following form of the Lagrangian density 
function: 

a 
-- [ ( V 0 )  '+sinz 0 ( Vcp) ' 1  - w. ( 0 )  

2 
The energy and field momentum of the magnetization 

field of the AFM can be written in the form 

(14) 
Since w, does not depend on p, there exists one integral 

of the motion-the z component of the total magnetization 
M. We shall represent this integral in the form 

where s is the spin of the atom, a3 the volume of the elemen- 
tary cell, i.e., 2 p,9/a3 = M,. The fact that N is an integer is 
used below in the quasiclassical quantization of the solitons. 

We note an important property of Eqs. (6) and the La- 
grangian function (12). If we introduce the new variable @: 

Q=q-gHt ,  (16) 

then, in terms of@, Eqs. (6) and (12) are invariant to Lorentz 
transformations in which the role of the characteristic veloc- 
ity is played by the quantity c. Therefore, in the search for 
solutions of (6), it suffices to limit ourselves to the analysis of 
stationary soliton solutions and to obtain the moving solu- 
tions from the stationary with the help of the Lorentz trans- 
formations. 

We note that the introduction of the Lorentz invariance 
is valid at H = 0 for arbitrary AFM, but at H #O, it is essen- 
tial to assume that the AFM is uniaxial and that w, does not 
depend on p .  Moreover, at H #O, the quantities E, P, M or 
M, do not possess Lorentz invariance, since the transition 
from q, to @ contains the time explicitly. We obtain the law of 
transformation of E, P and N in the transition from the sta- 
tionary to the moving soliton. 

We consider the soliton solutions in the collinear AFM 
phase. The stationary soliton solution can be sought in the 
form 
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Substituting (17) in (6), it is easy to establish the fact that the 
second of Eqs. (6) is satisfied identically, while the first deter- 
mines the form of the function 8 (x): 

As boundary conditions for the function 6 (x) ,  we choose 
the conditions 

0 - 0 ,  n, V8-4; Ixl+w, (19) 
which correspond to localization of the magnetization in the 
soliton. 

Below, we shall obtain the specific form of the solution 
of Eq. (18) for the most interesting cases-the one-dimen- 
sional and three-dimensional spherically symmetric soli- 
tons-in a model with anisotropy of the form (9). For now, 
we discuss those properties of the solitons which can be in- 
vestigated without knowledge of the specific form of w,(6 ) 
and 8 (x). 

First of all, we note that a nonzero value of the integral 
of motion N (1 5) corresponds to solitons of the form (17)-(19). 
As we can convince ourselves, the stability of such solitons, 
which it is natural to name precessional, is determined by the 
conservation of N, i.e., the precessional solitons are dynam- 
ic. 

We now discuss the quantum-mechanical meaning of 
the quantity N. It is easy to see that corresponding to the 
soliton (1 7)-(19) is separation of variables: the canonical mo- 
mentum Po, which is conjugate to the angle 8, vanishes. The 
rule for the quasiclassical quantization for solitons then fol- 
lows. We write out the adiabatic invariant (action) in stan- 
dard form (for example, see Ref. 11): 

It  is easy to establish the fact that the quantity I /% is identical 
with the value of N. Thus the requirement that N be an in- 
teger corresponds to the standard quasiclassical quantiza- 
tion of the precessional soliton. 

This conclusion remains valid also for a moving soliton, 
to which corresponds 

where B0(x) is the solution of (18) and the direction of the 
motion is chosen as the x axis. 

The solution (20) describes a two-parameter soliton; the 
two parameters that determine its structure are the vdocity 
of the soliton and the frequency of precession of the magneti- 
zation in the proper frame of reference of w.  It is easy to see 
that the quantity Nor the action I are the same both for the 
stationary and for the moving solitons, with the same value 
of the parameter w: 

N = o  sin2 0  d x = h r ( o ) .  
(21) 

Thus the value of N for the two-parameter soliton of the 
form (20) depends only on w. The values of the other inte- 
grals of motion-the energy and the momentum-depend 

on the velocity of the soliton. Using (1 3) and (14) and Eq. (20), 
we can obtain 

Inverting the relations (21) and (22), we can write out 
the energy of the soliton in the form of a function of its inte- 
grals of motion: 

E ( P ,  N )  =-2poHN+ (E,2 ( N )  4cZP2)" ' .  (23) 
The quantity Eo(w) or Eo(n) is determined only by the 

form of the function 60 (x). In the most interesting cases- 
one-dimensional ( lD ) and three dimensional, centrally sym- 
metric ( 3 0  )-we get for Eo 

+- 
ID: E , = U M , ~  1 { ($)' + $ sin2 0  

The factor a2 is introduced in the 1D-system for conser- 
vation of the dimensionality of the energy, and Eo represents 
the energy of the soliton per single atom chain. 

