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The effective conductivity problem for an isotropic medium with three-dimensional random 
concentration inhomogeneities in a strong magnetic field is considered. It is shown that for an 
infinite medium the field dependence of the transverse tensor components @in maximally strong 
fields is universal, i.e., the field dependence is independent of the properties of the medium and 
obeys a 4/3 law a: = a: a H -4'3. It is also shown that the finiteness of the medium (specimen) in 
the longitudinal direction (along H)  markedly influences the field dependence of 6 even when the 
thickness of the specimen L, is much greater than the dimension a of the inhomogeneities; the 
of(H,L,) dependences are also determined. It is found that of ad (~/L,)"'H -', and 
(A ' = (Sd)/(a) ')  in extremely strong fields, and that in intermediate fields the behavior of 
a: (H ) depends on L, and varies over a thickness on the order of Lo = a/A '. 
PACS numbers: 72.20.M~ 

§I. INTRODUCTION 

Steady flow of current in an inhomogeneous medium 
with inhomogeneities greater than the mean free path of the 
carriers I is described by a local conductivity tensor B(r), 
which relates the current and electrical field at a given point 
of the medium" 

j (r) =G (r) E (1,) . (1) 

Besides a regular component which varies slowly at the sys- 
tem limits, the inhomogeneities may include a random, 
small-scale component with characteristic dimension (corre- 
lation radius) a greater than 1, but much less than the dimen- 
sions of the medium. The influence of the random inhomo- 
geneities on the conductivity of medium may be taken into 
account by averaging the current and electrical field over 
each region with dimensions greater than a. We end up with 
the problem of determining the effective conductivity tensor 
3, which relates the smoothened values of the current and 
the field: 

assumed that the fluctuations of & are small. In this case, the 
influence of the inhomogeneities on the Hall and longitudi- 
nal components is in~ignificant,~ i.e., <y = (a,, ) and 
a', = (a, ) = a,,. However, for the transverse components 
a; = o', = 4 y ,  since (a, ) = A 'ao is small, the presence of 
relatively strongly fluctuating Hall components a,, -A 
leads to anomalously high values of the correction 
So, = I$ - (a,) for the inhomogeneity in a strong enough 
magnetic field; here the contribution of the diagonal compo- 
nents of &(r) to Sa, is slight by comparison with the Hall 
contribution and may be i g n ~ r e d . ~  Thus, though fluctu- 
ations of both the carriers density and mobility may occur in 
an inhomogeneous medium, the mobility fluctuations are 
negligible, since the Hall components are independent of the 
mobility. 

The computation of Su, has been considered in many 
studies (a history of the problem may be found in Ref. 3). In a 
first approximation with respect to the fluctuation param- 
eter A = (Snz)/(n)', the influence of the inhomogeneities 
is described by the Herring correction' 

The tensor i% does not, in general, coincide with (8) and G A A ~ O ~ ,  oo=(oO (r) ). (4) 

may greatly differ from the latter. In addition to the obvious 
case of strong inhomogeneities, such a situation may also 
arise in a weakly inhomogeneous medium in a strong mag- 
netic field (A = ( pH /c)  - ' < 1, withp the mobility of the car- 
riers) for the transverse components @ (Ref. 1); this is due to 
the markedly anisotropic nature of the conductivity in a 
strong magnetic field. 

In the case of an isotropic medium, a case typical of 
many semiconductors' and plasma,2 the local-conductivity 
tensor has the form (the Z axis is directed along H) 

hZ ?L 0 
6 (r) = ( -h h2 0 )  oo (r) -f(,oO (r) , 

0 0 1  

where a,(r) = e pn, n being the carrier density. 
Below we will consider a medium with three-dimen- 

sional inhomogenieties [& = &(x, y, z)]; moreover, it will be 

The correction (4) depends anomalously on the magnetic 
field ( a H -') and, in a strong enough field, exceeds the ze- 
roth-order approximation: (a, ) a H -'. As a result, the ap- 
plicability of ordinary perturbation theory in the parameter 
A ' is restricted (even when A < 1) to the region of "weak" 
fields in which Sa, < (a, ). Study of the higher orders of the 
expansionofSu, inaseriesind 'shows that y = A - 'A 'is the 
true parameter of the e~pansion.~ 

Methods of solving the problem that make it possible to 
go beyond the ordinary perturbation theory in the region of 
"strong" fields (y > 1) have been developed by ~ r $ z i n  and 
D ~ k h n e . ~  Using a renormalized perturbation theory, ~ r 2 -  
zin and Dykhne showed that, under definite assumptions to 
be discussed below, the solution in the region of strong mag- 
netic fields for the quantity z, averaged over the ensemble 
of random fields n(r) has the form 
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where Y = 4/3 and A is a numerical coefficient whose value 
remains undefined within this method. 

The diffusion analogy method, which was also applied 
in Ref. 3, does not offer any advantages over the renormal- 
ized perturbation theory in the study of the analytic proper- 
ties of the exact solution (this may be seen by constructing 
the exact influence function for Eq. (8) of Ref. 3, see Eq. (26) 
of the present article). Besides giving a qualitative, physical- 
ly graphic picture of the phen~menon,~ the diffusion analogy 
also makes it possible to use direct (numerical) methods to 
solve the p r ~ b l e m . ~  By means of the Monte Carlo method, a 
numerical solution of the problem has been obtained4 for a 
particular model of the medium. It was found that a", is well 
described by (5),  but with 1.1 < v < 1.27 and a most probable 
value Y = 1.19. 

