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The velocity dispersion and the absorption of waves due to noncritical concentration fluctuations 
of the solute or defects are calculated. Two types of media are considered, in which the mechanism 
may explain the dispersion and absorption observed in the high-frequency range, viz., stratifying 
solutions and strongly viscous liquids. 
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1. INTRODUCTION 

In the present work, the wide-ranging phenomenon of 
the dispersion and absorption of waves is considered that is 
due to the noncritical fluctuations of the concentration of 
solute or defects. In our opinion, this has frequently been 
observed in different solutions and single-component media, 
but up to now it has not been correctly identified. This phen- 
omenon can occur both in solids and in liquids; however, in 
the present work, we limit ourselves to liquids. The charac- 
teristic marks of dispersion and absorption associated with 
noncritical fluctuations of the concentration manifest them- 
selves in special form in the dependences of the dispersion 
and the absorption on Or,. Here O is the frequency of the 
wave and r0 is a characteristic time. After setting up the basis 
of the theory, we shall consider in detail two examples of 
media in which the mechanism that is associated with the 
noncritical concentration of fluctuations can explain the fea- 
tures of the dispersion and absorption observed in high-fre- 
quency region: stratifying solutions and strongly viscous li- 
quids. 

We shall illustrate this mechanism by the example of 
sound propagation in an ordinary binary solution (one which 
is unstratified and which possesses no singular points or 
lines). The change in the pressure in a sound wave changes 
the mean square concentration fluctuations. The new con- 
centration fluctuation distribution, which changes the vol- 
ume of the system, is established through diffusion and lags 
the change in the pressure, and it is this which leads to dis- 
persion of the sound velocity and to excess absorption. The 
only characteristic length in such a solution is the length ro, 
which is of the order of the intermolecular distance. It plays 
the role of the correlation radius of the concentration fluctu- 
ations: the characteristic time of resorption of these fluctu- 
ations is the quantity 7, = ,</Do, where Do is the diffusion 
coefficient. At room tempe:ature, Do- lo-' cm2/s. Setting 
ro- lo-' cm, we find 7,- s. The greatest absorption 
per wavelength, due to this mechanism, should be observed 
at frequencies of the order of r; ' = lo9 Hz. 

In single-component liquids in the region of melting, 
where the free volume exists principally in the form of Fren- 
kel holes, a similar mechanism can be connected with the 
concentration fluctuations of these holes. Actually, since the 
compressibility due to an individual hole, depends on the 

hole concentration in its vicinity, the expression for the com- 
pressibility will contains terms proportional to the square of 
the fluctuations of the holes concentration, which then leads 
to absorption of the type considered. 

In contrast to the ordinary solutions, the concentration 
fluctuations in stratifying binary solutions are divided into 
noncritical fluctuations, similar to those considered above 
(their correlation radius is equal to r,), and critical, which 
possess different properties. We call noncritical those con- 
centration fluctuations in volumes with linear dimensions 
much less than the correlation radiusp of the critical fluctu- 
ations, and we call critical (hydrodynamic) those fluctu- 
ations in volumes with linear dimensions greater than or of 
the order of p. Using the representation of the field of the 
correlations in the form of a Fourier spectrum, we can give 
an equivalent definition: the noncritical fluctuations are 
those in which there are only Fourier components c, with 
wave numbers k > b /p, while the critical fluctuations are 
those in which there are only Fourier components with 
k<b /p, where b is a constant of the order of several units. 
Since, in the approximation that is used later, the thermody- 
namic potential is broken up into a sum of terms, each of 
which corresponds to fixed k, the fluctuations with different 
k are independent. This enables us to consider separately the 
critical and noncritical fluctuations, which justifies the divi- 
sion discussed above. Such a consideration roughens the ap- 
proach, since it excludes the transition region from consider- 
ation. 

In the calculation of dispersion and absorption of waves 
in stratifying solutions, one should take into consideration 
both the critical and noncritical fluctuations. The dispersion 
and absorption produced by the critical fluctuations have 
been calculated previously,14 while the dispersion and ab- 
sorption produced by the noncritical fluctuations are first 
considered in the present work. The results that are obtained 
can be transferred automatically to solutions with singular 
points or singular lines,' except that p will have a different 
dependence on temperature and concentration than in 
stratifying solutions. 