Equations (22) determine the desired dependence of P 
and E on the velocity of the soliton, i.e., the behavior of P 
and E under Lorentz transformations. It is easy to see that at 
H = 0 the energy and the momentum make up the four-di- 
mensional vector P, (E /c,P). If H #O, then the energy is the 
sum of two terms, the first of which, as also N, is an invariant 
of the Lorentz transformation, while the second is a compo- 
nent of a four-dimensional vector. 

2. STABILITY OF THE SOLITONS 

We proceed to the analysis of the stability of the preces- 
sional soliton of the form (17)-(19). In this section, we can 
specify the form of the function w,(B) and of the solution 
6(x). We require only that the function 6(x)  approach its 
equilibrium value 0 and ?r sufficiently rapidly as I x 1-f a ,  in 
order that the integrals in (21) and (24) exist. As we shall see 
below, at certain values of w, which we must assume to be 
achievable for the soliton, 8 (x) falls off exponentially, and 
this condition is satisfied. Here, two types of behavior are 
possible for 6 (x) in the one-dimensional case.6 One type cor- 
responds to a soliton of the domain-wall type: 

0  (-too) =0, 0 ( - m )  =n, dO/dx<O, (254 

and do /dx vanishes only at x = + co , while the other type 
corresponds to the localized soliton: 

0  ( *m)  =0,  0  ( 0 )  <n/2, (dO/dx),,,=O. (25b) 
Only the localized solutions similar to (25b) (Ref. 10) 

correspond to the centrally symmetric soliton [8 = 8 (r)] 

8  (00) =0,  0  (0) <n/2, (dO/dr) ,,,=O. (26) 

Such a separation of solitons by class is not a property 
only of magnetic solitons and is characteristic of many non- 
linear  system^.^ 

Actually, the information on the structure of solitons 
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contained in Eqs. (25) and (26) is sufficient for the investiga- 
tion of the stability of solitons. As in many other systems, the 
conditions for stability of the solitons must be expressed in 
the form of simple relations for the integrals of motion of the 
~ o l i t o n . ~ . ~ . ' ~  

We make use of the direct Lyapunov technique (see, for 
example, Ref. 13). This method has been applied for the in- 
vestigation of the stability of solitons with scalar fields, for 
example, in Refs. 2, 14, and 15. 

For the stability of the soliton solution, it is sufficient 
that we can construct the Lyapunov functional such that its 
time derivative, calculated in accord with the equations of 
motion, be negative or equal to zero, while the Lyapunov 
functional itself be positive definite in a finite neighborhood 
of the soliton solution. Introducing the variables 
9 = 8 - go, $ = @ - @,, where 8, and @, correspond to the 
soliton, the sufficient conditions for stability of the soliton 
can be written down in the form 

in which the equality in the second condition is achieved at 
9 ,  * = 0. 

We now use the Chetaev method (see Ref. 13) and seek 
V (a,$) in the form of a combination of integrals of motion. 
By virtue of the Lorentz invariance of the equation for 8 and 
@, it suffices to investigate the case v = 0; here, the momen- 
tum does not enter into the functions V (a,$ J ,  and it suffices 
to seek it in the form 

HereEo = E (Oo,$o J ,No = N (80,$o]. Writing V {9,$] 
in terms of the integral of motion immediately gives the de- 
sired condition: 

( d l d t )  V(6, 9) =0, 

and the coefficients A and B are so chosen as to assure posi- 
tive definiteness for V (a,$).  To satisfy this condition, it is 
naturally necessary that the functional V (9,$] not contain 
terms linear in 9 and $. This can be guaranteed by choosing 
the coefficient A in the form 

A=a  (o+gH)/cZ. 

