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Electromagnetic generation of sound (EGS) is considered in a metal plate in a perpendicular 
magnetic field H for a complicated electron dispersion law. The electron reflection from the 
boundaries is assumed to be specular. A model is used in which the EGS is due to mechanisms of 
conduction-electron interaction with the lattice. It is shown that it is best to observe the resonant 
generation effects in plates having a thickness d such that the inequalities Lac > d > I, L,,6 are 
satisfied (Lac is the sound damping length, I is the electron mean free path, L, is the damping 
length of the natural electromagnetic mode ofthe metal, and 6 is the depth of the skin layer). If the 
Fermi surfaces of the metal have inflection sections, the amplitude u(H) of the excited sound 
undergoes periodic drastic changes of the Doppler-shifted cyclotron resonance. The features of 
this resonance in EGS are investigated. It is shown that under certain conditions the EGS is 
accompanied by a Doppler-phonon resonance. In strong magnetic fields, when qR( 1 (q is the 
wave vector of the sound and R is the electron Larmor radius), the character of the u(H) depen- 
dence is determined not by the shape of the Fermi surface, but by whether the metal is compensat- 
ed or not. In an uncompensated metal in the classical region of strong fields H, the function (u(H ) (  
varies linearly. In a compensated metal the function I u(H ) I  reaches at H = Hex, a maximum value. 
The position of the maximum of Iu(H ) I  depends on the electron-collision frequency and varies 
with temperature. 

PACS numbers: 43.35.Rw, 72.55. + s 

1. Electromagnetic generation of sound in metals in a 
magnetic field is due to two interaction mechanisms between 
the conduction electrons and the lattice: introduction and 
deformation. The first is the averaged Lorentz force, and the 
second is determined by direct deformational interaction. In 
a magnetic field H perpendicular to the sample surface, 
sound generation was theoretically investigated in a number 
of papers.'-' It was shown that allowance for only the induc- 
tion mechanism leads to a linear dependence of the ampli- 
tude u of the excited sound on H.' Such a dependence takes 
place in strong fields H, where qR (1 (q is the wave vector of 
the sound and R is the Larmor radius of the electron). In 
weak fields, qR > 1, the contribution of the deformation 
mechanism to the generation is the principal one and causes 
a substantial deviation of u(H ) from linear it^,^ as observed in 
potas~ium.~- '~ Electromagnetic generation of sound was re- 
cently investigated experimentally in metals with complex 
Fermi surface, such as tin,14 and others. In 
weak fields H, corresponding to the region of existence of 
Doppler-shifted cyclotron resonance (DSCR) and Doppler- 
phonon resonance (DPR), sharply peaked singularities were 
observed in u(H) of tungsten."-l3 Substantial deviation of 
the sound amplitude from linearity were observed in strong 
fields in tungsten13 and in tin. l4 These effects cannot be ob- 
tained by results'-5 obtained for alkali metals, and were not 
considered in the theory6 for aluminum. The present com- 
munication is devoted to a theoretical study of electromag- 
netic generation of sound in a perpendicular magnetic field 
in a metal plate with a complex dispersion law ~ ( p ) .  The sin- 
gularities of the manifestation of DSCR in electromagnetic 
generation of sound are investigated. It is shown that reso- 

nant interaction with weakly damped waves (dopplerons, 
DPR)15 should be observed also in electromagnetic genera- 
tion of sound in metals. 

In strong fields (qR (1) the character of the u(R ) depen- 
dence is determined not by the shape of the Fermi surface, 
but by whether the metal is compensated or not. For uncom- 
pensated metals u(H) is linear in a wide field interval. For 
compensated metals in the same H interval, the amplitude 
first increases linearly with increasing H, reaches a maxi- 
mum value at H = Hex,, and then decreases. The position of 
the maximum of the amplitude Hex, depends on the electron- 
collision frequency and consequently on the temperature. 