The region of applicability of the results obtained in the 
present work is not limited to the media mentioned. In parti- 
cular, all that has been accomplished applies with equal mea- 
sure to a material near the liquid-vapor critical point, the 
only difference being that the dispersion and absorption near 
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this point are connected not with the concentration fluctu- 
ations, but with entropy fluctuations. 

2. DERIVATION OF FORMULAS 

The derivation of the formulas will be given in the fol- 
lowing order. The derivation will first be given for the dis- 
persion of the velocity and the absorption of sound waves 
due to noncritical fluctuations of the concentration in strati- 
fying solutions. The corresponding formulas will then be ob- 
tained from them for electromagnetic and shear waves. 
Next, by small changes in the expressions, the corresponding 
formulas will be obtained for nonstratifying solutions and 
strongly viscous liquids. 

The calculation of the dispersion of the velocity and the 
absorption of waves due to noncritical concentration fluctu- 
ations is carried out below by analogy with the calculation 
for critical fluctuations. It is based on the fact that most 
formulas for critical fluctuations take into account only the 
fact of the existence of the correlation radius p and not its 
specific properties, and therefore they can be used for non- 
critical fluctuations. 

The search for additional mechanisms of dispersion and 
absorption in stratifying solutions, as a result of which the 
present research arose, has been stimulated by the following 
circumstances. As is well known, the basic properties of the 
propagation of ultrasound near a critical point of stratifica- 
tion can be explained by the existence of critical fluctuations 
of the concentration. The distinguishing feature of these 
fluctations is that as the critical point of stratification is ap- 
proached their mean square value increases, as does the cor- 
relation radius and the correlation time, which reflects the 
fact that the coefficient of Ic, in the thermodynamic po- 
tential vanishes as the critical point is approached. The 
change in the pressure in the sound wave, bringing the state 
of the solution to critical and moving it away from critical, 
changes the character of these fluctuations; a new fluctu- 
ation distribution is established with a delay and determines 
the diffusion dispersal time r =p2/D. It is this delay which 
leads to dispersion and absorption of the ultrasound. In con- 
trast to the diffusion coefficient Do introduced earlier, which 
determines the mobility of the molecules and does not have 
singularities near the critical point, the diffusion coefficient 
D in the expression for T given above is determined by the 
mobility of the regions with dimensions of the order ofp and 
tends to zero upon approach to the critical point. 

All the existing theories of sound propagation take into 
account only the critical concentration fluctuations. A com- 
parison of these theories with experiment shows that they do 
not describe the propagation of ultrasound badly at not too 
large f2r .  However, as shown in Refs. 6-9, the sound propa- 
gation at large f27, as also the propagation of hypersound in 
the entire critical region, cannot be described by these theor- 
ies. Thus, in contrast to these theories, the ultrasound ab- 
sorption per wavelength as a function of f2.r does not fall off 
at large f2 r  and turns out to be one-two orders of magnitude 
smaller than the absorption per wavelength for hypersound. 
In the searches for the additional mechanism coresponding 
to the absorption of the ultrasound at large f2 r  and of hyper- 

sound in stratifying solutions, attention was turned to the 
terms of higher order of smallness in the fluctuations in the 
thermodynamic potential." Thus, terms that are cubic in the 
fluctuations of the concentration were considered in Ref. 11, 
and terms of fourth order in Ref. 12. These terms, as can be 
judged from estimates carried out in these references, give a 
significant correction, but they do not remove the disparity 
of theory and experiment at hypersonic frequencies. How- 
ever, before developing further mechanisms connected with 
terms of higher order in the fluctuations, it is natural to make 
full use of the contributions from the thermodynamic-poten- 
tial terms that are quadratic in the fluctuations of the con- 
centration, namely, along with account of the critical flucta- 
tions, we should also take into account the mechanism of 
noncritical concentration fluctuations described above. This 
will be done below. As estimates given in Sec. 3 show, the 
ultrasonic absorption at large f2 r  and hypersonic absorption 
in stratifying solutions can be explained by this contribution. 