Using (13) and (15) and the value ofA, we represent the 
Lyapunov functional (28) in an approximation that is qua- 
dratic in 9 and $. In place of the variable $ it is convenient to 
introduce another variable: p = $ sin 8,. As a result, we ob- 
tain 

B + - [ j d x { a  ,in zoo@+ (2) sin O0}]' , (29) 
2 

h h 

where H and L are linear differential operators of the type of 
the Schriidinger type: 

dZw, 
I?=-A-a' cos 2% +- 

dOOa ' 
A (sin go) aw. d=-A+ = - A y ( V 0 0 ) 2 + o % ~ ~ 2  0,- - ~ t g  €lo. 

sin 8, 800 

Here and below in this section, we shall use dimension- 
less variables, making the substitution w,-+flw, and mea- 
suring the coordinates to units of I, = (a/P)'I2 and the time 
to units of Idc. 

We expand the functions 9 ,  d 9  /dt and p ,  dp/dt in the 
correspongng copplete orthonormal set of functions of the 
operators H and L: 

where a is a complete set of quantum numbe~s. Fo: the 
spherically symmetric soliton, the potentials in H and L are 
spherically symmetric and a represents the usual set of 
quantum numbers (n, 1 m).16 It is easy to establish the fact 
that the eigenvalues of the operator L are non-nzgative. Ac- 
tually, from the definition of (30), it follows thatksin 8, = 0, 
i.e., sin 8, is an eigenfunction of the operator L with zero 
eigenvalue. For the considered one-dimensional solitons and 
a three-dimensional soliton without nodes, sin 8, vanishes 
nowhere. Consequently, by virtue of t i e  oscillation theorem, 
the zero eigenvalue for the operator L is the lowest. Since a 
perturbation of the form p a sin 8, corresponds simply to a 
change in the origin of 9, in wkich we are not interested, we 
can assume that the operator L is positive definite. The term 
(a9 /dt )' is also positive definite. Thus, we need to investigate 
the functional (29), omitting the terms with pLp and (d9/  
a t  ).' We write 

and substitute these expansions in (29). It is easy to see that, 
of all the m, , the second term in (29) contains only mo-the 
coefficient of the eigenfunction proportional to sin 8,. The 
problem finally reduces to the proof of the positive definite- 
ness of the quadratic form: 

where the notation ( f )  = 1 f (x)dx has been introduced and 
the set of quantum numbers a are written down in the form 
(n, i), where n is the radial quantum number and i determines 
the angular dependence of tYa. By the symboki = 0 we de- 
note the spherically symmetric eigenstates of H. 

The part of the quadratic form containing CnPi at i # O  is 
diagonal. For positive definiteness of this part, it is necessary 
that all E,. > 0. The fact can easily be established that the 
operator H has one zero eigenvalue with I = 1, to which cor- 
responds the eigenfunction 

where c is a Cartesian coordinate along any direction. In 
order to obtain (34), it is sufficient to differentiate the eq%a- 
tion for 8, (x) (18) with respect to 6 and compare it with H. 

If O0(r) in the soliton falls off monotonically, then the 
state (34) corresponds ton = 0. It is clear that all the remain- 
ing states of such a type with n > 0 and I )  1 have higher ener- 
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gies. 
A perturbation of the form (34) corresponds simply to a 

shift in the soliton as a whole along the { axis and does not 
disturb its stability. Consequently, the soliton is stable rela- 
tive to perturbations with I #O and it is only necessary to 
check the stability relative to radially symmetric perturba- 
tions. 

We now investigate the quadratic form (33), setting Cn,i 
= 0 in it at i#O.  We diagonalize (33), denoting by Ai its 
eigenvalues. The eigenvectors (33) are determined by the 
equations 

( 1 4 )  mo+B(sinVo)'"A=O, 
(35) 

A = Z w ~ . ( s i n  2808n)f mo(sin2 Oo)'la. 
n 

Multiplying the equation for C, by w(sin 2009, )/ 
(E, - A ), and the equation for mo-by (sin2 13~)"~/(1 - A), 
adding them, and eliminating A,  we obtain the sought dis- 
persion equation that determines eigenvalues of the quadrat- 
ic form (33): 

For analysis of the question of the existence of negative 
values of A it is necessary to know the energy spectrum E,. 
Since the state (34) with n = 0, I = 1 corresponds to E = 0, 
one of the eigenvalues E, (n = 0, I = 1) is negative. We de- 
note it by E~ Following the method proposed in Ref. 12, we 
can show that among all the remaining en ,  not one is nega- 
tive or equal to zero, i.e., E, > 0, E, > 0 and so on. 

