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The interaction between phonons and two-level systems in amorphous dielectrics is investigated 
with account taken of the multiphonon mechanism of the fluctuational preparation of the barrier. 
The analysis is carried out at an arbitrary ratio of the asymmetry parameter E, of the two-level 
system with the probability amplitude A of the coherent tunnel transition. It is shown that the 
previously obtained results for ultrasound damping and thermal conductivity in the E, >A ap- 
proximation remain valid in the general case. The temperature dependence of the renormaliza- 
tion of the speed of sound in glasses is obtained. The causes of the large negative Griineisen 
coefficient are explained. 

PACS numbers: 63.20.Hp, 66.70. + f, 65.70. + y, 43.35.Cg 

1. INTRODUCTION 

According to the prevailing viewpoint, the principal 
role in kinetic processes that take place in dielectric glasses 
are played by the so-called two-level systems (TLS) first in- 
troduced by Phillips1 and by Anderson et al.' for the descrip- 
tion of anomalies in the low-temperature behavior of the 
heat capacity and thermal conductivity of amorphous die- 
lectrics. It became possible subsequently to use this mecha- 
nism to explain a large group of phenomena observed in 
glasses not only at low (helium and lower) but also at rela- 
tively high temperatures. The main results obtained by now 
on this subject are described in detail in a collection of review 
articles edited by Phil l ip~,~ and also in a survey by Smolya- 
kov and Khaim~vich.~ However, notwithstanding the con- 
siderable progress, the general status of the theory can still 
not be regarded as fully satisfactory. This pertains in parti- 
cular to low temperatures. A number of difficulties encoun- 
tered in the investigation of high-temperature thermal con- 
ductivity were pointed out, for example, by Anderson.' It is 
likewise difficult to explain within the framework of this 
scheme the negative value of the Griineisen coefficient and 
its temperature dependen~e.~ 

In recent we pointed out that the one-phonon 
approximation, which is customarily used in the theory of 
phonon interaction with TLS and of relaxation processes in 
TLS, 1-3.9.1 I does not provide an adequate description. The 

point is that in tunneling of a heavy particle in a TLS a signif- 
icant role is played by the mechanism of fluctuational prep- 
aration of the barrier,''-l4 a mechanism that leads at low 
temperatures to a strong (by several orders) renormalization 
of the rate constant of the tunneling transition, and at com- 
paratively high temperatures (above those of liquid helium) 
it leads to the appearance of a strong nonmonotonic depen- 
dence. 

In Refs. 7 and 8, two substantial simplifying assump- 
tions were made, capable in principle of strongly restricting 
the applicability of the results. First, it was assumed that the 
amplitude A of the coherent tunnel transition is always small 
compared with the bare distance E, frequently called in the 
literature the TLS asymmetry parameter. Second, no ac- 
count was taken of the diagonal party of the phonon interac- 

tion with the TLS, corresponding to the change of E, on 
passage of the phonon wave. As a result, the theory in the 
form expounded in Refs. 7 and 8 does not allow us to go in 
the limit to the universally accepted ~cheme'-~.~-'l accord- 
ing to which the principal role is played by TLS with A>&, . 
In addition, by disregarding the diagonal part of the interac- 
tion we discard by the same token the incoherent transi- 
t i o n ~ , ' ~ . ' ~  which in the case A SE, can play the decisive role. 
As will be shown below, the latter is valid if one deals with 
single-phonon transitions. 

In the present paper we forgo the two aforementioned 
assumptions and construct a theory in which account is tak- 
en of both the diagonal and nondiagonal process, and which 
holds at an arbitrary ratio of the parameters E, and A. The 
arguments concerning the role of the mechanism of the fluc- 
tuational preparation of the barrier in kinetic processes in 
glasses, which were set forth in Refs. 7 and 8, will play as 
before the principal role in the reasoning. In addition, we do 
not confine ourselves here to the imaginary part of the polar- 
ization operator for the phonons in an amorphous medium, 
the part responsible for the ultrasound damping, but analyze 
also its real part. This makes it possible to find the tempera- 
ture dependence of the renormalization of the sound velocity 
in a wide range of temperatures, and also calculate the tem- 
perature dependence of the Griineisen coefficient, which is 
an important experimentally observable characteristic of the 
elastic properties of the medium. 