Thus, we derive an expression for the velocity disper- 
sion and for the excess absorption of the sound waves due to 
the noncritical fluctuations of the concentration in stratify- 
ing solutions. This derivation reduces to the derivation given 
in Refs. 3 and 4 for critiEal fluctuations if we replace a num- 
ber of functions in the thermodynamic potential and in the 
equation of motion. We shall first concern ourselves with 
these replacements. Next, omitting the calculations, which 
are similar to those carried out in Refs. 3 and 4, we obtain the 
final formulas. 

The part of the thermodynamic potential associated 
with the noncritical concentration fluctuations, with 
allowance for only those terms that are quadratic in the fluc- 
tuations, can be represented near the critical point in the 
following form: 

VBo A@=-  dk. J m m  
Here Vis the volume of the system, Bo is a quantity propor- 
tional to the chemical potential for noncritical fluctuations 
(and has no singularities near the critical point); xo(kr0) is a 
function that takes into account the nonlocality: the bar indi- 
cates averaging over the ensemble, integration is carried out 
over all directions of k and over all k from b /p to b '/ro. (As 
follows from a comparison with experiment, which was car- 
ried out in Ref. 4, best agreement is obtained at b = 5.) It is 
not difficult to see, by comparing (1) with the expression 
given for the thermodynamic potential in Ref. 3, that Eq. (1) 
reduces to that part of the thermodynamic potential which 
depends on the critical fluctuations if we replace Bo in it by B 
(the coefficient B vanishes at the critical point), replace 
xo(kr0) by ~ ( k p )  = [I + (kp)2]-1, which corresponds to the 
Ornstein-Zernike correlation function, and replace the lim- 
its of integration over k by (0, b /p). 

The expression given above for x (kp) means that upon 
increase in kp from 0 to b, only those terms that are quadrat- 
ic in the gradient of the concentration appear in the thermo- 
dynamic potential, while terms of higher order in kp make 
only an insignificant contribution. Since the presence of such 
terms is connected only with the fact of the existence of the 
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correlation radius, and not with its specific properties, simi- 
lar terms should appear also in the case of noncritical fluctu- 
ations, so that ,yo(kro) should have the similar form 

xo (kr , )  = [I+ (kr,)'] -I. 

The velocity dispersion and excess absorption of sound 
of interest to us are caused by the delay in the change of the 
portion of the volume associated with the noncritical fluctu- 
ations relative to the change in the pressure. This delay arises 
as the result of the diffusion process of dispersal of the fluctu- 
ations, which is described by the equation 

Cr+Dok2cpo ( h e )  ~ r = - f t ~ o  ( k ~ o )  /2Bo. (2) 
Here f, is the fluctuating force and p0 is an analog of the 
Kawasaki function. This equation, upon replacement of 
po(kr0) by p(kp), ofxo(kr0) by ~ ( k p ) ,  of Bo by B, and of Do by 
D reduces to the equation for the critical fluctuations used in 
Refs. 3 and 4. The function q, (kp) has the form 

cp(kp) { ( k p )  -'+I+ [ k p - l /  ( k p )  3] arctg k p ) .  

Since the form of this function is also determined only by the 
fact of the existence of the correlation radius, and not its 
specific properties, po(kro) should have the analogous form: 

go (kr ,)  ='I, { ( k r o )  -'+I+ [kro- l l  (kt-,) 'Iarctg kr,). 

Using (1) and (2) and repeating the derivation carried 
out in Ref. 3, it is not difficult to obtain the following equa- 
tion for the complex compressibility: 

(3) 
where/3, is the part of the compressibility associated with all 
the other processes except the one considered here, k, is 
Boltzmann's constant, T is the absolute temperature, 
x = kr,, and 

All the derivatives are taken at constant entropy, in which 
terms connected with the concentration fluctuations are not 
taken into account. The term/?, is evidently small, since the 
second derivatives with respect top enter into it. We shall 
neglect it in what follows. 

