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The dc conductivity and diffusion coefficient near the metal-insulator phase-transition point (the 
Mott or M transition) are calculated for the low-temperature case. It  is shown that the diffusion 
coefficient D and conductivity a in the self-consistent-field approximation are proportional to the 
first and second powers, respectively, of the metallic order parameter 63. In the region of strong 
correlations the fall-off of the kinetic coefficients is governed by two critical exponents. One of 
these, 8 ,  governs the fall-off of the order parameter i3 and the electronic density of states 
Y:Y a i3 cc [ T I  B ,  where T measures the distance from the transition point. The other exponent, A, is 
of kinetic origin: D cc i3 1 7IA, a 0: i3' I T  I '. The universal critical exponents and A are evaluated by 
the renormalization-group method in the space of 4 - E dimensions. 

PACS numbers: 71.30. + h, 72.10.Bg, 64.60.Fr, 66.30.Dn 

INTRODUCTION 

The concept of a metallic order parameter, which was 
discovered by Wegner,' found immediate use in the theory of 
localizaiton for systems with dimensionality d close to 2. 
Near the metal-insulator transition (M-transition) point all 
the physical singularities are determined by the law govern- 
ing the vanishing of the metallic order parametre i3 and by 
fluctuations in this quantity. It  has been proven2 that near 
the M-transition point such quantities as the density of states 
at the Fermi level (Y) and the inverse square of the electro- 
static screening radius (x2) are proportional to i3. In the self- 
consistent-field theory for T = 0 these quantities go to zero 
as where T is the distance from the transtion point in 
terms of the pressure or of the concentration of an impurity 
component. The role of the external magnetic field is played 
by the Matsubara frequency w = (2n + l ) rT,  and in the re- 
gion of applicability of the self-consistent-field method i3 
obeys an equation of the Landau-Ginzburg type. In a pre- 
vious paper3 the present author attempted to determine the 
thermodynamic critical exponents for three-dimensional ob- 
jects in the region of strong correlations with the aid of an E 

expansion (E = 4 - d ). It was established that the main dif- 
ference betwen the M transition and a second-order transi- 
tion lies is that for the M transition the critical exponents 
turn out to be different on opposite sides of the transition 
point. In the region of strong correlations the governing role 
on the insulator side of the transition (r > 0) is played by 
localized states, which provide a "tail" on the electron ener- 
gy distribution. On the side of the metallic phase the corre- 
sponding states take on a quasi-local character, and their 
role therefore becomes unimportant against the background 
of critical fluctuations. This circumstance makes it possible 
not only to evaluate all the thermodynamic critical expo- 
nents for the metallic phase, but also to determine the law 
describing the vanishing of the conductivity a and diffusion 
coefficient D, which are related to each other and to the 
density of states at the Fermi level by the famous Einstein 
relation 

o=e2vD. (1) 
In the "tail" region of the insulator part of the phase diagram 
the dc condutivity is evidently of a percolational character 

(or is absent altogether). All the physical phenomena are 
governed by the inhomogeneous distribution of the complex 
order parameter ii3-the inhomogeneous regime in the Mott 
clas~ification.~ As in Ref. 3, we shall restrict discussion to 
the case of a half-filled band. The applicable models in this 
case are the Hubbard model,5 the model of a nonideal exci- 
tonic in~ulator ,~ and also the symmetric model of a binary 
solid solution.' 

In the present paper a method is devised to evaluate the 
kinetic coefficients in the static limit on the metal side of the 
transition (r < O), where, according to the assumption of Ref. 
3, one can neglect the quasi-local states of the instanton type. 
Near the M-transition point, where 11.1 4 1, the energy and 
damping of the excitations are of the same order of magni- 
t ~ d e . ~  It follows that in this region the mean free path I is of 
the order of the mean distance a between electrons, so that 
all the kinetic phenomena are governed by the diffusion re- 
gime,4 where the resistivity grows from 3.10-4 to 3.10V3 
n-cm. In the first part of this paper it is shown that in this 
region the conductivity is proportional to Z2 or to the square 
of the density of states, in agreement with the familiar Kubo- 
Greenwood formula. 

In the immediate vicinity of the M transition the con- 
ductivity becomes less than az800/a (a.A)-', which was 
long assumed to be the minimum value of the electronic con- 
ductivity. It  is in this region that one must take correlation 
effects into account not only for the order parameter i3, but 
also in evaluating the transition probability, which is ex- 
pressed in terms of the two-particle Green function. 