There are two possible fundamental reasons for the di- 
vergence between the results of Refs. 3 and 4. First, the expo- 
nent Y in (5) depends on the properties of the medium, i.e., 
the field dependence of a", in the region of strong fields is not 
universal. In fact, the 4/3 law was derived in Ref. 3 under 
definite assumptions imposed on the quantities that depend 
on the properties of the medium (see below), and this could 
affect the choice of the ensemble over which So, was aver- 
aged. By contrast, the computation in Ref. 4 was performed 
for a specific inhomogeneity model in which these assump- 
tions may also not be satisfied if there is no universality. 

The second reason can be the possibility that o: may 
depend on the dimensions of the system, since the 4/3 law 
was obtained for an infinite medium, whereas Ref. 4 dis- 
cussed the motion of a particle in a bounded region with 
periodic boundary conditions. 

Our goal in the present article is to consider precisely 
these two questions. 

We prove that for an infinite randomly inhomogeneous 
medium the field dependence of a", in the region of strong 
fields is universal and that the 4/3 law is satisfied. We simul- 
taneously show that the inhomogeneity correction 60, is 
positive, thus ensuring that the stability condition holds for 
steady flow of currents5 a", > 0 in the case of anomalous con- 
ductivity ( ISu, I > (a, )). 

We also show that the transverse conductivity of a ran- 
domly inhomogeneous medium with three-dimensional in- 
homogeneities depends (in a strong enough magnetic field) 
on the longitudinal dimension (thickness of the specimen) L- 
even if 

L,, L,, L P a ,  (6) 
where L, are the dimensions of the system. Because 3 is 
self-a~eraged,~ the approximation of an infinite medium can 
be used for random inhomogeneities by virtue of conditions 
(6) if there is no magnetic field. The size effect considered 
below is thus attributable to non-uniform flow of current in a 
medium with strongly anisotropic conductivity in a strong 
magnetic field. The qualitative meaning of this effect may be 
explained by the following example. A dependence of a", on 
L, means that if the specimen is cut, say in half, in the direc- 
tion transverse to the magnetic field, when its resistance to a 

FIG. 1.  "Phase" diagram in the a-/3 plane, where a = L,/a and 
/3 = ; = uJ4.  Curve 1 which depicts the relationp = aZ is the bound- 
ary between phase I (infinite medium) and phase I1 (region of size effect). 
Anomalous conductivity corresponds to the shaded region, the 4/3 law 
(4 -(Ad )413u0) holds below curve 1, and the law 4 -Ad ( a / ~ , ) ' ~ ~ o ~ ,  
whereA = (pH/c)-I holds above it. 

direct current (j) = (( j, ),O,O) is measured in a strong 
enough magnetic field, the resistance will change. This is 
because the current lines in an inhomogeneous specimen im- 
mersed in a strong magnetic field will be stretched along H,' 
while the characteristic dimension 22' of the trajectories in 
the direction of the magnetic field increases with increasing 
H. Therefore, when Y(H ) becomes of the order of the thick- 
ness L, of the specimen when the specimen is cut most of the 
current lines will also be cut, which leads to a rearrangement 
of the pattern of flow of current, i.e., to a change in the resis- 
tance. 

For a given thickness of the specimen, the condition 
Y(H) = L, defines the characteristic field in which there 
occurs a transition from the infinite-medium approximation 
(Y < L,) to the region of the size effect (Fig. 1). The most 
important consequence of the size effect is that the depen- 
dence of So, on A in sufficiently strong magnetic fields again 
becomes linear (So, -AA (a/L,)"2), as in (4), but with a coef- 
ficient that depends on L,. It is also of interest that the na- 
ture of the Su,(H) dependence in the transitional region 
differs for thick (L, >Lo) and thin (L, <Lo) specimens (Fig. 
2) with Lo = a/A '. The size effect is considered in Sec. 4. 

Before passing on to the main part of the article, let us 
refine our formulationof the problem. In proving the univer- 

FIG. 2. Field dependences of inhomogeneity correction to the transverse 
maenetoresistance at different thicknesses of the specimen for A = 0.2. 
  hi solid curve corresponds to the case of an unbounded specimen 
(L, = m). The variation in the field dependence of A p'/pl with L,/Lo 
equal to 2 (curve I), 1 (curve 2) and 1/3 (curve 3) is shown by dashed lines 
(Lo = a/A '). 
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sality of the 4/3 law, we will make essential use of results 
obtained for 4 by ~ r G z i n  and Dykhne by the renormalized 
perturbation theory method. The quantity 
4 (k) = (a, ) + Sa, (k) (k is the wave vector) was introduced 
in Ref. 3 and defined by an expansion of a; in a perturbation- 
theory series theory and by the relation 

60,= lim 60, (k) 
k-0 

associated with 4. By averaging the expansion for Sa, (k) 
over the ensemble, ~ r G z i n  and Dykhne obtained, by means 
of a diagram technique, an equation in the form of a renor- 
malized perturbation-theory series for the averaged quantity 
Su, (k) . Solution of this equation in the case of three-dimen- 

sional inhomogeneities encounters a difficulty connected 
with the presence of singular integrations with respect to k,. 
The result of such an integration determines the asymptotic 
behavior of 60, (k) , meaning also of Sa, , as 2 4 ,  but de- 
pends in turn on the sign of G a l  (k) . Assuming that 

60, (k) >0, (8) 

~ r G z i n  and Dykhne proved that in a strong field there exists 
a solution 

60,(k) =Ak(hA)"w0, 

where A is determined by the properties of the medium. 
Thus, in view of (7), to prove that the 4/3 law is universal it is 
sufficient to show that condition (8) is satisfied. 