2. MULTIPHONON TRANSITIONS IN TWO LEVEL SYSTEMS 

When speaking of two-level systems we shall bear in 
mind, as usual, that in an amorphous substance certain 
atoms or molecules can tunnel between states that are close 
in energy. Just as in Refs. 7 and 8, we shall assume that the 
characteristic frequency v of the motion of the tunneling 
particle exceeds the characteristic phonon frequencies a,. 
We consider an individual TLS interacting with the vibra- 
tions of the medium. It can be described by the Hamiltonian 
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HereH,, (I{, 1 is the Hamiltonian of the phonon subsystem, 
and {,, are the normal coordinates of the phonon oscilla- 
tions; ai + and ai are quasifermion creation and annihilation 
operators. The matrix element of the nondiagonal tunnel 
transitions between two states 1 and 2 has the following 
structure: 

A( {L)) =Av exp[--'/zJ( {&))I. (2). 
Since the tunneling particle must be located either in well 1 
or in well 2, some quasifermion state, 1 or 2, is always excit- 
ed, and consequently we have the relation 

We can use this relation to transform the Hamiltonian (1) 
into 

where c, + and c, are the phonon creation and annihilation 
operators. We confine ourselves here right to terms linear in 
f, in the expansion of the function E,({g,)) - E,({l,,}). 
Then 

gP= iB, (A/2MNoP) " (e,q,) , (4) 

where e, , e,, and w, are repectively the polarization vector, 
the wave vector, and the frequency, all corresponding to the 
phonon modep, while BE is a constant that characterizes the 
coupling of the TLS with the phonons for an interaction that 
is diagonal in the number of the well. The first term in the 
Hamiltonian (3) can lead only to an insignificant renormal- 
ization of the phonon spectrum, which we shall disregard 
hereafter. 

The analysis of the nondiagonal processes accompanied 
by tunneling of the particle from one well to another must be 
carried out with allowance for the multiphonon effects.'.' 
When calculating the amplitude of a coherent transition 
between the wells it is necessary to sum the series corre- 
sponding to the diagram of Fig. 1. The indices a and P indi- 
cate the number of the well in which the particle is located, 
and in the present case it is assumed that a #P. The unshad- 
ed circle of Fig. 1 corresponds to the amplitude 

Ao-Av exp(-'12Jo), 

which is obtained from (2) at equilibrium values of the 
phonon coordinates, i.e., f, = 0. As a result of the summa- 
tion of the diagrams of Fig. 1, the argument Jo of the expo- 
nential becomes renormalized and we obtain the amplitude 
of the coherent tunnel transitions 

A, (T) =Av exp [-'/,r (T) 1, ( 5 )  

where J *(T) = Jo - J,(T). The temperature dependent 
function J , (T)  reflects the circumstance that real tunneling 

takes place not when the phonon subsystem is at equlibrium, 
but only at those instants of time when the system fluctu- 
ations lower the potential barrier substantially. It is this 
mechanism which is known as the mechanism of fluctua- 
tional preparation of the barriers.'' Approximate equations 
for the function J , (T)  can be found in Ref. 8 (see also Eqs. (22) 
and (33)). 

We shall be interested below in processes at an arbitrary 
ratio of the asymmetry parameter E, and the coherent-tran- 
sition amplitude A ,(T). It is convenient to carry out the cal- 
culations in this case using the Keldysh diagram tech- 
nique.16 

The bare retarded Green function 

G ~ ~ ~ ' =  (e-~~+i6)- '6~p, ea=rs,,/2 (6) 

is diagonal in the well indices a and 8. But on account of the 
coherent processes that are nondiagonal in this index (see 
Fig. 1) this function is renormalized into a nondiagonal ma- 
trix of Green functions G ~ ~ ~ .  Dyson's equations for the ele- 
ments of this matrix are written in the form 

Solving these equations, we obtain 

G,,'= [E-E,-A,~(T)/(E+ ~ a )  +is] -', (7) 

The matrtix (8) is diagonalized with the aid of the transfor- 
mation 

As a result we obtain a matrix of Green functions 

Gasr= (E- is) -'6,p, (10) 

that depend explicitly on the renormalized particle energy in 
the TLS 

We note that a canonical transformation similar in form to 
the transformation (9) is used to diagonalize a Hamiltonian 
of the type (3) in the one-phonon appro~imation,'~ but A ,(T), 
must then be replaced by A,. To obtain in the new represen- 
tation the interaction amplitude it is necessary to apply the 
transformation (9) to the amplitude matrix 

FIG. 1 .  Amplitude of coherent transition in a TLS. The wavy lines 
denote phonon Green functions, the straight lines the Green func- - = - +  Q+a + . . - tions of quasifermion TLS excitations. 

a P a ,fl " P a P 
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The result can be written in the following form: the diagonal rectly connected with one of the elements of the mass-oper- 
amplitudes without change of the index a :  tor matrix elements: 

x,+=-if ( E ) ~ / T ,  
A ( { W ) ,  a d e  gw(cp++c,)E+r (I2) where 

and the nondiagonal with change of the index a :  f ( E )  = (l+es"-', 8-'=ksT. 

in accord with the form of the diagrams of Fig. 2, out of the 
Q m = -  &p(cp++cN)p * (  A )  3, entire set of the Green functions, in the Keldysh technique AE AE 

II the expression for H ,+ will contain only one quasifermion 

If we confine ourselves in (12) and (13) to the one- function 
phonon approximation, we obtain the expressions used in G,+ (E) =-if ( E )  Im Gar(&) (16) 
the traditional TLS theory (see, e.g., Eqs. (32) and (34) of Ref. and one phonon function 
11). At the same time, the results of Refs 7 and 8 were ob- 
tained under the assumptions g, = 0 and A ](T)(E, when D,+ ( a )  =--'lziF ( a )  [6 (a-a,)  -6 (@+au) 1, (17) 

the principal role is played by the second term in (13). where 

3. RELAXATION IN TWO LEVEL SYSTEMS AND PHONON 
DAMPING 

In this section we consider the central questions of the 
theory: the relaxation of the excited state of a TLD and the 
damping of phonons as a result of their scattering by the TLS 
with account taken of the multiphonon character of these 
processes. As we shall show below, the results of the analysis 
in Ref. 8 remain in the main valid also in the general case 
considered here. We shall dwell therefore only on the 
changes due to disregard of the approximations g, = 0, 
AI(T)4&, . 