In the second part of this paper it is shown that near the 
M transition on the metal side of the corresponding two- 
particle correlator admits an expansion in powers of the me- 
tallic order parameter. The coefficients of this expansion can 
be calculated by the renormalization-group method in the 
space of 4 - E dimensions. In the model of a nonideal exci- 
tonic insulator the region of strong correlation effects is ex- 
tremely narrow on account of the small Ginzburg number- 
the ratio of the interelectron distance a to the correlation 
length (see Ref. 3 and below). For this reason the kinetic 
coefficients can be evaluated in the diffusion regime by the 
self-consistent-field method, which in this case has a wide 
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region of applicability. In the Hubbard model and in the 
model of a binary solid solution, the Ginzburg parameter is 
of the order of unity. For this reason there is no region in 
which the self-consistent-field method applies, and correla- 
tion effects are manifested even in the diffusion regime. It 
was shown in Ref. 3 that all three of the models studied have 
the same critical exponents, but the renormalization-group 
equations admit two types of solutions, which correspond to 
two sets of critical exponents. One solution borders on per- 
turbation theory, but is unstable against fluctuations which 
are noninvariant to a time reversal-the so-called " + " 
model. The other solution is stable, but does not link up with 
perturbations theory-the so-called " - " model. 

The critical exponents of the " - " model leads to 
weaker thermodynamic singularities than does the " + " 
model. For example, the character of the phase transition at 
T =  0 is governed by the critical exponent E': A E a  IT[", 
where 

'/z-&/3, " + " model 
e1=l+3P+y= 

'/,+e/2, " - '' model. (2) 

In the approximation linear in E one has 
1/z-~/6, " + " model 

@ ={ / 2 ,  " - " model. 

An evaluation of the second derivative of the conductivity 
with respect to the density of states, given later in this paper, 
yields completely different results for the " + " and " - " 
models: 

6'0 -e/f8, " + " model 
- - N I T I ~ ,  
66' +e/2, " - " model. 

A comparison of (2), (3), and (4) shows that the " + " model 
gives more abrupt functions and the " - " model less abrupt 
functions than self-consistent field theory, for which E' = 7/ 
2, p = 1/2, and A = 0. The diffusion coefficient is easily 
found from relations (1) and (4) as 

~ m I . t I ~ + l :  ( 5 )  

This result will be obtained in an independent manner. The 
results will be discussed in the Conclusion, and the most 
awkward mathematical part is relegated to Appendices A- 
C. 

1. EVALUATION OF THE KINETIC COEFFICIENTS BY THE 
SELF-CONSISTENT-FIELD METHOD 

A. Nonideal excitonic insulatop 

Let us assume that an ideal impurity-free system has the 
particle-hole symmetry 

E D = - E P + Q ,  (6 )  

where 2Q is a reciprocal lattice vector and 6, is the energy 
reckoned from the Fermi level. Let us suppose that the inter- 
action with impurities is of a short-range character and can 
be taken into account by perturbation theory. In this approx- 
imation the averaged function Go (p) is of the form: 

-- 

and the dependence of the quantitiesa and i3 on the frequen- 

cy w = (2n + 1 ) r T  is given by the matching conditions: 

where T is the relaxation time. Notation aside, the solution of 
Eq. (8) formally coincides with the corresponding solutions 
of the equations for a superconductor with a paramagnetic 
impurity .' 

The "insulating gap" vanishes in accordance with a 
three-halves law: 

Gap= [ (rA) %-11 '%-I, In (AIA,) =-n/4rA. (9) 

Here A is the value of the order parameter at T = 0, and A, is 
its value in the absence of impurities. The density of states 
vanishes by the square-root law 

P 

where v, is the density of states of the pure metal. 
Using condition (6) and generalizing the derivation of 

the Kubo formula to the case of an anisotropic crystal, we 
obtain the following expressions for the electrical conductiv- 
ity tensor (w, is the external complex frequency): 

where w + = w + wd2  and f l  is the Pauli matrix. Integrat- 
ing the last sum over frequencies and then using definition 
(7), we reduce the expression for the electrical conductivity 
to the form 

In the limit T = 0 one can pass to an integration over the 
frequency and then expand in powers of w,, obtaining 