2. Propagation of electromagnetic and acoustic waves 
in a metal and their mutual transformation are described by 
a system of equations comprising Maxwell's equations, the 
linearized kinetic equation, and the lattice-vibration equa- 
tions (see, e.g., Ref. 3). We choose a coordinate frame in 
which thez axis is normal to the surface of a plate occupying 
the space O<z<d; the wave propagation direction and the 
vector of the external constant and uniform-magnetic-field 
vector H are parallel to the z axis; the x axis coincides with 
the electric-field vector of the electromagnetic wave in vacu- 
um. The boundary conditions for the system of equations are 
the following: continuity of the tangential components of the 
alternating electric and magnetic fields on the surfaces z = 0 
and z = d; equality of the voltages on these surfaces to zero; 
specular reflection of the electrons from the boundaries. If 
electromagnetic generation of sound is considered outside 
the region of the sound coupling with the natural electro- 
magnetic modes of the metal, the wave transformation coef- 
ficient T is small in terms of the parameter m/M (m and M 
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are the masses of the electron and ion). The system is solved 
by successive approximations in T. The solution so obtained 
is valid also in the case of weak coupling of the waves, but is 
not valid for strong coupling. 

If the wave propagates along a many-fold symmetry 
axis of the crystal, the longitudinal and two transverse 
modes of the sound separate. In a perpendicular magnetic 
field the equations and their solution can be made simpler by 
introducing the circular polarization of the vectors: 
A , = A ,  f iA,. Solving the system of equations for a plate 
of thickness d, we obtain the following expression for the 
amplitude u , of circularly polarized sound excited by the 
electromagnetic wave: 

OD 

iHq,2 sgn s k cos q.z -- - ' ~ ( k )  e i k z + i  . .I dk8*(k)  --[ q ,  sin qsd 2ncpo2 - m 
k -q* 

In this equation the first term stems from the induction force 
in the equation for the lattice vibrations, and the second from 
the deformation source. The second terms in the square 
brackets of (1) take into account the finite thickness of the 
plate and the sound reflection from the faces z = 0 and z = d. 
The following notation was introduced: the subscript s de- 
notes " + " polarization, for which sgns = 1, or " - " polar- 
ization, for which sgn s = - 1;p is the density of the metal; 
o is the frequency of the external wave; q, is the value of the 
wave vector of the sound wave and includes the damping and 
renormalization of the velocity as the wave propagates in the 
metal. In the region of existence of resonances, the wave 
vector can differ substantially for the two  polarization^.'^ 
The Fourier component of the conductivity u,(k ) of the met- 
al is defined by the expressions 

( k )  =ga ( k )  +i  sgn so,= ( k ) ,  

1 

X erp  [ - ( v - i o )  E+ik 5 u. d t , ] .  (2) 
r-8 

- 
The Fourier component of the "deformation conductivity" 
7, (k ) is of the form 

2e " eH 9 

s:;' ( k ,  H) = I 7 1 J dp. C j  d t L i  ( t )  J dEVb ( t - l )  
em 0 

1 

- ( v - i o )  t+ ik  J v,  d t2 ]  . 
1-E 

The summations in (2) and (3) are over the entire multiply 
connective Fermi surface; E~ is the Fermi surface of the 
electrons (or holes) of the surface n; h is Planck's constant p, 
v, and Y are the momentum, velocity, and collision frequency 
for the group n; a, P =  x ,  y; t is the time of motion of the 
quasiparticle over the orbit in the magnetic field H and is 
determined by the equation of motion 

dp/dt=elc[vH] ; Aik(p) =h,k ( p )  - (L  ( p )  ): 

A,(p) is the deformation-potential tensor for the group n; 
(A, ) is the value of A,(p) averaged over the entire Fermi 
surface. Equation (1) contains the Fourier transform $,(k ) 
of the electric field E, (z), obtained by solving simultaneously 
the Maxwell and kinetic equations: 

d 

8, ( k )  =2 J ~ Z E .  ( z )  cos kz= [-2E.I ( 0 )  +2ESt ( d )  cos kd 
0 

+2kES (d)sin k d ]  [ k ' - i 4 n o ~ - ~ o .  ( k )  I-'. (4) 