It is difficult to obtain any information about the behav- 
ior of Sa, (k) as a function of k directly from the expansion 
in a renormalized-perturbation-theory series, since the se- 
ries is asymptotic and the strong-coupling case is rea l i~ed .~  
Therefore, we develop below a different approach to the 
problem, based on Dyson-type equations for an arbitrary 
inhomogeneous medium. In these equations the exact (una- 
veraged) quantity2' So1 (k) plays the role of the self-energy 
part. The Dyson equations are derived in 93, where it is 
proved that if the fluctuations of all the components of B(r) 
other than the Hall components are inessential the following 
inequality holds for an arbitrary inhomogeneous medium 

60, (k) >O, (9)  

and leads to the condition (8). 
In Appendix 2 we will derive the ~ r 2 z i n  and Dykhne 

expansion for 6a1(k) from the Dyson equations for a ran- 
domly inhomogeneous medium by taking the limit as V-+CO 
(V is the volume of the system). Besides proving that our 
methods are equivalent to those of Ref. 3, the derivation will 
also show that the ~ r g z i n  and Dykhne expansion is applica- 
ble for So, (k) in the case of a bounded medium, particularly 
for describing the size effect and for obtaining a sufficient 
condition under which the fluctuations Sa,(k) due to the 
finite dimensions of the system are small. 

82. BASIC EQUATIONS 

The steady flow of the current is described by the equa- 
tions 

div j=O, rot E=O. (10) 

Together with (1)-(3), these equations form a complete sys- 
tem of initial  equation^.^' Following Herring,' we separate 
the mean values (over the volume) of (j), (E), and (b), and 
rewrite (1)-(3) and (10) as equations for the Fourier compo- 
nents of the fluctuations Sj, 6 E, SB, which are defined as 
follows: 

1 
6 j ( r ) = j ( r ) - ( j > = ~ e i k ' 6 j k ,  $k=-~dre-tk*6j(r) ,  V 

k 

and analogously for S E and SB. Using the expressions for (j) 
and 6jk, as well as the conditions of transversality of 6jk and 
longitudinality of S E,, which follow from (lo), and also 
bearing in mind (2), the following expression of 3 is ob- 
tained: 

Ge=(G>+60^, 6i=bf(h) 00, 

where 

e, are unit vectors along the coordinate axes, n = k/k, 

Gkk'=gkA (k-kf) +gkWkk'gk' 

and 

The quantities 8, y"" , and 6 are defined by the expressions 

A (k) gk=- - 1, k=O 
n,2+ h2 1 - A  (k), b(k)={ 0, k+O ' 

Note that, because the medium is isotropic, 

Im tk=<E (r)sin kr>=O. 

In view of (3) and the fact that 6 is real, may be repre- 
sented in the form of a symmetric (ek') and an antisymme- 
tric ( ~ , ' )  part: y = y, + y,, where 

k k '  k ' k  
ya =-yo =~k-k'h(nsny'-nvns'), 

kk' k'k 
ys =ys = E ~ - ~ '  (n,nr'+h2(nlnl') ) . 

Expressions (1 1)-(13) yield a representation of a; in the 
form of an expansion in a series of the ordinary perturbation 
theory, in which g and y play the role of the bare Green's 
functions and vertices. The Hemng correction (4) is ob- 
tained if we limit ourselves, in the case of G kk; to the first 
term of the expa%sion g"A (k - k') and ignore the diagonal 
(symmetric) part f in (1 1). 

Equations (1 1)-(13) are not suitable for studying the be- 
havior of 6 a s 2 4 ,  since the expansion parameter isil - 'A ' 
(Ref. 3). In an attempt to get around this difficulty, ~ r g z i n  
and Dykhne reconstructed the expansion (1 1)-(13) by means 
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of a diagram technique, thus eliminating the divergences as 
A 4 .  However, difficulties remain even when the renormal- 
ized perturbation theory is used, since a strong coupling case 
is then realized. Therefore, we will develop below a renor- 
malization technique that does not make use of perturbation 
theory, but can yield Dyson-type equations for the renor- 
malized quantities. 

53. DYSON EQUATIONS FOR AN ARBITRARY 
INHOMOGENEOUS MEDIUM. PROOF OF INEQUALITY (9) 

Let us determine the quantity S i  related to ScM by an 
equation similar to (7). Following Drelzin and Dykhne,3 we 
may introduce S& by replacing 5 -" and f " in (1 1) by 
5 - k2 and 6 k2 - k; as can be easily seen, S $ then coincides 
with W$, which is determined in Appendix 1 [see (Al)]. 
This definition of S$ is not, however, entirely exact, since 
W z  is not an analytic function of k. To prove this we con- 
sider the structure of Wkk'. From (12) it is clear that every 
Wik' contains non-connective terms of the form 
WEg"W:I,, or ~ k , k ' g " ' ~ ~ ' ~ '  - , , which correspond to the 
cases in which one of the inner momenta k, is equal to k or 
k'. Since all the wik' have a structure analogous to (Al), the 
presence of non-connective terms makes W$ non-analytic. 

As for St ,  because of our definition (13) of g" the con- 
straint ki #O is imposed on the inner momenta in (1 1) and 
(12), as a r e s~ l t  of which there are no non-connective contri- 
butions to Sc. 

Thus, it is more correct to define S i p  as a quantity 
which is obtained from Wkk after eliminating the non-con- 
nective terms. 