With account of this, we have plotted in Fig. 1 the func- 
tion F ( A  ) at B > 0. We recall that we have still not fixed the 
constant B, and its value is chosen from the condition that 
we can construct a positive-definite Lyapunov functional. It 
is easy to establish the fact that at B <O, the equation 
F ( A  ) = 0 has the solutionA, < E~ < 0 (i.e., negativevalues ofB 
can be disregarded. 

It is easy to see that the sign of the smallest eigenvalue A 
is determined by the value ofF(0). It is easy to see from Fig. 1 
that if F(0)  < 0, then all A, > 0; consequently, the functional 
V { $4 J satisfies the conditions (27) and the soliton is stable. 
Thus, the condition of stability of the soliton can be written 

Fig. 1. Graphical solution of the dispersion equation (36). 

in the form 

The choice of the quantity B in this formula is obvious 
and corresponds to the maximum value of the right-hand 
side of the inequality. 

In order to calculate the sum in this inequality, we dif- 
ferentiate the equation for Oo(x) with respect tow and obtain 

Bd0,/dw=o sin 20,. 

Expanding dO,Jdw in terms of a , ,  we easily obtain 

whence 

Substituting this value in the relation (37), we obtain the 
desired condition for stability of the soliton: 

dN/do<O. (38) 
A similar stability condition has been obtained for a 

number of field-theory  model^^.'^." and for the ferromag- 

We emphasize that the condition (38) relates only to a 
centrally-symmetric soliton with monotonically decreasing 
0 (r) (a soliton without nodes). A soliton with nodes is unsta- 
ble regardless of the sign of (dN /do). We can show that these 
same conditions determine the stability of two-dimensional, 
axially symmetric solitons relative to two-dimensional per- 
turbations. 

Sometimes it is convenient to replace the frequencies o 
with another quantity, in particular, the precession frequen- 
cy 0 in the moving system of coordinates6 

@ =-Qt+k (x-vt), k=vW (c2-v2). (39) 
Comparing this equation with (l7), it is easy to obtain a con- 
nection between w and 0 :  

0=n (2-vZ/c2) 

Using this relation and the equations for P and N, (14) and 
(15), we can easily write the stability condition (38) in the 
form 

where P = P (v,0 ) and N = N (v, Y )  are the values of the inte- 
grals of motion of the soliton, expressed in terms of the solu- 
tion in the set of coordinates moving with the speed of the 
soliton. 

We now consider one-dimensional solitons. For a local- 
ized soliton of the type (25b), we can carry out all the same 
discussion as in the three-dime5sional case. Since dO,,/dx 
has one node, the Hamiltonian H in the case of a localized 
soliton has a single negative eigenvalue E, and the dispersion 
equation has the same form as in Fig. 1. As a result, we come 
to the conclusion that the localized one-dimensional soliton 
is stable only upon satisfaction of the condition (38). 

For solitons of the domain-wall type (25a), the situation 
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is different. A2 before, d8ddx corresponds to the zeroth 
eigenvalue of& however, in this case, this function does not 
have nodes and a minimum eigenvalue corresponds to it. 
Consequently, excluding the trivial displacement of the soli- 
ton as a whole, the Hamiltonian can be regarded as positive 
definite, and the soliton of the grain-boundary type is stable, 
independent of the sign of dN /dw. 

In the next section, we shall obtain the explicit N ( o )  
dependence for three-dimensional solitons of both types and 
establish the fact that in specific problems, all the situations 
that we have considered can be realized. 

is singular. The localized solitons in the ferromagnet exist 
for all w < w, except w = 0; at w = 0, the soliton goes over to 
a 180" domain wall. 

We calculate the value of the number of spin deflections 
in a homogeneous soliton. For both types of solitons, the 
number N is determined by the single equation (see Fig. 2) 

At w2 < w:, N increases with increase in w but at such fre- 
quencies the soliton has the form of a domain wall and is 
stable regardless of the satisfaction of the condition (38). If 
w: < 0' <w:, which corresponds to localized soliton, then 
dlV/dw < 0 and the stability condition (38) is satisfied. Thus 
we come to the conclusion that one-dimensional preces- 
sional solitons in AFM are stable at all achievable values of 
0. 