We consider first the temperature dependence of the 
reciprocal TLS relaxation time. To this end we must find the 
expression corresponding to the diagrams shown in Fig. 2. 
When calculating the mass operator corresponding to a dia- 
gram with n phonon lines, we must substitute as the vertices 
the nth derivative of the amplitude (12) or (1 3) with respect to 
the phonon variables. The first terms, proportional to g, 
make no contribution in this case to the vertices of order 
higher than the first (n)2) In addition, it can be easily seen 
that in each concrete diagram both vertices should be simul- 
taneously either diagonal or, conversely, nondiagonal in the 
indices a and P. The physically observable quantities, as a 
rule, contain the value of the mass operator of Fig. 2, calcu- 
lated on the mass shell. Therefore, by virtue of the energy 
conservation law 

it is necessary to confine oneself in the calculation of the 
corresponding diagram for the process in Fig. 2a to the con- 
tribution of the nondiagonal processes. No such restriction 
applies to the remaining diagrams of Fig. 2, for now the left- 
hand side of (14) contains a sum of several phonon particles. 

To calculate the reciprocal relaxation time it is neces- 
sary to find the imaginary part of the mass operator 2, (Fig. 
2). In the Keldysh diagram techniqueI6 the damping is di- 

F ( a )  = (ePm-i) -'. 

As shown in Ref. 8, the need for taking into account the 
multiphonon processes arises only starting with a certain 
characteristic temperature T,, which is usually of the order 
of the helium temperature. At lower temperature the one- 
phonon approximation is sufficient (diagam 2a). Then, if it is 
assumed that A ,(T)>E,, the main contribution to the TLS 
relaxation is due to the first term in (13), which in this case 
does not depend on A ,(T) at all. Expressing in standard fash- 
i o n 2  in terms of the Green functions (16) and (17) and the 
vertex (13), we obtain for the reciprocal damping time an 
expression that coincides with the corresponding expres- 
sions in Refs. 1-3 and 9-11. In the opposite case 
A ](T)(E, ,g,, = 0 we obtain the result of Ref. 8. 

The situation is more complicated at T >  T,, when the 
multiphonon processes Figs. 2b, c, etc., become important. 
Taking into account the adiabatic approximation in the pa- 
rameter w , / ~ (  l, the general expression for the sum of the 
contributions of the nondiagonal processes is of the form 

l/~a=KtZ+Kz1, (18) 

where 

i and f are the indices of the initial and final states of the 
phonon substem, the symbol Av, stands for averaging over 
the initial states of the phonon subsystem. An expression 
such as (19) in the limit g, = 0 and A ,(T )(E, was discussed 
in Ref. 8. To obtain the contribuGon l/zd of the diagonal 
process it is necessary to replace M, by Md in (19) and put 
Ed = 0. 

The bare diagonal processes (4) contribute only to the 
one-phonon diagram 2a. At T >  T,, however, the damping is 
due mainly to the multiphonon diagrams that do not contain 

FIG. 2. Diagrams for the mass operator of quasifermion excita- 
tions of TLS. The thick straight lines denote the renormalized 
Green functions (10). 

a b C 
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g. We can therefore put right away g = 0 in (12) and (13) and 
calculate I/?-, and l/rd exactly as we calculated the recipro- 
cal ultrasound damping length in the multiphonon limit 
T >  The expressions for 1/r, and l/rd will then differ 
from the expression for the reciprocal ultrasound damping 
length 1; '(AE ) (prior to averaging over the parameter AE ) 
only in the absence of the factor 2 sinh@hl /2) and in the 
presence of factors due to the more complicated forms of 
matrix elements (12) and (13) of the TLS interaction with the 
phonons (a, is the ultrasound frequency). 

For the nondiagonal processes 

and for the diagonal processes 

As a result we have 

The expression for l[r(O' can be found here with the aid of 
(1 8) and (1 9) in which M, is replaced by A ((gp ) ) andAE = 0. 