Let us consider the quantity TW, which is obtained 
from Wkk' as a result of eliminating the non-connective con- 
tributions. From the foregoing it follows that I' kk' is deter- 
mined by the expansion (12) in which we have introduced 
additional constraints on the innter momenta (ki #k, k'). 
We introduce also the quantities L LL' and R " obtained 
from W kk' by means of the constraints k, # k and ki #kt, 
respectively. It will be convenient below to introduce com- 
mon notation for the diagonal and nondiagonal parts of the 
arbitrary tensor Xkk' for use throughout the present article: 

The diagonal parts of r, L, and R coincide; we denote them 
S '. Thus, ?I kk' and S are fully irreducible quantities, while 
z " and 2 kk' are irreducible with respect to k and k', respec- 
tively. - - -  

It is clear from our definition of the quantities I', L, R, 
and S that the expansion (12) plays the role of a generating 
series for these quantities; consequently, we introduce the 
notation 

ykk'Wkk'(k, k'), Sk=Wk(k), 

which will be used also in other cases, with the excluded 
inner moments indicated in ~arentheses. Fo_r example, kk' 

can be written as z kk'(k') or R kk'(k), while I' kk'(p) and S k(p) 

should be understood as ~ ' ~ ' ( k , k ' , ~ )  and Wk(k,p), respec- 
tively. 

Let us consider the quantity S i p ,  which is related to S 
by an equation analogous to (Al). Since Sk is irreducible, 
S& is a function of k analytic at zero and we have4' 

figag= lim S a g k  
k-0 

Let us now derive the Dyson equations, in which S kand 
?' kk' will play the role of the self-energy part and the exact 
vertex while G k  will serve as the exact Green's function. 
From the definition of Wkk' in (12) and the definitions of g 
and 1 in (1 5) it follows that the nondiagonal parts of g and z 
satisfy the equations 

nkk.=ykk.+C y k k , g k . R k ' k r  9 ~ k k ' = ~ k k ' + Z  L k k l g k l Y k l k '  

k, k ,  
(17) 

and that S is related to 3 and z by the equations 

The quantities 3 kk' and kk' are reducible with respect 
to k and k', respectively. In Appendix 1 it is shown that, by 
separating the non-connective contributions from and z 
we find that [see (A9) and (AlO)] 

where 

In view of (19), we obtain from (17) and (1 8) 

Gk (k') -- f . k k ' = y k k r +  I k k t G k ~  (k') P k t k r ,  

gk 
k, 

as well as the equations 

which are conjugate to (21). Together with (A12), which re- 
late G '(p) to G and?I, Eqs. (20)-(22) form a closed system and 
are the sought Dyson equations for S, 7: and G. 

To prove inequality (9), we rewrite Eqs. (21) and (22) for 
kk' in the form of equations for the symmetric and antisym- 

metric (relative to the permutation of k and kt) vertices ?IF' 
and ?I!". We consider the case in which the fluctuations of 
all the components of &(I-), other than the Hall components, 
may be ignored; it follows then from (1 3) and (14) that y, = 0 
and y = yo. As a result, since (2 1) and (22) are real, we obtain 
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Sk= zyfk' G ~ I  ( k )  pakgk? 
-. 

<rL2 ( t )  ) 
a,"= lim --- ,,, 4t ' 

In view of (23), S may be represented in the form 

whence, in view of (24) and the definition of g in (13), we 
obtain 

Sk= (n,,'+h2) [Gkl(k)  I ~ { I I ? : ~ '  I'+IP:" 12), (25) 
k ,  

which proves in fact inequality (9) and that Sk is positive, 
sinceS = S :(n: + n: ) at y = yo. w e  emphasize that S can 
be represented in the form (25) as a consequence of the ab- 
sence of any bare vertex y, in the equations, i.e., ultimately, 
as a consequence of the fact that the fluctuations of all the 
components of b(r), other than the Hall components, are 
inessential. 

Since S k<S : if y = yo, we then find [bearing in mind 
(16)], that the inhomogeneity correction Su, is positive also 
as a consequence of (25). 

54. SIZE EFFECT 

The fact that the sequence in which the limits as V-+ co 
and H e  rn are taken is essential, which is noted in the deri- 
vation of the Dyson equations for a randomly inhomogen- 
eous medium (Appendix 2), shows that 4 may depend on 
the dimensions of the specimen in a sufficiently strong mag- 
netic field. 

It is best to begin an explanation of the nature sf this 
dependence with the diffusion a n a l ~ g y , ~  which provides a 
qualitative picture of the phenomenon. ~ r & z i n  and Dykhne 
noted that Eqs. (1) and (lo), which are written for the poten- 
tial Y, describe the process of stationary strongly anisotropic 
diffusion of particles of density Y (r) in a field of random 
velocities v(r) = ( - Vyux,,, V,axy, 0). The longitudinal-dif- 
fusion coefficient (a,,) = a,, and the transverse-diffusion 
coefficient (a, ) = A 'a,. 

Because of the random convection across the magnetic 
field, the transverse diffusion coefficient must be renormal- 
ized, i.e., (a,) is replaced by o', = (a,) + Sa, . It has been 
proposed3 to obtain Sa, by considering for the particle a 
random walk described by the equation 

with initial condition Y(r,t = 0) = S(r - r,). Then 6 is de- 
termined from the well-known expression 

where (...) denotes the average over all possible particle tra- 
jectories. 