The prime denotes differentiation with respect to z; the 
quantities E, (0)  and E, (d ) are the values of the field E, (z) at 
z = 0 and z = d. The problem of the distribution of Es(z) in a 
metal in a normal field H was solved in many It 
was shown that 

E, ( 2 )  =E; ,k(z) +Es r~ ( 2 )  +ESbr(z) - 
The spin component of the field is here 

E. ,,(z)-exp(--z/8)E.'(O) ; 

Sgd  is the depth of the skin layer. The anomalous-penetra- 
tion field (the Gantmakher-Kaner component") E, ,, (z) ap- 
pears if the function u,(k) has branch points. The field 
E, ,, (z) differs substantially from E, ,, (z) if the dispersion 
equations 

D, ( k )  =k2-i4noc-'o, ( k )  =O 

admit of a solution that defines a weakly damped wave. 
These two components attenuate exponentially over dis- 
tances of the order of the electron mean free path I. (Under 
conditions of diffuse reflection of the  electron^,^' all three 
components interact with one another and this interaction 
determines the relation between the amplitudes of the differ- 
ent components.) We shall be interested in the amplitudes of 
the sound on the facez = d, i.e., us (d, H ) = us (H ). It is con- 
venient to calculate the integrals by transforming to the 
complex domain and closing the contour in the upper half- 
plane. The functions us (k ) and % (k ) can have branch points. 
Therefore the amplitude u,(H) is represented in the form of a 
sum of the integrals along the edges of a cut from these 
branch points to infinity and of the residues of the poles of 
the integrands. Two types of pole appear. One is the root of 
the equation k : - q: = 0 ;  the other are the roots of the dis- 
persion equation D,(k,) = 0. The following can be shown: 1) 
the residue of the pole k, contains the factor exp( - d /L,) 
(La, is the damping length of the sound wave); 2) residues of 
the poles ki contain factors of the type exp( - d/S) or 
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exp( - d /L,,) (L,, is the damping length of the natural elec- 
tromagnetic mode of the metal and is connected with the 
quantity I; 3) the integrals along the edges of the cut are 
characterized by the presence of a factor exp( - d /I ) (the 
analogy with the Gantmakher-Kaner effect should be point- 
ed out). The sound amplitude takes the simplest form if the 
conditions 

Lac=-d>l, L,,,6. (5) 

are realized. Otherwise it is necessary to take into account 
the residues of all the poles and the integrals along the edges 
of the cut, and the u(H ) curves will constitute a superposition 
of lines, each of which has a complicated dependence on H.  
The inequalities (5) were satisfied in the experiments of Refs. 
11-13. If these inequalities hold, the main contribution to 
the integral (1) is determined by the pole k, = q,, and the 
amplitude takes the form 

U, ( H )  =a,q, (pa2) -' {Hc-I sgn so. (q,, H) 

+q.q. (q., H) 18, (q., H) exp i9.d 

=T (q,, H)8.  (q,, H) exp i9.d. (6) 

The factor a, = (1/2)(1 + i cot q,d ) describes the effect of 
multiple reflection of sound from the faces. If it is assumed 
that 2d > L,, then a, = 1. The transformation coefficient is 

where T'") is a coefficient governed by the group n of the 
conduction electrons. Under condition (5) we have E,(O) 
>Es(d). 