Further, we make the following assumption: we regard 
Bo $, as practically independent of pressure, so that 

Some justification of this assumption is that a similar situa- 
tion holds for critical fluctuations. Using this assumption 
and introducing the notation 

x - -  arctgs ( 3 1' 

( 1 + 2 )  -'ax, (6) 
we can represent (3) in the following form: 

From (7) we obtain the following equations for the sound 
velocity and the absorption coefficient referred to the fre- 
quency 6 /f2 and connected with the considered process: 

where 

g is the density. 
If we limit ourselves to the consideration of f2ro within 

the limits of the inequalities 

3 1 1 
<Q,< + i t  ( b  - F )  arctg b ] .  (LO) 

then the limits of integration in (5) and (6) can be replaced by 
(0, w ), since the principal contribution to the integrals of (5) 
and (6) are made by the poles. With such a substitution, the 
expressions for F,(f2ro,0) and F2(f2ro,0) will be identical with 
the expressions Fl(f2r) and F2(f2r) obtained in Ref. 4, if we 
replace Oro in them by 07. The functions FI(0r,0), F2(f2r) 
are thus a generalization ofFl(f2r), F2(Or) to the case of arbi- 
trary Or. Plots of F2(f2r0,rdp) and Fl(f2r0,r~p)f2r0 at b = 5 
are shown in Fig. 1. The plots of the functions 
F2(f2ro;0), F,(f2r0,0)f2r0 are shown as continuous curves, the 
others as dashed lines. 

We now discuss these plots. As is seen from Fig. 1, 
Fl(Or0,0)f2~0, the function that determines the absorption 
per wavelength, has a very broad peak as r d p  -+ 0 (the width 
of this peak at half-height is about three decades). In this 
connection, in the broad range of values of f2ro near the 
maximum (it corresponds to f2roz16), the function 
F,(f2ro,0)f2ro depends weakly on Oro. The region of depen- 
dence of the function F2(f2ro,0) on f2ro-the dispersion re- 
gion-is also broad. It comprises more than five decades, 
which is incomparably greater than the width of the disper- 
sion curves for all the known dispersion mechanisms. The 
maximum absorption is close to the center of the dispersion 
curve. The enumerated features are the characteristic fea- 
tures of the considered mechanism of dispersion and absorp- 
tion. With increase in rdp,  the maximum of the function 
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FIG. 1 .  F,(0rO, r d p ) 0 r 0  and F,(0r0, r d p )  
as functions of Oro at various r d p .  

F , ( ~ T , ,  rdp)Oro is lowered and the width of the peak, as 
also of the dispersion curve, is decreased. 

The character of the noncritical fluctuations can 
change not only under the effect of pressure, but also under 
the effect of an electric field and of a shear stress. In the case 
of propagation of an electromagnetic wave, by replacing the 
pressurep in Eq. (3) by the electric field E and the compres- 
sion by the polarization, we obtain the following equation for 
the complex dielectric susceptibility x: 

where x, is the part not associated with the mechanism con- 
sidered, and 

dE )2 in (1 1) and (12) can be taken as the square of the vector 
(dB,,/dE), directed along E, while (dB,,/d~)~ in (13) and (14) 
can be understood as the contraction of the tensor dB,,/du,. 

The high-frequency shear moduli and, hence the shear 
waves, are present in all liquids. However, in liquids of low 
viscosity, these shear moduli are significantly less than in 
strongly viscous liquids. In the latter, it should be taken into 
account that, in the propagation of a plane sound wave, not 
only hydrostatic compression of the medium occurs, but also 
shear. With account of the shear modulus, we get the follow- 
ing refined formula from (8), (9) and (13), (14) for the sound 
velocity fi and the absorption coefficient referred to the fre- 
quency S /O: 

?iIQ=A?F, (Qzo, rolp) QT,,  

where = v i  + 3 Wi, 

We then obtain the following for the real E' and imaginary E" 

parts of the permittivity: 

where E~ = 1 + 4r(xo + x, ) .  
In the case of propagation of a shear wave, by replacing 

the pressurep in (3) with the shear stress a ,  and the compres- 
sion by the shear strain, it is not difficult to obtain similar 
formulas for the velocity Wof the shear wave and its absorp- 
tion coefficient divided by the frequency, a/O: 