Let us consider a simple model in which the medium 
consists of regions with dimensions on the order of the corre- 
lation radius a. In each correlation cell, the velocity v(r) has a 
definite value 

and a definite direction. The directions of the velocities in 
the different cells are specified randomly and are not corre- 
lated. Since the longitudinal diffusion is rapid, and the trans- 
verse motion is slow ((a, ) -A 2, v -A ), a particle is able to 
travel through a significant number of correlations cells in 
the direction of the magnetic field before shifting noticeably 
in the transverse direction. Let T be the time it takes for a 
particle to cross a cell in the transverse direction. If t < ~ ,  the 
particle will often return to its initial cell, since the one-di- 
mensional diffusion is recurrent. This leads to a unique time 
correlation between the transverse displacements caused by 
convective t ran~por t .~  We assume that if t > T, the probabil- 
ity that a particle will return to its initial cell is small (which 
means that the motion described by Eq. (26) is not recurrent, 
as is three-dimensional diffusion7); then there is no correla- 
tion between r, (t > T) and r, !t < T ) ,  and consequently of may 
be estimated at3 

whence, recalling the definition of T, we find that 

T-az/aLe. (29) 

Let us evaluate the convective contribution to the transverse 
displacement of a particle when t 5 T. Suppose that N (t ) is the 
number of distinct cells through which the particle succeeds 
in traveling in time t; then the average time that the particle 
spends in an individual cell is about t /N (t ). Since the displa- 
cements in the different cells do not correlate, we have 

rl"t) - (vtlN ( t )  ) 2N ( t  j - ( v t )  ' / N  ( t ) ,  

whence, in view of (28), we find that 

Here N (T) - Y / a ,  where Y is the distance the particle suc- 
ceeds in traveling in the direction of the magnetic field in the 
time T. In an infinite medium, Y - (cr,~)"~, which, in view of 
(29) and (30), leads to the following equation3 for Su, : 

the solutions of which in weak (So, <A 'a,) and strong 
(Sa, >A 'a,) fields coincide with (4) and (5). 

Using (29) for T, we can estimate 9 for an infinite medi- 
ums): 

9 - ( o ~ T )  Ih- ( 0 ~ / 0 , ~ )  ' h a - a / c L ' h ~ a .  (31) 

Thus, even if conditions (6) are satisfied in a sufficiently 
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strong magnetic field, the longitudinal particle trajectory 2 
can become comparable with the thickness of the specimen 
L,. What happens in this case? Clearly, the answer depends 
on the boundary conditions imposed on Eq. (26). These con- 
ditions may be obtained from the boundary conditions im- 
posed on the potential P in the stationary problem, which 
are determined from (1) and (3) by specifying the current 
component j, normal to the surface of the specimen. Since 
o: is independent of the current, we may set j, = 0. For 
longitudinal diffusion this leads as A 4  to the following ho- 
mogeneous boundary conditions: 

which correspond to reflection of the particle from the sur- 
face of the specimen.' Consequently, the fact that the speci- 
men is bounded in the direction of the magnetic field leads 
simply to finite the longitudinal diffusion of the particle. 

Thus, in sufficiently strong magnetic fields we have 
N (T) - L,/a. In light of (30) this leads to the following equa- 
tion for So, in the region of the size effect: 

Let us consider the solutions of Eq. (32). For a weak field 
(So, < R 2u0) : 

In the region of anomalous conductivity (So, > R 'go), i.e., in 
a strong field, 

Note that at L, -a Eqs. (33) and (34) turn into the corre- 
sponding solutions for the case of two-dimensional inhomo- 
geneities n = n(x, y) (Ref. 3). 

Let us find the ranges of the magnetic field (A ) and of the 
longitudinal dimensions of the specimen L, in which (4), (5), 
(33), and (34) hold. We note first that the solutions (4) and (5) 
were obtained for an infinite-medium approximation, which 
is valid so long as 3 (L,, i.e., under the condition 

%,=ole/oo> (a/L,) a. (35) 

In the language of time, this means that T < 7, = L :/ao is 
the time it takes for a particle to pass through the specimen 
along the magnetic field. Accordingly, the region of the 
fields in which the size effect exists is determined from the 
condition 7 2 rL . this leads to the inequality 

f l=~Le!ooO (a/L,) 2. (36) 

Bearing in mind conditions (35) and (36), as well as the con- 
straints imposed by the weak-field and strong-fields condi- 
tions, our results may be represented as follows. We associ- 
ate with weak and maximally strong fields the solutions (4) 
and (34): 

max (A2, a/L,) ~ h c l ,  
hA (a/L,) '"ao, hKmin (hi, A,), 

(37) 

In the region of intermediate fields, either solution (5) or 
solution (33) is realized, depending upon the thickness of the 
specimen: 

where Lo = a/A 2. Regions within which a: behaves differ- 
ently may be conveniently represented graphically in the 
form of a phase diagram in the (L,/a,<, ') plane (Fig. 1). 

The relations (37) and (38) seem more natural for the 
transverse magnetoresistance A pl/pl, which is related to 3 
as8 

Taking into account (37) and (38) and treating A pl/pl as a 
function of the variable y = il -'A = (A 2p/c)H, we find 
that in thick specimens, i.e., at L, %Lo, 

in thin specimens at L, (Lo, 

and at L, =Lo, regardless of the field strength, 

These relations are depicted in Fig. 2. 
It is clear from (39)-(41) that, from a study of the depen- 

dence of A pl/pl on H and L,, it is possible in principle to 
assess not only the size A of the inhomogeneities but also 
their dimension a (and of the correlation radius when there 
are several inhomogeneity scales). For this purpose, we re- 
quire measurements in both weak fields (this yields A ) and in 
strong fields (which makes it possible to determine a/L, ifA 
is known). Thin specimens are preferable here, since in this 
case weaker fields are required. 