3. The character of the u,(H ) dependence is determined 
by the functions 8, [a, (q,, H)  ] and T(q,, H)  and by their 
competition. Attention should be called to a resonance effect 
contained in (6) and (4). The conditions for the existence of a 
weakly damped wave in a metal are of the form 

Im o,<O, (Im 0.1 >]Re o,l. (7) 

If the wave velocity (7) is comparable with that of the sound, 
intersection of the spectra of the acoustic oscillations and of 
the natural electromagnetic mode is possible: 

Re q.2=14no~-~ Im 0.1, (8) 

i.e., resonance is effected between the phonons and the weak- 
ly damped wave. It can be seen from (4) that the resonance 
line takes the form of a Lorentz curve whose width is deter- 
mined by the damping [Re us I of the electromagnetic mode. 
In a magnetic field Hllq, under certain conditions and rela- 
tions between the frequencies a, 0 ,  and v, helicons and dop- 
plerons can exist in the metal (0 is the cyclotron frequen- 
~ y ~ ~ , ' ~ . ' ~ ) .  Consequently resonances of phonons with these 
waves can be observed in electromagnetic generation of 
sound. Equation (6) is valid for DPR because of the weak 
coupling of these waves. The helicon-phonon coupling is 
strong, therefore (6) cannot be regarded as correct for heli- 
con-phonon resonance (HPR). This resonance was investi- 
gated earlier for the case of transformation of electromag- 
netic and acoustic waves.22923 

4. To investigate the function u,(H) it is necessary to 
calculate the conductivity components a, (q,, H ) and 

r],(q,, H ). After integration with respect to t and 6, the con- 
ductivity r],(q,, H) takes the form 

X 
q.vz (PA 

(1Q-to-t iv) Z-q.2V,Z (pz) ' 

The expression for a, (q, ,H) is obtained from (9) by re- 
placing [ - A Ii)q,E, ] with [ev!'(p,)(l0+ o + iv) ]. We 
have introduced the symbols m for the cyclotron mass, - u, (p,) for the electron drift velocity along thez axis averaged 
over the cyclotron period, 

vy)  and A $) for the expansion coefficients of the functions 

in Fourier series, and fi:' for the Fourier-expansion coeffi- 
cients of the function 

t 

v d t )  exp [ - ig .J  ~ u , d t , ]  . 
0 

The presence of an a-fold symmetry of the Fermi surface 
about the z ( (H axis leads to a choice of I (Ref. 24) in the sum 
(9) 

l=l,=ka+sgn s; k=O; *I; *2. ( 10) 

An exact calculation of the integrals with respect top, for an 
arbitrary Fermi surface at any value of H is impossible. It is 
convenient to break down the entire H region into interval. 
In the first interval (strong fields), in which the inequality 

qFz c x t / Q ~ l ,  (1 1) 

holds for all groups, the local approximation holds for 
u,(q,, H ) and 7, (q,, H ). In the second interval (weak fields), 
where 

qvz.., lQ>I. (12) 

The nonlocal approximation holds for all carrier groups 
(C, is the extremal value of & ( p,)). If the values of Fz .,, for 
the different groups differ significantly, a certain broad in- 
termediate interval is produced, in which the condition (12) 
holds for only one group, while the conditions (1 1) are valid 
for all the remaining ones. It is known that in this region the 
metal can contain d ~ ~ p l e r o n s . ' ~ . ~ ~ . ' ~  Therefore the DPR (8) 
of the generated-sound amplitude should be expected here. 
DPR for electromagnetic generation of sound was observed 
in tungsten.'2"5 

5. In the weak-field region (12) the contribution made to 
sound generation by the deformation mechanism turns out 
to be larger than of the induction mechanism. The denomi- 
nators of a, (H ) and r] ,  (H ) have a resonant character if the 
following condition is satisfied 
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When the Fermi surface has no sections for which the elec- 
tron density of state would be extremal, integration with re- 
spect to p, averages out these singularities. The functions 
u,(H ) vary slowly in this case with changing H. Exact calcu- 
lations of u,(H) were made for alkali  metal^^-^ and alumi- 
n ~ m . ~  It was shown that lux (H) I is equal to a constant as 
H -+ 0 and decreases to a small value at 0 /q& 5 1 (E, is the 
value of v,(p,) at the limiting point on the Fermi surface. 
The function 1 u, (H )I, which is equal to zero at H = 0, has a 
complicated dependence on H and on the parameter ql. This 
behavior of the lu, (H ) I curves is common to all metals. For 
an exact determination of 1 u, (H) I in this metal it is neces- 
sary to know the shape of its Fermi surface, the function 
A,(p), and the relations between the parameters o, Y,  0, and 

qv,. 