In Ref. 8 we carried out the calculations in two approxi- 
mations. In one case we retained in A ( ( &  1 )  only the terms 
linear in go in the expansion J ( (gp ] ); then (cf. Eq. (25) in Ref. 
8) 

l l ~ ' ~ ' - - A v ~  [ 2 d F  (T)] l h  exp [ -Jo+Jz  (T)] , (21) 

where 

In the second case one can retain also the derivatives of 
the function J ((Jp ] ), but it is necessary to confine oneself to 
the Einstein model for the phonon spectrum with character- 
istic frequency 0; the (cf. Eq. (7) in Ref. 8) 

where 

cpi='/,R[th(!3hQ/4) +'/zRi]-', Ji (T) =cpi ( l - ~ z ) ,  

dJ  d I"=- fil'" R = -  
hP 

If=- R1=- 
d AR' d ARZ' MQ ' MQ ' 

M is the characteristic mass that determines the phonon sec- 
trum of the glass, AR is the width of the potential barrier in 
the TLS, Io(x) is a Bessel function of imaginary argument. 
We shall return to a more detailed discussion of the calcula- 

tions that lead to (21) and (22) later in the analysis of the 
renormalization of the speed of sound on account of its scat- 
tering by the TLS. 

We shall not dwell here in detail on a discussion of the 
features of the l/?(T) dependence that follows from Eqs. (20) 
and (21)' since an analysis of similar equations for the reci- 
procal length was carried out in Ref. 8. It was shown there 
that functions such as (20) and (2 1) go through a minimum at 
a relatively low temperatures (T,z 10 K), and then increase 
exponentially like l/r(T) o: exp(T/To). It must be noted that 
the depth of this minimum decreases with decreasing param- 
eter R. Therefore at relatively low values ofR the maximum 
at T, < T < T, and the minimum at T=. T2 may not exist at 
all. This is probably the situation in B202 and Zn(PO,), 
glasses, in which only a slightly observable step is seen at 
T z 5  K in the temperature dependence of the reciprocal un- 
trasound-damping length. l7  

The high-temperature behavior of l / r (T)  is poorly de- 
scribed by Eq. (20), and it is necessary to use (21), according 
to which l / r (T)  goes through a maximum at a temperature 
T, 2 50 K whose value depends strongly on the characteris- 
tics of the system. As already noted, the exponential growth 
l / r (T )  a exp(T/To), apparently manifest itself in the tem- 
perature dependence of the luminescence intensity in the 
glass g-As2S,. l8 

We proceed now to a discussion of the temperature de- 
pendence of the reciprocal ultrasound damping length l ;  '. 
In this case the calculation is perfectly analogous to the cal- 
culation of the temperature dependence of the relaxation 
time. We must calculate the imaginary part of the polariza- 
tion operator represented by the diagram of Fig. 3. Usually 
one singles out in the ultrasound damping two mechanisms: 
resonant and relaxational. Among the diagrams of Fig. 3, 
one diagram, 3a, corresponds to these processes. To verify 
this it suffices to find the polarization operator 

n,+(a) =-iF(a) A/z& (a). (23) 

Knowing the lifetime ?,(a) of a phonon with frequency w1 , 
we obtain the reciprocal ultrasound damping length with the 
aid of the formula 

lk-'= (TA (m) S) -', 
where s is the speed of sound. Then, if it is assumed that the 
vertices in the diagram 3a are the nondiagonal(13), we ob- 
tain for 1; ' an expression corresponding to the resonant 
mechanism. If, however, these vertices are diagonal, we ob- 
tain an expression corresponding to the relaxational mecha- 
nism. In the limit E, (Al(T) we obtain Eqs. (65) and (66) of 
Ref. 11. We note that in this case it is necessary to take into 
account the finite lifetime of the particle at the given TLS 
level, substituting in (6) and (16) the corresponding imagi- 
nary part. 

FIG. 3. Polarization operator of phonons in glass. 
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It is known" that at E, gA1(T) the relaxation mecha- 
nism makes in the low temperature limit a contribution pro- 
portional to T, to the ultrasound damping. A similar depen- 
dence at E,>A,(T) results also from the two-phonon 
processes of Fig. 3b (Refs. 7 and 8). The difference between 
these results can be experimentally deduced from the fre- 
quency dependence of 1, '. 

In the multiphonon regime at T >  TI the main contribu- 
tion to the ultrasound damping is connected with those dia- 
grams of Fig. 3 which have a large number of phonon lines. 
We can therefore neglect the bare diagonal processes and put 
g, = 0. The contribution of the nondiagonal processes (1 3) 
to the ultrasound damping for TLS with given AE is then 
described by the formula 

2n 
h-' (Ah') = - Av 

tis 
f 

where n(0) is the TLS density and AE, is the upper limit of 
the AE distribution. The symbol Av denotes thermodynam- 
ic averaging over the initial state of the TLS and of the 
phonon subsystem. The plus sign in front of h, is placed 
then if the ultrasound phonon h, is absorbed, and the mi- 
nus sign if it is emitted. The plus sign in front of AE corre- 
sponds to an increase of the TLS energy as a result of the 
interaction with the phonon, and the minus sign corresponds 
to a lowering of the TLS energy(see Fig. 2 in Ref. 7). The 
contribution of the diagonal processes (12) is obtained from 
(24) by substituting the operator Md for M,, and AE = 0. 