G, (p) = lim G. (P) . 
m+Of 

For a crystal of cubic symmetry 6, = 6 - , , so that any im- 
purity correction to the current vertex vanishes after inte- 
gration over the variable p. For this reason the averaging of 
the product of the Green functions in (1 1) reduces to replac- 
ing them by the corresponding average values. The substitu- 
tion of (7) into (1 1) and an elementary integration near the 
Fermi surface lead to the following: 

P 

Here a, is the conductivity of the normal metal. Far from the 
transition point azu , .  Close to the transition point the con- 
ductivity vanishes by a linear law, a=:2a0(l - TA ). 
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The expression for the average value of the density- 
density correlator has an extremely awkward form even in 
the static limit. However, in the long-wavelength limit it is 
easily expressed in terms of the derivative of the Green func- 
tion: 

as follows from the Ward identity. From this expression we 
find the inverse square of the screening radius for T = 0: 

X z = h e 2 y o  [ I -  (zA) '1 "'. (13) 

Finally, using the Einstein relation (I), we obtain the diffu- 
sion coefficient 

It should, of course, be kept in mind that the spatial disper- 
sion of the dielectric constant and of the electrical conduc- 
tivity begins at wavelengths of the order of the correlation 
length R, : 

where u, is the average velocity on the Fermi surface. Near 
the transition point, where TA - 1, the correlation length ex- 
ceeds the mean free path. 

B. Hubbard model and binary solid solution 

The model of a binary solid solution with equal concen- 
trations of the components and the Hubbard model with a 
half-filled band7 have electron Green functions of the same 
form: 

where E, is the spacing of the atomic levels in the solid solu- 
tion or the energy of the electron-electron interaction in the 
Hubbard model. The function Zi satisfies a self-consistency 
condition of the type (8). For example, in the approximation 
of a large number of nearest neighbors2 

ia=io-geo2 ~ ( ~ ~ ' + o ' + i ~ ~ ~ ) - ~ .  (17) 
D 

(g = 1 for the solid solution and g = 3 for the Hubbard mod- 
el). 

In the coherent phase approximation (CPA) the self- 
consistency condition has a more complex form,7 but all the 
basic properties near the M-transition point are determined 
by the character of the expansion of the self-consistency con- 
dition in powers of i3 and a. The expansion is of the usual 
Landau-Ginzburg form: 

According to H ~ b b a r d , ~  in the CPA approximation one has 

Taking the usual formula (1 1) but without the anomalous 
Green functions and substituting Green function (16) in it, 
one can easily calculate the conductivity as 

where a, = e2/3& and a3 is the volume of the unit cell. 
In the insulator phase Zi(0) = 0; in the metal phase near 

the transition point we can use expansion (18). As a result, we 
obtain a linear law for the vanishing of the conductivity: 

The diffusion coefficient can be calculated directly by aver- 
aging the retarded and advanced Green functions. Near the 
transition point 

The correlation length, the density of states, and the dielec- 
tricconstant were evaluated in Refs. 2 and 8. Near the transi- 
tion point 

Comparison with (15) shows that for identical values of 
T = 1 - p2 - [(TA )2 - 11 the self-consistent equation for an 
excitonic insulator has a wider domain of applicability than 
an equation of type (17). This is because at the M-transition 
point 

so that the ratio of the correlation lengths R,/X, is of the 
order of the mean free path measured in units of the intere- 
lectron distance. The physical reason for this difference is 
the absence of a Fermi surface in the Hubbard model, which 
leads to a strong intermixing of quasi-particles with different 
momenta and, in the final analysis, to their damping, which 
at low energies is of the same order as the energy. Formally 
returning to the analogy with the theory of phase transitions, 
we see that the Hubbard model is to the excitonic-insulator 
model as the Ising model is to the BCS model. The basic 
relationships in the region of strong correlations have a uni- 
versal character. 
2. THE DC CONDUCTIVITY IN THE REGION OF STRONG 
CORRELATIONS 

A. Renormalization-group equations 

By analyzing the results of (20) and (12), it is easy to 
establish that in symmetric models the expansion of the con- 
ductivity tensor contains only even powers of the order pa- 
rameter. In the first nonvanishing approximation the prob- 
lem reduces to the evaluation of the trace of the product of 
four Green functions, as is shown in Fig. 1. Diagrams of the 