Three-dimensional solitons. In the analysis of three-di- 
mensional, centrally symmetric solitons, we must assume 
that 8 = 8 (r), r = 1x1. The equation for the function 8 (r) can 
be rewritten in the form 

3. CONCRETE STRUCTURE OF SOLITONS IN AFM 

We now investigate the concrete form of solitons in a 
uniaxial AFM, choosing the anisotropy energy in the form 
(9). The equation for the angle 8 in terms of the parameters w 
and w, , introduced above in (1 I), is written in the form 

c2A0- (o,2-m2)sin 0 cos 0 + 2 ( ~ , ~ - 0 , ~ ) s i n ~  0 cos 0=0. 

(41) 
In the one-dimensional case, the soliton solution of this 

equation can be written down in explicit form in terms of 
elementary functions. Analysis of the three-dimensional, 
centrally symmetric soliton of this equation and, in particu- 
lar, of the N(w) dependence can be carried out rather com- 
pletely with the help of the same methods as used in Ref. 5 
for the analysis of a soliton in a ferromagnet. 

One-dimensional solitons. We first consider the one-di- 
mensional solitons of the solution of Eq. (41), setting 
8 = 8 (x). Analysis that Eq. (41) describes solitons 
of two different types, depending on the value of w,. Ifw < w, 
then the value of the angles 8 tend to separate by P as 
x-++ oo andx-+- oo. 

Assuming that 6 ( + w ) = 0, we obtain 

+Q sin 20-sin 20 cos 20-0, 
r dr 

where the notation 
(45) 

has been introduced. If we make the substitution 8-8 /2 in 
this equation, then it transforms into Eq. (28) of Ref. 5. In 
Ref. 5, a study and numerical integration of this equation 
were carried out at various values of 0. 

It can be shown that the localized solutions of this equa- 
tion can exist; we write the asymptotic solution as r-oo in 
this case as 

0- (Ur) exp (-r(l-Q)'lz/ro). 

If 0 > 1, then the falloff of 8 (r) is connected only with the 
factor in front of the exponential in this expression, and the 
decrease is insufficiently rapid for the convergence of the 
integrals in Eo and N. 

In order to show the necessity of the condition 0 > 0, we 
multiply Eq. (45) by (d8/dr)r4 and integrate it over r from 
r = 0 to r = co . Carrying out the integration by parts, it is 
not difficult to obtain 

OD 

Q Jin2 0r3 dr='/. sin2 20 r3 dr. I (47) 

(42) 
This solution describes a 180" domain wall of the AFM 

[8 ( - oo ) = P, 8 ( + w ) = 01. At the center of the soliton, 
8 = P/2. 

If 0: <w2 < o f ,  then the soliton corresponds to the 
same value of the angle 8 = 0 at x-+ + oo and x-+ - w : 

The value of the angle 8 at the center of the soliton is a 
maximum. In this soliton, it is less than ~ / 2 .  At u 2  > Eq. 
(41) does not have soliton solutions. 

The point o = w,, just as o , ,  is singular. At this point 
the solution of Eq. (41) describes a 90" domain wall 

for which the energy and the number N are infinite. Such a 
behavior of the soliton distinguishes the case of the antiferro- 
magnet from the case of the ferromagnet, considered ear- 
lier.34 For the ferromagnet, besides the frequency of the 
homogeneous ferromagnetic resonance w,, the value w = 0 Fig. 2. Plot of N (o) for a one-dimensional soliton (schematic). 
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It follows from the positiveness of the integrals in (47) 
that 0 > 0. 

Thus, the localized solitons exist at 0 < 0  < 1, i.e., w: 
< w2 <a:, in the same interval of values of the frequency as 
the localized one-dimensional solitons. 

The form of the solution depends significantly on the 
parameter 0. If 0 4  1, then the soliton represents a spherical 
region of radius R, R + 2r,,/0%r0, in which the angle 8 is 
close to r/2, and the magnetization M is almost parallel to 
the z axis, and is equal to M, M = 4o/g6. Change in the 
magnetization from 8z r / 2  to 8 = 0 takes place in a narrow 
range of values of r (of the order of ro(R ). 

If now 1 - 0 4  1, then the soliton has the following de- 
pendence: 

where f (x) is some function with amplitude and region of 
localization of the order of unity.' 