Equation (24) was analyzed in detail in Refs. 7 and 8 for 
the case Al(T)(&, . Now, however, we can find I;' in the 
general case with the aid of (12), (13), and (14). The ultra- 
sound damping due to the scatteirng by TLS with a definte 
value of AE is described by the expression (cf. the derivation 
of Eq. (20)) 

Here ( I f " ) - '  is the contribution made to the ultrasound 
damping by the scattering from the TLS with AE = 0 and 
obtained in the multiphonon regime in the approximation 
Al(T)(ea andg, = 0: 

where y = ?zZfiZR / 2 h ,  (see Ref. 8). We obtain the final re- 
sult by averaging (25) over AE, obtaining 

where 

A t ( T )  BAE BAE 
g ( T )  = 1 ~ A E [  1+8(-) s h y ]  ch-I - 

2At(T) 
AE 2 .  

Here E, ,,, is the upper limit of the distribution of the asym- 
metry parameter. The question of the distribution of the pa- 
rameter A,, and hence A ,(T), was already discussed by us in 
Ref. 8, where we adhered to the viewpoint that A, is bounded 
from below. This assumption is partially confirmed by the 
experimental results of the measurements of the time depen- 
dence of the heat capacity of a number of glasses at low tem- 
peratures.I9 It follows from the results of the latter paper 
that the distribution of A, is at any rate not uniform, al- 
though it can apparently not be regarded as 6-like. 

The integral (28) can be evaluated analytically in three 
limiting cases. First, atPA,(T) < 1 andPAE,(T) > 1 the inte- 
gration limits in (28) can be replaced by 0 and W .  We then 
obtain 

g ( T )  =nk,T+A12 ( T )  /2k,T, (29) 

which is valid apparently in the region of helium tempera- 
tures. Second, at PAE,(T) < 1 and &, ,, > 2A , (T )  we have 

-Ea mrrr. g ( T ) x A E o ( T ) -  (30) 

Finally, the third limiting case is realized also at high tem- 
peratures, when E, ,,, /2A '(T)( 1. Expanding (28) in powers 
of this small parameter we obtain the formula 

which gives ~ (T)=E~ , , , /A , (T) ,  at kBT<A,(T) and 
g(T)  = &~,,,/4A,(T) at k, T>A,(T). The question of just 
which situation, (30) or (3 I), is realized in the high-tempera- 
ture experiments cannot be answered in general. In both 
cases the reciprocal ultrasound-damping length (as well as 
the sound-velocity renormalization, See the next section 
reaches a maximum when the function J l ( T )  saturates [Eq. 
(22)l. After that, 1, ' begins to decrease because of the factor 
sinh (Bh,  /2) connected with the statistics of the level occu- 
pation. 

4. REAL PART OF THE POLARIZATION OPERATOR 

The sound-velocity corrections 6s due to the sound 
scattering by the TLS are connected with the damping by a 
Kronig-Kramers relation. It would therefore be possible to 
express 6s with the aid of the corresponding integral of the 
functions (27) with respect to frequency. Such a method was 
used in Ref. 20 at T <  TI. At T >  TI, however, the frequency 
dependence of the reciprocal ultrasound-damping length 
I; ' contains a factor s inhwh,  /2), and as a result this inte- 
gral diverges at D h ,  > 1. The region of such high frequen- 
cies has not yet been sufficiently well investigated (prelimi- 
nary results for the resonant and relaxational processes were 
published recently," and we shall therefore calculate the 
real part of the polarization operator directly from the dia- 
grams of Fig. 3. 

As shown in the preceding section, it is sufficient for us 
to know the polarization operator in the limit g, = 0, 
A ](T)(E,. The transition to the general case entails no diffi- 
culty. In this approximation the retarded polarization oper- 
ator corresponding to the sum of the diagram of Fig. 3 can be 
written in the form 
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It is easy to verify that Im II, ' = fil, /2s, and that Re II, ' is 
connected with Im IIA ' by the Kramers-Kronig relations 
and determines the renormalization of the phonon spectrum 
on account of their interaction with the TLS. 

To calculate the explicit form of (32) we shall use the 
same procedure as for the calculation of Im IIAr in Ref. 8. 
We use here the integral representation 

[*AE+Ei-El* (hoi+iG) I-' 

The total expression for II, ' contains four terms that differ 
in the signs of A E  and h, (see the discussion following Eq. 
(24)). Any of these terms can be calculated in accord with the 
scheme of Ref. 8. Taking for the sake of argument both signs 
positive, we obtain 

Here 

B;,,=aza( {t,,) ~ a ~ , a t , ~ ,  

B,,.='lzBpP~+26,,~ sh (pfia,/2) 

x{ch(pfiaP/2) +cos [ho,(u+iB/2)1)-: 

@,I= {6,.+' lBw, {ch ( pho J2) 

+cos [hoP(v+i~/2)]}sh-'(B~ov/2) 

X { ~ , ~ + ~ / ~ B ~ ,  {ch (PhoJ2) 

-cos [ho,(v+ip/2)] ) sh-' (phoJ2)). 