FIG. 1. Current vertices and the vertex r, before averaging. 
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type in la  and lb  are the average of the products of two 
Green functions, one of which is evaluated in the zeroth or- 
der and the other in the second order of perturbation theory 
in the parameter i3. Diagrams of type lc are averages of the 
products of two Green functions evaluated in the first order 
of perturbation theory. It follows from the general relation 
(1 1) that the lines joining the current vertices, G+ and G- 
represent Green functions with minimum frequencies of op- 
posite signs. As we have already mentioned, impurity cor- 
rections to the current-type vertices need not be taken into 
account, since for cubic crystals they give zero upon integra- 
tion over the electron momentum. There is also no need to 
take into account the impurity corrections to those corner 
vertices which are multiplied by the order parameter i3, since 
they are already contained in the definition ofZ. For the sake 
of definiteness, let us first consider vertices of type lc, in 
which current and scalar corner vertices alternate along the 
electron line. These vertices can be divided into two types: 
the first type includes those vertices which have one incom- 
ing and another outgoing electron line at every scalar vertex. 
The notation ~$(w,,w,,w,,w,) completely specifies the de- 
sired tetragonal vertex of the first type if the symbols w, and 
o, (a, and w,) are taken to mean the frequencies of the elec- 
tron lines coming into (going out of) the vector vertices. The 
definition implies the relation 

The current vertex of the second type, ?;!'(w,,w,,w,,w,), 
differs from p:b(w,,w,,w,,w,) in that w, and w, are the fre- 
quencies of the electron lines going out of the same scalar 
vertex; w, and w, are the frequencies of the electron lines 
coming into the other scalar vertex. In the zeroth approxi- 
mation the vertex parts are independent and can be evaluat- 
ed by perturbation theory. In the next approximation the 
corrections to phb and are expressed in terms of the 
scalar vertex part r3(w,,02,w3,w4), which differs from 
~~ ' (w, ,w2,03 ,w4)  in that the vector vertices a and f l  are 
replaced by scalar vertices (see Figs. Id and 2a,b). Each pair 
of parallel lines is averaged with the aid of a ladder summa- 
tion. For a small total electron momentum s and for fixed 
frequencies of the electron lines in the same direction we 
obtain the correlator KZ,: (s). For a small momentum 
transfer q and for fixed frequencies of the electron lines with 
the opposite direction of the momentum we obtain the corre- 
lator K (q). Elementary calculations (which are done in 

Appendix B for an excitonic insulator) show that at a small 
combined frequency w, = - w 2 4  the two correlators each 
have a pole of the diffusion type 

FIG. 2. Second-order perturbation theory for the current vertices Fh":, 
and F $ .  

K-+-L(q)  =K+--I ( q )  ( O / K I + R , ~ ~ ~ ) .  (23) 

At small, equal frequencies w, = w,+O these correlators are 
singular only near the M transition [see Eq. (B. I)]: 

K++-'(4) =K---'(q) =( ( r  1 +R22qZ). (24) 

Here 171 is the dimensionless distance from the transition 
point, and R ,,, are the diffusion and correlation lengths, 
which differ by 1~1R near the transition point and for simpli- 
city will henceforth be assumed equal to unity [see Eq. (B.3)]. 
In four-dimensional space the product of two correlators 
gives a logarithmic integration, so that after going over to the 
variable 

t=ln [qm2/max(q2, s2, 1 TI, @/a)'] 
we obtain the following system of equations: - 

-rkqj(i,2,3,4)=~!i(i,2,4,3)r,(2,3,1,4) 

- ? ~ ; ( i , 2 , 3 , 4 ) = F g ~ ( i , 2 , 4 , 3 ) r 3 ( i r 3 , 2 , 4 ) .  (25) 

Here and below r(1,2,3,4)=r(o, ,w, ,w3,w4),  and the values 
of the logarithmic variable tare identical for all the functions 
appearing in Eq. (25). 

Let us denote by ?;~b(w,,w,,w,,w,) and 
F$~(w,,w,,w,,w,) the two types of vertices for which the 
electron line of frequency w, joins current comer vertices a 
and 8. The electron line with frequency w,(w,) leaves (en- 
ters) the corner vertex a( f l  ). These vertices differ by the di- 
rection of the electron line w,. Equations are easily written 
for these vertices if one first writes out the diagrams contain- 
ing every kind of product of two correlation functions (see 
Fig. 3): 

+ri;) (i ,  2,3, 4 ) r 3 ( 3 ,  2,3, 4 ) + r i i 1  ( I ,  2 , t  4 ) r & ( z 7  3 , 4 , 1 ) .  