If the Fermi surface has a section that singles out elec- 
trons with extremal displacements along the vector H dur- 
ing the cyclotron period, Rex,, a large group of carriers 
moves in phase and under certain conditions it interacts with 
the wave. This leads to the appearance of DSCR in the func- 
tions u,(H) and q,(H). Its conditions are of the form 

o-q,V, ,,t=1,Q, (14) 

where I, is the integer (10). The contribution of the remaining 
electrons is smaller, owing to dephasing, and determines the 
nonresonant behavior, described above, of the 1 u, (H ) I 
curves. At low frequencies 

O<V (15) 

the resonance is spatial in character. 
DSCR in metals can be due to various groups on the 

Fermi surface. For example: 
a) carrier groups of limiting points (the Kjeldaas edge 25 

for an elliptic limiting point); 
b) carrier groups of inflection sections, 26 where 

and S ( p,) is the area of the intersection of the Fermi surface 
by the planep, = const; 

c) carrier groups of central sections, where 4 ( p,) = 0.27 
The power and shape of the DSCR depends on the type 

of singularity of the functions us (H) and q, (H). The most 
peaked resonances occur in case b). 

The contributions made to the coefficients u,(H) and 
qS (H) by group (1 6) is the region of the I resonance are de- 
scribed by the formulas 

+v:-')  5 i ' ) g ( ~ 8 - i y )  I}  (174 
7 

P, = P  : ext 

-*!;I) - ( I )  
vz g ( A a - i y )  I 

pz-P zext 

Here 

The function g(x) = x-'I2 describes resonance lines. The 
value ofg near resonance, when Id I (  y( 1, is larger by y-'I2 
times than the value of g far from resonance, when lA 1 %  y. 
The linewidth is determined by the parameter y. The integer 
I = I, is different for two polarizations. Therefore even the 
first peaks in the " + " and " - " polarizations differ in am- 
plitude, which decreases with increasing I. The number of 
observed resonance peaks depends on the crystal symmetry. 
If the Fermi surface has several resonance groups (16), the 
functions u,(H) and q,(H) constitute superpositions of the 
resonance curves (27). 

Notice the features of DSCR in electromagnetic genera- 
tion of sound. At low wave frequencies (15) the following 
inequality holds at (12): 

4 n o ~ - ~ J  0.1 =-qs2. (18) 

The amplitude u,(H) takes then the form 

us ( H )  =-E' ( 0 )  iq,2c2 ( 2 n p o 3 )  - ' exp [ iQ . (H)  d-I?. ( H !  dlF. ( H ) ,  

(19) 
s s  re= ( H )  +g*  mon(H) , 

Qs = Re 
IS. ( H )  +oSmon(H) 

Here I', is the coefficient of sound damping, due to all elec- 
tron groups, in the metal. The coefficient rs (H ) was consid- 
ered under DSCR conditions in Refs. 26 and 28. q, ,,, and 
usmon denote the monotonic parts of the quantities 

c q!^' and c o?) 

Near each resonance, the shape of the line u,(H) is deter- 
mined by competition between three rapidly varying func- 
tions: exp [ - rs(H )d 1, qsres (H ) and us ,, (H ). If the contri- 
bution from the resonance group (16) to conductivity 
exceeds the contribution from all the remaining groups, 
us, > us ,,, , the function F, (H ) can be represented as 

q* res + 0 s  res r) .  mon-(Jarnonqa res 
F. (H) = - 

Ua res ( 0 .  res ) 