It is easy to verify that the imaginary part of (34) reduces to 
the corresponding expression in Ref. 8, for in this case the 
integration can be carried out from - w to + w and one 
can make the change of variable v + iP /2-+v. 

We shall analyze (34), as is customary, in two aproxima- 
tions. We assume first that gPP. = 0. Then 

+'c ~ A , , I ~ C O S  [ha, (v++)] 
8 

The exponential factor in front of the integral deter- 
mines the renormalization of the tunneling probability on 
account of the fluctuational preparation of the barrier (see 

Fig. 1). At low temperatures T <  T,, despite the large value 
of the parameter [A,  I - R, the integrand can be expanded in 
terms of R. The zeroth order term corresponds to resonant 
interaction (Fig. 3a). In this case the integral with respect to v 
can be calculated. Summing next the four contributions of 
type (33) with the corresponding statistical weights, we ob- 
tain for the sound-velocity renormalization the expression 

where 

AEdAE BAE 
th - 

At hA (AE, a n d a h ,  ( 1 for I ( T )  the expression 

Y (T) =ln (BAE,) . 

At T <  T, the sound-velocity renormalization has thus a 
logarithmic dependence on temperature. The transition to 
the case A , (T  )>E, can be effected with the aid of expression 
(13) for the amplitude of the nondiagonal interaction. As a 
result we arrive at the expressions previously obtained with- 
in the framework of the one-phonon theory2' (see also Ref. 
17). 

5. RENORMALIZATION OF THE SOUND VELOCITY IN THE 
MULTIPHONON REGIME 

Since the parameter R ~ 2 0 0  is large,' the one-phonon 
approximation becomes inapplicable for the calculation of 
the integral with respect to u in (35) even at relatively low 
temperatures (TI < 10 K). In Ref. 8 we calculated the imagi- 
nary part of this integral by the saddle-point method. The 
saddle point is obtained from the equation 

P 

(37) 
This method can be used upon satisfaction of the inequality 

BF (T) wAE+fi@, 
where 

and O is the Debye temperature. The solution of (37) is then 

u,=-ip/Z. (39) 

The direction of the path of steepest descent passes through 
the point v, parallel to the real axis. It is easy to verify that in 
the saddle-point approximation the integral (33) is pure 
imaginary. To go outside the framework of this approxima- 
tion and find the real part of (33) we proceed as follows. 

We replace in (33) the integration along the real nega- 
tive axis ( - W ,  0) by integration along the contour shown in 
Fig. 4 by the thick line. The imaginary part of the integral 
over the section ( - w + v,, v,), in the lowest order in the 
parameter R -'I2, corresponds to the saddle point approxi- 
mation. The contribution to the real part appears in the next 
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FIG. 4. Integration contour for the calculation of the integrals (35) and 
(45); v, = - $/2 is the saddle point. 

order in terms of the parameter, and is proportional to R - '. 
Making the change of variable z = v + iP /2, we obtain 

If T >  T,, the integral (40) converges at values of z satisfying 
the conditions 

The trigonometric functions can therefore be expanded ac- 
curate to terms quadratic in z. The integral (40) is now readi- 
ly evaluated. 

Re II"' 

- --- 7oiv.lrz 1 

2F(T) 
(AE+&wr) erp [ - l o + 1 2 ( ~ )  + Z- p (AE+hrL) ] , 

where 

TO find the complete expression for the real part of the 
polarization operator it is necessary to sum four terms of the 
type (41), which differ from one another in the signs of A E  
and f iwn, with appropriate statistical weights. As a result we 
arrive at the following expression for the renormalization of 
the sound velocity, connected with the TLS with the given 
value of AE: 

6s Re II'n (0) AE. 

The quantity Ss/s has an order of smallness R -'. Correc- 
tions of the same order arise in Re 17 "'because of the integral 
on the section (v,,O) of the contour (see Fig. 4). However, 
averaging over the initial states of the TLS, which makes it 
possible to go over from (41) to (42), cancels these corrections 
and their only contribution to the sound-velocity renormal- 
ization is small of order R -2. 

If we remain in the same approximation as in Refs. 7 
and 8 (g,, = 0, A ,(T)<E,), to obtain the final answer it suf- 
fices to average (42) over A E. The factor A Eo cosh - ' P A  E /2) 
in (42) is then replaced by rk, T. In the general case it is 
necessary to proceed as in the derivation of (27). As a result 
we have 

Gs/s=g(T) 6s ( 0 )  1s. (43) 

The approximation used in the derivative of (43) restricts its 
validity to temperatures lower than the characteristic tem- 
perature T3 at which the reciprocal ultrasound-damping 
length goes through the second maximum. We proceed 
therefore to derive for the sound-velocity renormalization 
an expression that would be valid also in this temperature 
region. 