(26'4 

Equation (26b) is found with the aid of Fig. 3 after reversing 
the direction of the line with frequency w,. 

FIG. 3. Second-order perturbation theory for the current vertex Fs. 
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FIG. 4. First-order perturbation theory for the corner vertex .Fa'(1,2). 

The equations for the scalar tetragonal vertices T, have 
a somewhat more complex form. However, these equations 
do not contain the current vertices, and so their derivation 
and solution have been relegated to Appendices A, B, and C. 

By applying the Ward identity to the inverse correlation 
functions, one can express the corrections to the diffusion 
coefficient and to the metallic order parameter in terms of 
the so-called corner vertices P ) (w , ,w , ) .  The vertex 
P ) ( 0 , , w 2 )  is an irreducible set of diagrams (in the sense that 
they cannot be divided into two parts which are joined by 
two electron lines) having two incoming electron lines on one 
side and two outgoing electron lines on the other. The corner 
vertex Y@)(ol,w,) differs from p ' (w l ,w2)  in that the direc- 
tion of the second electron line is reversed. 

We obtain the equations for P ) ( w  ,,o,) with the aid of 
first-order perturbation theory (see Fig. 4): 

-&-(a) (I,  2) 

=r2(2, 2, I, 2) T(C) (2, 2)+r2(1, I, 2, I)T(=) (I,  I) 

It follows from the definition that the vertex parts 7'") and 
7@) are symmetric functions of their arguments. The com- 
mon coefficient on the right-hand sides of Eqs. (22)-(24) is 
assumed equal to unity; this means that all the scalar tetra- 
gonal vertices rk have been rendered dimensionless by the 
same positive constant. 

B. Evaluation of the critical exponent A 

A study (given in Appendix C) of the equation for rk 
shows that two types of solutions exist. One of these, the 
most symmetric, is the " + " model, in which all the rk are 
identical. The other solution, the " - " model, corresponds 
to the solution rl = r2 = - r3 = r 4 ,  which is less symmet- 
ric but more   table,^ since in the case of identical, small fre- 
quency arguments it asymptotically approaches a stable cen- 
ter. In both cases the vertices r, are expressed in terms of 
vertexr, and share with it a cyclic invariance with respect to 
the frequency arguments. 

Let us consider the solutions of Eqs. (25)-(27) for the 
case w k 4  * , which corresponds to the static values of the 
kinetic coefficients in the limit as T-0. 

It is convenient to introduce the following notation: 

The ellipses stand for equations obtained by cyclic permuta- 
tion of the arguments. For fixed r the equations for the cur- 
rent and corner vertices separate into four pairs of indepen- 
dent linear differential equations. All the antisymmetric 
combinations made up of each pair are expressed in terms of 
one another and will be asusmed equal to zero; forgoing of 
this assumption does not give qualitatively new results. With 
these considerations in mind, let us define four unknown 
functions: 

(b ) ~aB='/Z[f(c$' (+, -1 -3 +) +f a8 (+, -1 +, -1 11 
lb l 

(29) 
raa=rJ,"4(+, -, -, -)=rae (+, -, -, -), 

g=T(.) (+, +) = p a )  (+, +) =T(.' (-, -) = r ( c l  (-, -), 
F = r ( a )  (+, -) = T ( c '  (+, -) . 

Equations (25)-(27) are thereby transformed to the follow- 
ing: 

-fag=*~raB, --I~,B= (2*1) Ara~+Bi'a~; - 
-&= (2rtl) A T ,  -?=~BT*DT. 

(30) 

The f signs correspond to the " f " models. The corner 
vertex parts are derivatives of the inverse correlation func- 
tions. For this reason the vertex part 7 governs the correc- 
tions to the metallic order parameter G3, while the corner 
vertex part 9 detgermines the diffusion coefficient 

~mal5 - .  (31) 

Comparison with perturbation theory shows that the second 
derivative of the conductivity with respect to the order pa- 
rameter Z, is given by a linear combination of current vertices 

,s20/,sa~--rk;) =rap-2rg8. (32) 

It is shown in Appendices B and C that two types of solutions 
correspond in the " + " model to fixed singular points whose 
coordinates can be reconciled with perturbation theory, 
namely 

A=B=-C=D, A=Ao(l+SAot)-' (33') 

and - 

In the " - " model there is just one singular point, which 
corresponds to solution (337, but with A = Ao(l + A,t ) - I .  