The properties of the solution just stated allow us to 
obtain the asymptotic dependence N (0 ) as 0-4 and 0-t l .  
Actually, at small values of f2 (w2 - w:(w: - o:) the princi- 
pal contribution to N is made by the spherical region of radi- 
us R, the density of magnetization of which is close to M. 
Taking this circumstance into account, we obtain 

where N, is the characteristic number of spin deflections: 

N,=64ns (P/6)'" (r,/a) 3 ,  N3B  1. (50) 
In the other extreme case (1 - 0 4 1  or w: - w2<wf 

- w:) the equation for N (w) with account of (48) can be writ- 
ten in the form 

It is easily seen from (49)-(51) that, just as in the one- 
dimensional case, N (w)+ co as o+o,. However, as a*,, 
the behavior of N(w) is different in the three-dimensional 
soliton than in the one-dimensional, namely, 
N (0) CI) (wf - w2)-112. Thus, N (w) increases without limit 
both as o-m, and w-m,. This means that dN/dw changes 
sign at some value of the frequency w = w., w, < w < w.. 
Consequently, the soliton is stable at w, < o < w. and unsta- 
bleat w. < o < o , .  

For the analysis of the dependence N:w) at 
1 - 0 -0 - 1, it is necessary to use the results of the numeri- 
cal integration of Eq. (45). In contrast with the ferr~magnet,~ 
the energy anisotropy of the AFM, which admits of exis- 
tence of solitons, depends on two parameters, f l  and b or o, 
and w, . It turns out that the form of the specific N (o) depen- 
dence and the value of w. depend on the relation between w, 
and o , .  Figure 3 shows the dependence of N on the quantity 

in two extreme cases: w, 4w , and w, - o ,  In both cases, 

Fig. 3. Dependence of Non d o  for different relations of w ,  and w,. Curve 1 
corresponds to o ,  ( w , ,  curve 2 corresponds to w ,  - o , ( o , .  The points 
indicate the results of numerical calculation. 

the quantity w, is close to w,: 

O.=O ,+0.9~5(0~-0,) at mi-o,i<o,, 
Thus the three-dimensional solitons in AFM are stable 

over a wide range of frequencies, from w, too.. We note that 
the separation of the three-dimensional solitons into stable 
low-frequency and unstable high-frequency is characteris- 
tics for most of the systems, known at the present time, in 
which three-dimensional solitons can exist (see Refs. 2, 3, 5 
and 12). 

4. CONCLUSION 

We have proved the existence of stable soliton solu- 
tions, including three-dimensional, spherically symmetric, 
in uniaxial AFM in a description of this magnet in terms of 
the effective equations for the antiferromagnetism unit vec- 
tor 1.' However, the equations of such a type appear in a 
number of other branches of physics. For example, at the 
present time, Lorentz-invariant models of the dynamics of a 
unit vector are widely discussed in the nonlinear field theory 
(see, for example, Ref. 18). Equation (2) is the anisotropic 
generalization of the chiral a-model of the n field,'8 and the 
existence of stable solitons in this model can represent inter- 
est for field theory. 

The state of the A phase of superfluid helium-3 is de- 
scribed by unit vectors: 1 and d (see Ref. 19). A deep analogy 
between the dynamics of Hey4 and the antiferromagnet was 
noticed by Anderson (Ref. 19, p. 212). If we assume that in 
the texture of Hey4 the vector 1 does not depend on the co- 
ordinates, then the Leggett equations, which are described in 
terms of the vector d, coincide literally with the equation for 
the antiferromagnetism vector [see Eq. (25) of Ref. 201. 

The dipole interaction, which fixes the mutual orienta- 
tion of l and d, plays the role of the energy of the anisotropy 
for the vector d, while the direction of 1 fixes the axis of the 
anisotropy. In superfluid He,, only topological, non-one-di- 
mensional solitons have been discussed to date," while the 
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stability of the solitons considered in the present work is 
determined not by the presence of a topological charge, but 
by the properties of the dynamical equation (2). The corre- 
sponding dynamical equation for antiferromagnetism and 
He, allow us to describe the dynamical solitons in HeJ. 

We are grateful to V. G. Bar'yakhtar, A. V. Zolotaryuk 
and A. M. Kosevich for discussion of the work. 
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