At high temperatures (T- T3) the oscillations of the 
barrier width increase so much that Eq. (42) derived under 
the assumption gPP. = 0, no longer holds. We must there- 
fore return to Eq. (34) and analyze it now without this as- 
sumption. We must, however make instead other simplifica- 
tions. First, we assume that the phonon spectrum of the 
system is described by the Einstein model. At sufficiently 
high temperatures, when the restrictions connected with the 
occupation of the phonon states are relaxed, the main contri- 
bution to the fluctuational preparation of the barrier is made 
by the high-frequency part of the spectrum, which is quite 
satisfactorily described by this model. The Einstein model is 
best suited for the case of optical or local oscillation modes. 

Second, we assume that the function J ( (gp  ] ) really de- 
pends only on the two coordinates that determine the posi- 
tions of the minima of the TLS potential curve. We assume 
also that these two coordinates are simultaneously the nor- 
mal coordinates of the phonons. The indexp in (34) runs now 
through only two values, 1 and 2, and 

Substituting (44) in (34) we obtain 
0 

n(*)=i701vze-Jo J dv {det 6)-'* 

R 2 sh (BAS1/2) 
ch (PfiQ/2) +cos[AS2 ( v f  iB/2) ] 

The saddle point equation for the integral (45) 

s in[hCt(v+i~/2)  1 =O (46) 

allows us to conclude that the difference c o s [ ~  (v + iP/ 
2)] - 1 can be regarded as small. We can therefore transform 
(45) into 

+qiq2 cos [AS2 ( u  + % ) I } - .  
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The imaginary part of the integral (47) yields, after aver- 
aging over the initial states of the TLS and AE, an expression 
for the reciprocal ultrasound damping length's8 (cf. also Eq. 
(22) for the reciprocal TLS relaxation time). To find the real 
part of Z7"' we transform, just as in the analysis of (33), to 
integration along the contour shown in Fig. 4, and then con- 
fine ourselves to calculation of the integral along the semi- 
axis ( - co + vo,vo). From among all the roots of Eq. (46) we 
need retain only one, v, = - i f l / 2 ,  and carry out the integra- 
tion near this point. The remaining roots are unphysical and 
drop out as soon as we recognize that the phonon spectrum 
has in fact a nonzero width. As a result we arrive at the 
expression 

We now average (48) over the initial TLS states and sum the 
contributions of the diagonal (12) and nondiagonal(13) pro- 
cesses, and the average over AE. As a result we have 

6s - =-g(T) yo~v'n (0)  poi 
S 

exp[-Jo+cp, (TI lsh- 
2 ( B Q )  2cplcpzcps% 2 .  

(49) 
The further analysis of (40), (41), and (47) differs only in 

insignificant details from the analysis of the corresponding 
equations for the ultrasound-damping length in Refs. 7 and 
8. The general picture of the temperature dependence of the 
sound-velocity renormalization due to its scattering by the 
TLS is the following (see Fig. 5). At low temperatures 
( T <  TI) the absolute value l6sl of the renormalization de- 
creases with increasing temperature logarithmically [Eq. 
(34)] (see also Refs. 20 and 17). In this region, the main con- 
tribution is made by resonant scattering from TLS with 
AE> k,  T, in which the populations of the two levels still 
differ markedly. At T >  T ,  the multiphonon processes come 
into play and s is described by Eqs. (42), (43), and (49). As a 
result of the detuning from resonance (cf. Refs. 7 and 8) the 
absolute value lSsl continues to decrease, but now in accor- 
dance with a faster temperature dependence ( T  -6  in the ap- 
proximation (42) and exp@fiw,/4) in the approximation 
(49). The 16sl goes through a minimum at T z  T2 and begins 
to increase exponentially because of the increase in the am- 
plitude of the oscillations of the width of the potential bar- 

FIG. 5. Temperature dependence of the speed of sound. 

rier. At still higher temperatures, T z  T31Ssl reaches a maxi- 
mum. In this region become probable barrier fluctuations 
such that the barrier is lowered so much that the particle 
passes in fact above it. Further decrease with increasing tem- 
perature is ensured by the factor sinhpfiwA /2) (see the dis- 
cussion at the end of Sec. 3). This picture agrees on the whole 
with the experimental data cited in Ref. 17, except for the 
region of fast decrease 16sl with temperature at T, < T <  T,. 
This section is difficult to observe in experiment, possibly 
because it is very small. 

6. THE GFIljNElSEN COEFFICIENT 

To conclude this section we shall discuss the anomalous 
properties of the Gruneisen coefficnet y,, which are due to 
the contribution of the TLS. It is known that this coefficient 
characterizes the thermal expansion of matter and is con- 
nected with the derivative of the speed of sound with respect 
to the volume by the relation 

Y G = ~ / , - ~  In s/a III V. (50) 
When the substance is compressed, the barrier width in the 
TLS increases, and this alters greatly the renormalization of 
the speed of sound. The interaction between the sound wave 
and the TLS becomes stronger and the speed of sound de- 
creases, so that this mechanism makes a negative contribu- 
tion to the Gruneisen coefficient. 

We substitute (49) in (50). We take it into account here 
that R)R, and neglect the third derivatives d 3J/dAR 3. 