The quantity A, is positive and hereafter will, for simplicity, 
be assumed equal to unity. Let us write out the solutions of 
Eqs. (30) for the " + " model: 

rae=ras (0) A"", T=T (0) A", 
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Herec = C/A,b = B/A,andd = D/A.Inthespaceof4 - E  

dimensions and close to the transition point the variable t 
should be replaced by Irl-"", so that as 1r)-+O 

It is easy to see that the final results (35) can be reconciled 
with the Einstein relation (1) if the solution is Eq. (33') with 
b = - c = d = 1. Using the results of Ref. 3, according to 
which P = 1/2 - ~ / 6 ,  we obtain with the aid of (31) and 
(32): 

* ~ v ~ l C = m  ( 7 1 L ( T I '/~-elB, 

12 ( -"/IS- I 7  I 1-'C"3? 
( ( -s/l8, 1 1 K-zt19. (36) 

In precisely the same way we determine the critical expo- 
nents in the " - " model: 

Allowance for a dependence of the In A type obviously ex- 
ceeds the accuracy of the parquet approximation used here. 
For this reason the last term in (37) should be discarded. 
With this remark in mind, we find the critical exponents 
(according to Ref. 3, in the " - " model P = 1/2) 

*-v-Xa, ( 7 1 %, 1 1 '++, D- I 7 1 'b+elz. (38) 

This last result obviously satisfies the Einstein relation, and 
formulas (36) and (38) solve the problem posed in this paper. 

3. CONCLUSION 

We have thus seen that one can make the rather impor- 
tant qualitative assertion that it is in the region of "mini- 
mum" conductivity that correlation effects are important. 
In this region as ~ + l  the " - " model, in terms of its critical 
exponents, approaches percolation t h e ~ r y , ~  for which 
a- 1 ~ 1 ~ ~ ~ ;  the more abrupt " + " model gives results which 
are close to the experimental data for disordered semicon- 
duc to r~ , ' ~~"  for which oz 17) 'IZ. In the region of applicabi- 
lity of the self-consistent-field method we have o- 171, and 
our results coincide with one of the limiting cases of the mod- 
ern theory of localization. " 

As for the experiments near the M-transition point, the 
determination of the critical exponents is masked by fluctu- 
ations deriving from the structural instability accompanying 
the transition to the insulating state. 

A well-known exception to this rule is the phase transi- 
tion in the isovalent solid solution Ni(Sex S, -, ), (Ref. 13) 
and, in particular, in NiS, (Ref. 14). The electronic structure 
of this compound is such that at any x the conduction band is 
exactly half filled. At the transition point there is an ex- 
tremely slight change in the volume of the pyrite-type unit 

cell'' (without a change in shape). This change for T = 0 is 
accompanied by a change in the resistivity by not less than 
three orders of magnitude.I6 As a result, the conductivity 
turns out to be of the order of 10 (f2.cm)-'-significantly 
below its "minimum" value. The question of which of the 
models-the percolation, " + ", or " - " model--describes 
this transition should be settled by low-temeperature experi- 
mental measurements of the critical exponents. 

The author is indebeted to M. I. Dushenat for assistance 
in the numericaI calculations. 

APPENDIX A 

Equations for the scalar vertices 

The vertex parts rk for arbitrary frequencies are de- 
fined in absolute correspondence with their description for 
all positive The vertex parts TI are the same as the cur- 
rent vertices p s ,  but with the density operators replaced by 
unity: Here the vertex r,(wl,w2,w3,w4) is invariant with re- 
spect to cyclic permutations of its arguments. For a fixed 
direction of going around along the electron lines, the direc- 
tion of the momentum of the electron line with frequency w, 
at the vertices r2(wl,w2,w3,w4) is opposite to the direction of 
the momentum of all the other lines. The vertex part 
r3(wl,w2,w3,w4) differs from T, by the interchange of the 
directions of the electron lines with the third and fourth fre- 
quency arguments. The vertex part I',(o,,o,,o,,w,) differs 
from r, in a similar way, but for the lines of the second and 
fourth arguments. Here r, is invariant with respect to a dou- 
ble cyclic permutation. 