The solution obtained for the problem by means of the 
diffusion analogy is in fact not rigorous (we will return to this 
question later). Let us show that the exact solution in the 
region of the size effect differs nevertheless from (34) only by 
a numerical coefficient (we limit ourselves to the case of 
strong fields, since ordinary perturbation theory is applica- 
ble to weak fields). To explain the properties of the exact 
solution, we will use an expansion of Sol in the series of the 
renormalized perturbation theory [Eqs. (A21) and (A22)l. 

Let us first consider the solution of the truncated equa- 
tion for So,, which is obtained if we limit ourselves to the 
first graph in the diagram expansion (A22). This leads to the 
following equation for S ': 
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The correlation between the longitudinal and transverse mo- 
tions manifests itself analytically in the presence of singular 
integrations with respect to k,, . At first glance, therefore, we 
can take into account the face that the specimen is bounded 
by cutting off the integration with respect to k,, at small 
I k,, I - L, -I. However, before passing on to the integration, 
it is necessary to separate from the sum the term with 
k,, = 0, which also makes the main contribution to the ef- 
fect. Since the main contribution to the sum is produced by 
the momentum domain k 5  k,-a-I and since Sk-SC, 
when k 5 k,, and in view of (A25), we obtain the following 
equation for SC, : 

Condition (35) corresponds to the approximation of an infi- 
nite medium. In this case, the first term in (42) is not essential 
and the solution coincides with previous re~u1ts.l.~ The re- 
gion of the size effect is determined by inequality (36). In this 
case, the second term -A 'A 'L,/a in (42) is small by com- 
parison with the first term. Neglecting it we obtain (32). 

It is easily verified that the main contribution to the 
region of the size effect in the remainder of expansion (A22) 
is made by terms with zero values of the longitudinal inner 
momenta, k, = 0. Here it is sufficient to take into account 
expansion terms that contain only paired correlators, since 
graphs with irreducible correlators of higher order contain 
extra powers of the small parameter a/L,. As a result, we 
obtain the following equation for SC, : 

where f, > 0 are numerical coefficients that are determined 
by integration with respect to the angular variables and by 
the topological properties of the diagrams (as in the case of 
an infinite medium, the strong coupling case is realized and 
f, -n! at n> 1). The substitution 65, = AAA (a/~,)" '  yields 
for the coefficient A an equation that does not contain the 
essential variables A, A, and a/L,. Thus, for random fields, 
the exact solution in the region of the size effect differs from 
(34) only by a numerical factor. 

Let us trace in more detail the relation between the 
methods of the diffusion analogy and the methods of renor- 
malized perturbation theory. For this purpose, we use for 
Sa, the exact expression which follows from (27) (Ref. 3): 

m 

soL= J d t X  ( t )  , 
0 

(43) 
The role of the distribution function of particle trajectories is 
assumed by the Green's function (26), which may be repre- 
sented in the form of a perturbation-theory series in the oper- 
ator - (v V). Substituting this series in (43) we obtain after 
averaging over the ensemble the expansion (A22) for Sa,. 

Note that in the general case the averaging over the ensemble 
average must follow path averaging over the trajectories. 

As already noted, the reasoning used in deriving Eq. 
(32) is inexact, since it does not take into account effects 
corresponding to higher terms of the expansion (A22). This 
is due to our assumption that the motion of the particle de- 
scribed by equation (26) is not recurrent. In fact, if the parti- 
cle's return to the initial cell may be ignored when t > T, 
when X ( t  > T) = 0, which, in view of (29), leads to equation 
(32). The motion of the particle is actually recurrent and 
higher terms of the expansion (A22) correspond precisely to 
allowance for the random walk of the particle and its return 
to the initial cell. The fact that this leads only to a numerical 
renormalization of Sa, indicates that the effective transverse 
diffusion coefficient is formed over times t 5 T. 

55. CONCLUSION 

The results above pertain to the case n = n(x, y, z). The 
results for two- and one-dimensional inhomogeneities differ 
from (37)-(41) (see footnote 4). In a medium with two-dimen- 
sional inhomogeneities stretched along the magnetic field 
[n = n(x, y)], the influence of inhomogeneities in weak fields 
(A 4 = ( pH /c)- ' < 1) is described by the Herring correc- 
tion for the two-dimensional case So, -A 'a, (Ref. I), and in 
strong fields (A<A ), anomalous conductivity (So, > (a, )) 
takes place, with So, -/2dao (Refs. 3 and 9). In this case 
there is no size effect. 

For a medium with n = n(x,z) or with n(x), the inhomo- 
geneities affect only the conductivity along the Y-axis, and 
o', = (a,). At n = n(x) Herring's1 correction Sayy for the 
inhomogeneity is then exact,'0." while at n = n(x,z), the ap- 
plicability of (4) is limited by the size effect, i.e., by the condi- 
tion a/L, 4 < 1. If A<a/L, we have in this case 

60 ,~-A2  ( a / L , )  oo and Apyy/pL-A2 ( a / L , )  ( ~ H l c ) ~ .  

The case of a quantizing magnetic field, in which 
o, = /el H / m c >  max(T ,~~) ,  also requires special treat- 
ment, since the quantum effects influence the field depen- 
dences of the diagonal components of the local conductivity 
tensor 3(r),12 as a consequence of which the a; (H,L,) depen- 
dences may differ from the dependence obtained above. 

I wish to express my deep appreciation to Yu. M. Gal- 
'perin and B. Ya. ~ o i z h e s  for interest in the present paper 
and many discussions of the results, as well as to the 
members of the seminar of the sector of physical kinetics of 
the Physicotechnical Institute for a useful discussion. 