Then 

(51) 
where a is the characteristic interatomic distance. If we use 
(43) in place of (49), we obtain an expression similar to (49) 
but with R, = 0. Although the sound-velocity renormaliza- 
tion is by itself small: (Ss/sl- lop2 (see, e.g., Ref. 6), it is 
preceded in (51) by a large factor, on the order of several 
hundred. As a result, the Gruneisen coefficient turns out to 
be negative and can noticeably exceed unity in absolute val- 
ue, as is indeed observed in experiment. Equation (5 1) also 
describes correctly the low-temperature behavior of the co- 
efficient y,(T), where it decreases, just as ISs/sl, and ap- 
proaches zero asymptotically. This, unfortunately, cannot 
be said concerning the region of lower temperatures (=: 10 
K), so that an additional analysis is needed here. 

7. CONCLUSION 

The results obtained in the present paper, as well as in 
the two preceding make it possible to explain a large 
number of experimental facts involving the temperature de- 
pendence of a number of kinetic coefficients in amorphous 
dielectrics in practically the entire range of temperatures in 
which glass can exist. Despite the rather detailed exposition 
of the calculation results, it is necessary to discuss separately 
the basic assumptions made in the calculations. 
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FIG. 6. 

It is assumed throughout that the frequency of the tun- 
neling particle is higher than the frequency of variation of 
the shape of the TLS potential. Strictly speaking, this as- 
sumption pertains not only to the multiphonon theory devel- 
oped above, but also to the standard one-phonon the- 
ory- I In the opposite case it would be difficult to justify 
the separation of the phonon and intrawell degrees of free- 
dom. In our case this assumption is necessary also to make 
the time of passage of the particle below the barrier shorter 
than the time of change of the barrier shape. The latter can in 
this case be regarded as static. 

It is difficult to assess at present the degree to which this 
is justified for actually existing glasses, since we do not know 
which of the numerous presently existing microscopic mod- 
els actually describe a two-level system. The adiabatic ap- 
proximation should apparently be well satisfied in the TLS 
model proposed by Phillips.22 In this case the change of the 
form of the TLS potential is due mainly to the relatively low- 
frequency oscillations of heavy clusters. If, on the other 
hand, some other TLS models are valid, the situation can be 
more complicated. In this case, however, a distinction must 
be made between the contribution of the zero-point oscilla- 
tions and the thermal excitations. The former determine the 
renormalizations of constants which after all are taken from 
experiment. On the other hand, all the temperature depen- 
dences discussed above are connected with the contribution 
of thermal excitations, for which it suffices to require satis- 
faction of the weaker condition k, T < Civ. 

Besides the multiphonon processes considered above 
(see Figs. 2 and 3), there are also possible processes of higher 
order in the amplitudes (12) and (13), of the type shown in 
Fig. 6a. However, when separating processes of the type b, c, 
etc. in Fig. 3, we took into account the presence of a large 
parameter R, so that we cannot restrict ourselves to the first 
terms of the expansion of the exponential in A1 (6, ) ) in pow- 
er of lp even when the amplitudes M~ and M, themselves 
are small. It is therefore necessary to consider not only the 
processes a in Fig. 6, but also processes of type b, c, d, etc. In 
this case we deal not simply with a two-phonon process (of 
type a in Fig. 6), but with a process in which two (or more) 
multiphonon packets participate. The duration of the emis- 
son of one such a packet, and hence the time of its interaction 
with the TLS 

7,- (AZIF (T) ) " 
is shorter at T >  T, than the characteristic phonon times 

The contribution of a process with emisssion of one multi- 
phonon packet (see Figs. 2 and 3) is proportional to (7, w, )'I2 

in the case of TLS relaxation or ultrasound damping, and to 

7, w, in the case of sound-velocity renormalization. It is 
clear that processes with emission of a larger number of 
packets will contain the small parameter T, w, to a higher 
power. This circumstance made it possible to neglect such 
processes in the calculations above. 

With rising temperature, the reciprocal TLS relaxation 
time increases, i.e., the uncertainty AE increases. In this case 
the inequality 

ti/+ kBT. (53) 
may hold still in the region of relatively low temperatures. 
Since the main contribution is always due to a TLS with 
AE-k, T, the inequality (53) means that the uncertainty of 
the energy levels of a TLS exceeds the distance between 
them. This by itself, however, may still not mean validity of 
the calculations above in the multiphonon regime. It is easy 
to verify that allowance for the imaginary part of AE in the 
calculations becomes necessary only when the TLS relaxa- 
tion takes place in times shorter than the packet emission 
time, i.e., T < T ~ .  In the opposite case the relaxation can be 
neglected. 

Estimates show that all the approximations discussed 
above can become invalid only at temperatures higher than 
T,. This, however, leads apparently only to quantitative cor- 
rections, without changing the qualitative picture even at 
such high temperatures. 

The authors are indebted to the late I. M. Lifshitz, to M. 
I. Kaganov, and to D. E. Khmel'nitsii for helpful discussions 
of the results. 
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