For every given type of diagram there is a definite se- 
quential arrangement of the momenta of the electron lines. 
Therefore, to write down the equations it is sufficient to 
sketch the various types of second-order diagrams with the 
electron lines in the direction corresponding to the given 
type of diagram, and then do a cyclic permutation of the 
indices of the ok . For example, for a vertex of the first type, 
rl(wl,w2,03,w4), we have the 3 types of diagrams shown in 
Fig. 5. In diagrams 5a,b it is necessary to do a four-fold cyclic 
permutation (CP) of w,, a,, w,, and w,. One is readily con- 
vinced that in diagram 5c this permutation leads to a topolo- 
gically equivalent diagram of the same form. After trans- 
forming to the logarithmic variable we obtain the following: 

Here and below rk(1,2,3,4)~rk(wl,w2,~3,~4). We obtain 
the remaining four equations by changing the direction of 
one or two of the electorn lines. Here, however, it is neces- 
sary to sketch and then write out each of the nine diagrams of 
second-order perturbation theory: 
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- - 
FIG. 5. Skeleton diagrams of second-order perturbation 
theory for the scalar vertex I',. 

={[r,(i, 2, 2, 4)r2(2, 2, 4, 3)+r3(1, 2, 3, l ) r ? ( l ,  4, 3, 1) 

+rz ( i ,  4, 3, 2)r2(2, 1, 2, 3)+r2(2, 1, 4, 3)r2(1, 4, 1, 211 Kc-' (Q) =4nvor I I - 2r  (a2+  d2) ' 
+[(1, 2, 3, 4)+(4, 3, 2, l)])+r3(1, 3, 2, 4)I'*(l, 2, 4, 3); 

(A.3) 
where 

={[r , ( i ,2 ,4 ,4)r , (3 ,4 ,4 ,2)+r2( i ,4 ,3 ,2)r3(3 ,4 ,3 ,2)1  vm= z b  (kP) (5J ak 2 , vo = 8 ( tp) .  

+[(I,  2, 3, 4)+(2, 1, 3, 4)]+[(1, 2, 3, 4)+(4, 3, 2, 111 P P 

+ [ (1, 2, 3, 4) + (3, 4, 1, 2)])+r,(i, 2, 4, 3) r6 (1, 3, 2, 4) ; Using these formulas, let us write an expression for the ver- 
tex part of all w 4  + : 

(A.4) 

(A.4') - - nvo" { 4 ~ 2 - p +  9nvoa2 A2 
(a2+A2) ' I 2  (*2+&2)" 

[K.(s) + ~ . ( q )  1). 
The two additional symmetry relations (A.3') and (A.4') can (B.2) 
be obtained by changing the direciton "going around Correlators of the diffusion type are made up of ladder dia- 
the electron lines. grams with two electron lines whose frequencies are of oppo- 

Using all the relations and the cyclic invariance of the site sign: 
vertex r , ,  one can conclude that Eqs. (A. 1)-(A.4) admit the 
solutions rl = r2 = r, = r , ,  i.e., the " + " model, and Kg-$ (Q) =4nv0z 

1 
{ I- 2 r  (a2+A2) WQ~}, rl = r2 = - r3 = r 4 ,  i.e., the " - " model. These models 

are examined separately below for the case of extremely low vm (B.3) 
Rz2= 

frequencies. 8 z v , d ( ~ ~ + A ~ )  a ' 

APPENDIX B The vertex parts of the B type have three frequencies of the 
Initial conditions for the " + " model same sign and one frequency of the opposite sign. One must 

In this model all the results are independent of the di- therefore evaluate the following two quantities: 

rection of the electron momenta. The eight-point vertices nvo (28'-a2) 
depend on both the total momentum s and on the momen- S P G ~ ~ ( ~ ) ' - ~ ( ~ ) =  2(a2+b2)~. 7 

tum transfer q. In perturbation theory their analytical u 

expression is determined by the three diagrams shown in 
Fig. 6. The wavy lines represent the ladder sums: Kc for 
frequencies of the same sign and Kg for frequencies of oppo- 
site sign. In the theory of a nonideal excitonic insulator one 
associates with each closed tetragon (or triangle) the trace of 
the four (or three) electron Green functions, and this trace 
must then be integrated over the internal electron momen- 

n-#.w +I 
tum. 