The first term leads to the monotonic part of u,(H). The 
second term is proportional to g-' and has a minimum at 
resonance. It  is either added to the monotonic part if 
(us res qs - usmon qsres ) > 0, or subtracted from it if 
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(a,, q, ,,, - aSmon q ,  ra ) < 0. If the contribution to the con- 
ductivity from the nonresonant groups is larger than as,, 
then 

q, mon U s  pear)amon-Oamon(la pea 
F,(H)=- - 

0. mon (a. mon) ' 
The first term describes the monotonic course of u, (H ). The 
second term, proportional g, increases abruptly at reso- 
nance. Depending on the parameters of the metal, i.e., on the 
ratios of the quantities a,, v, ,, and a, q,, , the second 
term is subtracted or added to the monotonic term u,(H). A 
resonant change of the damping coefficient r, (H ) can lead 
to a difference between the amplitudes of the resonances 
1 u, (H ) I  from the amplitudes of the peaks IF, (H ) I .  

It is clear from all the foregoing that DSCR can mani- 
fest itself in electromagnetic generation of sound either in 
the form of maxima (a,, q, - uSmon q,, < O),  or in the 
form of minima (a,, q, ,,, - a,,,, q,, > 0) of the ampli- 
tude lu, (H ) I .  The singularities of the DSCR take place for 
both amplitude components 1 u, (H ) I and I u, (H ) I .  In experi- 
ments on tungsten, '1.'3 the 1 u ,  (H )I lines were superposi- 
tions of systems of maxima due to different groups (16). 

If the inequality 

is satisfied in a metal, as is possible at frequencies o ) v ,  we 
have 
8, (q,) w-2E' (0)  qs-' 

and the sound amplitude DSCR line shape is determined by 
the shape of the deformation-conductivity line (17b) 

us ( H )  = (paZ)-' exp[iQ. (H)  d-r .  d I [q .  mon(H) + q. res(H)I - 
(21) 

The amplitude of the peaks q,,, ( H )  is modulated by the 
factor exp [ - T, (H )d 1, i.e., by the DSCR of the damping 
coefficient. 

The DSCR resonance lines ( 19) and (21) can be easily 
distinguished from the curves of the phonon resonances with 
a weakly damped wave (8): their linewidth is considerably 
smaller and they are located in the region of weaker magnet- 
ic fields, where the wave damping is large. 

Equations (19) and (21) describe DSCR in the case of 
resonances due to groups a) and c) (it is necessary to substi- 
tute in them the corresponding values of q, ,, and a,, ). The 
DSCR manifest themselves in the form ofjumplike increases 
of q S ( H )  and a,(H), which lead to small increments of the 
amplitude u,(H) of the excited sound. 

6. In the local limit of strong magnetic fields ( 1  1 )  the 
shape of the Fermi surface exerts no influence on the charac- 
ter of the u,(H) dependence. What matters is whether the 
metal is compensated or not. The asymptotic forms of a, (H)  
and q,(H ) are . - 

N sgn mec 
o, (H).= i sgn s C (i+ip sgn s)H 

[l+a,x.'l, Ne+Nh- 

(22) 
In a compensated metal, a, ( H )  is considerably smaller be- 
cause of cancellation of the principal term-of the Hall con- 

ductivity: 

a. (H).=i sgn s [aix.2-i? sgn s ] ,  Ne=Nh; 

(23) 

p= (v-ia)/Q, xB=q8v sgn s/(l+iv sgn s), 

Ne and Nh are the numbers of the electrons and holes, 
N = V p / h  3, and V, is the volume in the momentum space 
occupied by the group D; I H ,  1 ( 1 in Eqs. (22)-(24); v = Ez ,,, ; 
a ,  and a, are numerical coefficients that depend on the con- 
crete shape of the Fermi surface (a, = a, = 1/5 for a sphere). 
To calculate q,  (H ), the true value of A, ( p, ,t ) was replaced 
by the model-dependent value 

A.*(p*, t)=-pus (t ,  p*)l?rz ( P J .  