APPENDIX I 

1. From the definitions (12) of W k' and the definition of 
(13) of ykL' it follows that 

kk '  wkk'=Wag nung', n=klk, (All 

and similarly for W F'. 
2. To derive a number of relations used in the paper, we 

first obtain equations that relate W(p) to W, and W(p,pl) to 
W (p) and W (p'). Let us consider w [see (12)l. We separate 
in W, the term with k, = p: 
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kk' k,ka wn = l k . g . ~ : f ;  + y k k l g k c W n - 1  . 
and then separate from the remaining terms with k, #p the 
term with k, = p. Continuing this procedure until the term 
with k, - , = p is separated, we obtain as a result 

Summing (Al) with respect to n and bearing in mind that 

we find [see ( 1 5)] 
w k k r , W k k '  ( P )  + R k P g p W P k ' .  

Repeating this process from right to left (starting with 
k, - , ), we obtain 

w k k * = w k k v  ( p )  + W L p g p L p k r .  (A41 

Analogously, we derive relations connecting W(p,pl) with 
W (p) and W (p'). If p' # p, we find that 

Wkk' (p')  = W k k '  ( p ,  p f )  +Rkp(p')gpWpk' ( p ' ) ,  (A51 

W k k '  ( p )  = Wkk' ( p ,  p') + W k P '  ( p )  g p ' L p ' k '  ( p )  . (A61 

3. Let us consider the corollaries of (A3) and (A4). Set- 
ting p = k and p = k' successively and bearing in mind the 
definitions of R, L, andS [see (15) and above], as well as the 
definition of G k ,  we obtain 

Let us consider the corollaries of (AS) and (A6). From 
(AS) with p' = k = k'f p it follows that 

W k  ( P )  = 
Sk ( P )  

l -gkSk  ( p )  ' 

Setting p = k and p' = k' in (AS) and (A6) and bearing in 
mind the definition (15) of F, we find that 

g k a k k ' = G k  ( k f )  r k k ' ,  E k k ' g k ' = f k k ' G k '  (k) . (A lo) 

4. Let us find G '(p) when p#k. Setting k = kl#p in 
(A3), we have 

Wk=Wk(p)  + R k p g P W P k .  (A1 1) 

Using (A7), (A8), and (A9), we may transform (A1 1) to the 
form 

Gk=Gk ( p )  + g k R k P E ~ k g k G ~ = G k  ( p )  + f t k p f p k G p [ G k  ( P )  ] 2,  

whence we find that 

Gk ( p )  = 
2 

I +  ( l + 4 N k p ) "  Gk' 

5. Let us derive an expression for G ' ( ~ I , ~ ) F  For 
this purpose, we rewrite (A3) and (A4) in the form 

Wkk' ( p )  = W k k v - W k p g p ~ P k ' ,  W k k '  ( P )  , W k k ' - p p g p ~ p k ' ~  

We multiply both equations by gkgk' and take into account 
the fact that 

g k W k k ' g k ' = G k  (k') f  k k ' G k ' = G k r k k ' G k '  (k) 

follows from (A8) and (A10). As a result, we find 

G k ( k f ,  p ) f t k k r  ( p )  = El!.!- G k I I k k ' - G k ( P ) f k p G p p p k '  (A131 
Q' (a )  

and the conjugate equation 
Gk (k ' )  

F k k '  ( P )  ~ k '  (k, p )  , r k k ' ~ k '  - - f ' p G p f P k  G k .  ( p )  . (A14) 
G k ( P )  

APPENDIX II 

1. Dyson equation for randomly inhomogeneous medium 

In passing to a randomly inhomogeneous medium, Eqs. 
(2 1) and (22) are replaced by another form of the equation for 
the exact vertex F. Taking into account the definitions of i? 
and F from (15) as well as (17), we find that 

whence, repeating the derivation of (19) for i? (p), we obtain 

r k k r = y ' * , +  lkk.Gk.  ( k ,  k')  l r k t k ,  ( k )  (A151 

and similarly for the conjugate equation. In view of (A1 3) for 
G k(k',p)F kk'(p), equation (A15) is entirely equivalent to Eq. 
(21) for F. 

For a randomly inhomogeneous medium the Fourier 
components of the density fluctuations are statistically 
small: 

and consequently the bare vertex y is statistically small. 
Therefore, it is natural to impose the asymptotic conditions 

1 S k - ( I )  lim l r k k ' = O  

V-rco v+ol 

on the solution of the Dyson equations for a randomly inho- 
mogeneous medium. It can be shown that S and satisfy 
Eqs. (A16) for a set of realizations of the random field n(r) 
such that the Fourier components of the quantities 
qn (r) = 6 "(r) - ( E n )  are statistically small, i.e., 

where { (r) = Sn(r)/(n). 
By means of conditions (A16) it is possible to markedly 

simplify the Dyson equations. Let us consider the quantities 
G '(p) and G ' ( ~ I , ~ ) F  kk'(p) defined in (A12) and (A13). From 
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(A16) it follows that, if the system is sufficiently large, in 
(A12) may be ignored. As a result, we obtain 
Gk(p)=Gk, Gk(k', p)rkk'(p)=Gkrkk'(p)=G~rkk'-rkPGp.PPk'], 
as a consequence of which the Dyson equations (20), (21), 
and (A 15) assume the form 

Equations (A 17)-(A 19) cannot be used for determining di- 
rectly the asymptotic behavior of S asA-4, since they con- 
tain the strongly fluctuating exact vertex p. Therefore, it is 
necessary to first eliminate from (A17) and obtain a closed 
equation for S '. 
2. Derivation of equation for 9. Relation between the Dyson 
equations and the Dreizin and Dykhne expansion for Sdk) 