Using the expression for the Green function of FIG. 6. Averaging of scalar vertices in zeroth order of perturbation the- 
an excitonic insulator (7), we obtain for all frequencies of the ory. 
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SP GoZ(p) G-. (p) = - ~ p z  G-.'(p) G. (p) 

Using (B.3) and (B.4), we find the vertex part of the B type for, 
the particular case - w, = w, = w, = w, = w :  

For zero total momentum 

K,(O) = (az+B2) %/2nvOa2, 

so that in this limit 

The vertex part A, (s,q) has an analogous feature; for this 
part 

A m  (0, q) =Am (q, 0) 

In the oppositelimiting case, R 'Q 2-+ UI , and also in the insu- 
lating phase, where Z(0) = 0, the two vertex parts are equal 
and negative. The C and D vertices are evaluated in a com- 
pletely analogous way. First we find 

and then, with the aid of (B.4) and Fig. 1, we determine the 
dependence on the total momentum and momentum trans- 
fer: 

(B. 10) 

It follows from these formulas that vertex Cis always nega- 
tive, while vertex D is negative and vanishes as s, q+O. For 
the far metallic region this property of the vertex D was dis- 
covered in Ref. 17. In the Hubbard model and the model of a 
binary solid solution the scalar vertices have the following 
properties which will be important later: C < 0 everywhere, 
A > 0 and B > 0 in the metallic phase. 

APPENDIX C 

1. Stability of the " + " model 

After passing to the limit w , 4  f we introduce the 
notation (28) in equations (A. 1)-(A.4). As a result, we obtain 
the following system of equations: 

-A=9A2, -8=3AB+ 4B2+CZ+DB, 
(C. 1) 

-C=8BC+DC, -B=4 BZiC2+4D2. 

This system admits the solution CEO, so that the C = 0 
plane is the separatrix. The initial conditions give C < 0, so 
that all the physical solutions are found in the region of nega- 
tive C, while the singular points lying on the C = 0 plane and 
in the region C > 0 are inaccessible under the initial condi- 
tions (B. 10). For studying system (C. 1) in the region C < 0, it 
is convenient to change to the variables 

x=-AIC, y=-BIC, z=-D/C, 

in which 

In the new variables the plane x = 0 is the separatrix, and it 
can be shown that on this plane there are no real singular 
points. For x $0 there are four singular points: 

P,'*& (I, 1, I), P:*'=* (44/9~15;9/21/15; 8/1'15). (c.4) 

According to (B.6), in the metallic phase and at small total 
momentum and momentum transfer, the vertex part A > 0. 
The opposite inequality holds throughout the entire exis- 
tence region of the insulating phase. Therefore, the region of 
interest to us, x > 0, can be called the metallic region. In this 
region there are only two singular points, P I + )  and Pi+). 
The point P\+ ) is a saddle point in the xy plane at z = l(R ( 2  
= 3,R (! = - 7); the direction parallel to the z axis is the 
proper direction (A L') = + 2); the characteristic equation 
corresponding to the point P k f )  is of the form 
R + 8.977R ' - 9.103R - 53.068 = 0, from which we find 

h!"=2.573, 1:'' =-2.207, as'') =-9.343. (C.5) 

2. Stability of " - " model 

Let us set r, = r2 = - r, = r4 in Eqs. (A. 1)-(A.4), 
and then pass to the limit w, -+O ~fr . Using the same notation 
as before (28), we obtain the equations for the " - " model: 

The C = 0 plane is the separatrix, and therefore for 
C < 0 we again change to the variables given in (C.2): 

~X/~S=XZ-x2 ,  a y i i l ~ = 2 ~ ~ - i - - ~ ~ ,  (C.7) 

dz/ds=5zz-4yz-1, a$/ds=$z. 

On the separatrix plane x = 0 we find two unstable centers: 
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In the region of interest, the metallic region x > 0, there is 
just one saddle-type singular point Q, = (1,1,1) with two 
positive and one negative eigenvalues: 

The third point Q, = ( - 1, - 1, - 1) has the same eigenval- 
ues but is found in the insulator-phase region (x < 0). 
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