Substituting (22)-(24) in (6) and (4) we obtain the function 
u,(H). The simplest form of u,(H) occurs in the limiting 
cases (18) and (20). The condition (20) corresponds to stron- 
ger fields than (18). We assume that the inequalities (1 l ) ,  (13), 
( 1 5 )  and (18) or (20) are satisfied. Inasmuch as in the experi- 
m e n t ~ ' ~ . ' ~  the sound was assumed to have linear polariza- 
tion, we present the answers for the functions u,(H) and 
uy (H 1. 

A. Uncompensated metal (N, # Nh). In strong magnetic 
fields, for which the quasiclassical approach developed here 
is valid, the condition realized is (18). The sound generation 
is determined by the induction mechanism, and the deforma- 
tion mechanism yields in comparison a contribution smaller 
by a factor (qv/f2 )-2# 1 .  The amplitude of the sound is of the 
form 

PC 
UV ( H )  - E' (0) eiqdH, 

2npoS (25) 

where q = q+ = q-. The component u, (H ) varies in accord 
with a linear law, and u, (H ) is smaller than u, (H ) by a factor 
(qv/f2 )-2. This result coincides with the result for an alkali 
metal.14 In magnetic fields (20), quantum theory is neces- 
sary. The character of the u y ( H )  line, however is obvious. 
The monotonic part u, (H ) tends to a constant value. Super- 
imposed on it are quantum oscillations of the conductivity 
6(H ), with small amplitude. At a value H = H,, , where 
q2 = l i 4 m ~ - ~ a - ( H  hp ) 1 ,  helicon-phonon resonance takes 
place. 

B. Compensated metal (N, = N,). For a compensated 
metal, the induction and deformation mechanisms of sound 
generation make contributions of the same order. The condi- 
tions (18) and (20) can be realized in the quasiclassical ap- 
proxidation. We then have the inequality 

1 ~ ' 1 ~ 1 ~ 1 .  
The sound amplitude in the interval (18) takes the form 

Nlmlv 

l el qeiqd n 
u, (H)  = ---- E' (0 )  AHZ ( o c v ) ,  

2npo3 
Nrnlrnlv%zal (274 
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It follows from (27) that lux I/ luy I - I y l /  Ix21 ( 1 .  In the inter- 
val of very strong fields (20) the functions u, (H ) and u, (H ) 
are the following: 

In quantizing fields H, small quantum oscillations are super- 
imposed on the monotonic course of the lines (28). The con- 
ditions under which Eqs. (27) and (28) were obtained corre- 
spond to the situation when the Alfven wave is strongly 
damped (its damping is small if 0 % ~ ) .  Therefore the lines 
I u, (H ) I  have no sharp resonant singularities. We present 
here 1 u, (H )I, since this quantity is observed in experiment. 
The character of the asymptotic relations (27) and (28) indi- 
cates that at the corresponding values of H the functions 
1 u, (H ) I  should have maxima. These maxima are explained 
by the fact that the skin-layer depth S ( H )  becomes of the 
order of the sound wavelength. The described 1 u, (H ) I de- 
pendence was observed in tungsten1' and in tin.13 It must be 
noted that the effect considered is similar to the size effect of 
Fischer and K ~ O , ~ ~  wherein a maximum of rf-wave absorp- 
tion exists in a compensated metal when S (H ) is close in mag- 
nitude to the plate thickness. 

The dependence of the field He,, corresponding to the 
maximum of lu, (H ) 1 on the parameters of the metal is de- 
scribed by the formula 

where sac is the velocity of the transverse sound in a metal. 
The quantity Hex, depends on the temperature like 

1/2 [? v ( ~ ) ]  . With increasing T the frequency v increases 

and the position of the maximum of luy (T)I moves into the 
region of stronger fields H .  A similar effect was observed in 
Refs. 12 and 13. It appears that an investigation of the func- 
tion Hex, ( T )  will make it possible to determine the depen- 
dence of the averaged collision frequency v on the tempera- 
ture. 

In conclusion I am deeply grateful to E. A. Kaner, A. P. 
Korolyuk, A. V. Golik, and V. I. Khizhnyi for helpful dis- 
cussions of the work. 
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