Let us find an explicit expression for p by means of Eqs. 
(A18) and (A19). For this purpose we solve these equations 
by successive approximations at fixed G. In each approxima- 
tion, two types of terms will appear: those which make a 
contribution to S that does not vanish as V+W , and also 
free terms which depend anomalously on the magnetic field 
(A ) and on the volume and which do not contribute to Sk as 
V-W. Ignoring the anomalous terms, we obtain 

Substituting next (A20) in expression (A17) for S we find 

Comparing (A20) and (A21) to the initial expressions (15) 
and (12) for ?; and s we see that the new expressions have the 
same structure, though withgk'replaced by G k'and with the 
additional constraints k, # kj imposed on the internal mo- 
menta. The latter appear upon iteration of Eqs. (A18) and 
(A19), first because p (p) and p are not diagonal, and second 
because of the second term in p (p) in (A19), which cancels 
some of the terms with k, = kj .  

Graphically, the expansion (A21) for S may be repre- 
sented as follows: 

We associate y with the crosses on the graphs, and G ki with 
the double lines; summation (under the constraint ki # kj,k ) 
is performed over all internal momenta k i .  Whenever 
y = y, , there are no graphs with an odd number of crosses. 

In passing from summation with respect to ki to inte- 
gration, it is first necessary to determine the contributions 
- 0 (1) of the values of k, corresponding to the conditions 
q,, + ... + %, = 0, where q, = k, - ki- , , which is equiva- 
lent to the expansion of So(k) in terms of irreducible correla- 
tors in Ref. 3. The result may be represented graphically in 
the form 

Allowance for only compact graphs in (A22) corresponds to 
the conditions k, #kj in (A21). Taking into account (A17), 
the expansion (A22) is the sought equation for S k. 

Both (A22) and the expansion for SZ(k) given in Ref. 3 
are series exapnsions in the irreducible momenta 6 (r) and 
differ only in the averaging method. In (A22) the series is 
(5'),(c4) - (~') ' ,etc. ,andinRef. 3 p,p- p , e t c .  
Thus, under the assumption the averagings over the volume 
and over the ensemble are equivalent, the expansion (A22) 
for S turns into the expansion for 3 = Go(k)/a, as V-+ w , 
which means that S is self-averaged. 

Let us now consider the validity of (A22) or, what is the 
same thing, of the ~ r g z i n  and Dykhne expansion for the 
description of a system with finite dimensions. For this pur- 
pose, it is necessary to evaluate the contribution of the anom- 
alous terms discarded in the course of deriving (A20) and 
(A21). These terms appear in the course of the iterations, 
starting with terms in y. The anomalous part of ?''3' has the 
form (at y =  y,) 

which leads to a correction biquadratic in y (quadratic in A ') 
to S k: 

Taking into account the inequlity (A26) and comparing 
(A23) with the term quadratic in y in (A21), we find that 
(A23) differs from it by a factor of the order of 

It can be shown that the anomalous contributions of higher 
order are corrections a S (with m> 1) to the terms of the 
expansion (A2 1). 

From (A24) it follows that 6 depends on the magnetic 
field, and that the nature of this dependence is determined by 
the behavior of <(H). Therefore, strictly speaking, the ex- 
pansions (A21) and (A22) are suitable for studying the 
asymptotic behavior of <(H) as H+w ( 2 - 4 )  only in the 
limit as V+W . Let us show, however, that the solutions ob- 
tained by means of the expansion (A22) are valid also for 
systems with finite volume. To estimate the value of 6, we 
will use the solution for < (H ) found by neglecting the anom- 
alous contributions. Using (37) and (38), we find that in 
"weak" fields, 
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Let us consider the case of "strong" fields. Within the range 
of applicability of the 4/3 law, taking into account (5) and 
( 3  1 )  we find that 

az ,iuO aZ 9 ( H )  az 
6 - -  ---<-, vl= TJI Lz Tjl 

where V, = L,L,. In the region of the dimensional effect 
(2 2 L,), taking (34) into account, we obtain S-a2/V,,  i.e., 
S no longer is a function of H. Thus, S will be small if condi- 
tions (6) are satisfied, which justifies our use of the expansion 
(A22) for systems of finite dimensions. 

APPENDIX 3 

Let us obtain estimates for certain quantities used in the 
body of the article. Consider the correlator of the density 
fluctuations Sn (more precisely, of the quantities g = Sn/ 
( n ) )  

C (r) possesses the obvious properties 

We will assume that 1C(r)l at r >  a and (6 '1' at 
k > ko = a-  ' decrease quite rapidly to zero; then the follow- 
ing estimates hold: 

"For the sake of brevity, we define the electric field as E = - VIV, where 
IY is the electrochemical potential. 

2'More precisely, the quantity S = 6a(k)/uw 
"Since n(r) occurs in (1)-(3), it may seem that the Poisson equation 

Aq, = - 477en should be added. In the steady-state, however, this is un- 
necessary, since the equations are linear in the electric field. In fact, 
allowance for the change of the volume charge density when an external 
field is applied leads in (1)-(3) to nonlinear corrections to the current. 

4'Note that in a laminar medium (one-dimensional inhomogeneities), dh', 
and likewise S,, are identically zero and 60, is described by the Herring 
correction, and similarly for n = n(xj)  and n( y j ) .  

"It can be shown that in the conductivity problem, 2 has the meaning of 
the longitudinal correlation length for the current fluctuations 6j(r), 
whereas the transverse correlation length is on the order of a. 
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