For ordinary solutions, Eqs. (8) and (9) are preserved, 
but it is necessary to put r d p  = 0 in them. Thus, the sound 
velocity and absorption, referred to the frequency, in an or- 
dinary solution (non-stratifying and not possessing any sin- 
gular points or lines), are described by the equations 

Equations (1 1)-(16) are changed in similar fashion. 
In the case of strongly viscous liquids, account of the 

fluctuations of the hole concentration in the ordered regions 
leads to Eqs. (8)-(16), wherep should now be replaced by the 
radius a of the ordered region. 

The indices of the components of the vectors and ten- 3. SOLUT'ONS 

sors do not appear in Eqs. (1 1)-(14). Since B, should depend We now consider in greater detail the contribution of 
on E and on the contraction of the shear stress tensor, (dB,,/ the critical fluctuations to the dispersion and absorption of 
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sound in stratifying solutions. Experimental data for sound 
absorption per wavelength 6, and for the sound-velocity dis- 
persion A = [v(O ) - v(O)]/v(O) at fixed temperature for var- 
ious frequencies as a functions of O r  in a nitroethane-isooc- 
tane solution, taken from Ref. 6, are reproduced in Figs. 2 
and 3. The dash-dot lines on these drawings show the contri- 
butions from the critical fluctuations. In the calculation of 
these contributions, we have used the plots of Fig. 1 and have 
assumed that quantity 

(kBTgv,2~2npsB2) (8Blap) " 
which depends weakly on the nearness to the critical point, is 
equal to 0.135, and have also taken r to be 3 times smaller 
than in Ref. 6. Such a change in r can be admitted, in view of 
the inaccuracy of the determination ofp and the use in Ref. 6 
of a relation that is not always correct for the diffusion coeffi- 
cient (D = k, T/6qp ,  where q is the coefficient of viscos- 
ity). 

For the calculation of the contribution from the noncri- 
tical fluctuations, we have used Eqs. (8) and (9). Since there is 
no possibility of determining from independent measure- 
ments the quantity 2?rMvo that enters into these formulas, 
we must so choose it as to obtain the best agreement with 
experiment. For the nitroethane-isooctane solution, this 
quantity turns out to be equal to 1.3. At the beginning of the 
curves in Figs. 2 and 3, i.e., at values of log O r  from - 1 to 0, 
the correlation radius of the critical fluctuations p is of the 
order of lo-' cm. Sincep changes in proportional to #I3, at 
values of log 07 from 2 to 3 the radiusp will be of the order of 

cm. The correlation radius of the critical fluctuations is 
of the same order asp at the beginning of the curves, so that 
at values of log O r  from 2 to 3, r d p  will be of the order of 0.1. 
At such rdp, the curves F2(Oro, rdp), Fl(Oro, rdp)Oro 
with be close to F2(Oro,0), F,(OrO,O)OrO. Thus, over a range 
of approximately three decades of change of Or, the func- 
tions F2(07,, rdp) and Fl(Oro, rdp)Oro change from zero to 
their maximum values F2(Oro,0), Fl(Oro,O)Oro correspond- 
ing to the given Oro. In correspondence with this, the on the 

FIG. 2. Sound absorption per wavelength 
in a nitroethane-isooctane solution as a 
function of Or; (4.2 MHz), A (10.1 
MHz), 0 (15.9 MHz)-experimental points 
taken from Ref. 6; the lines are theoretical 
curves: dash-dotdontribution from criti- 
cal fluctuations of the concentration; 
dashed--contribution from noncritical 
fluctuations, solid-sum curves; curves 1 
refer to the frequency 4.2 MHz, 2 to the 
frequency 15.9 MHz. 

plots of&, and A vs 07,  the contributions 8, and 2 to these 
quantities from the noncritical fluctuations will take the fol- 
lowing form beyond the range of 8, and 2 from zero to the 
limiting value, which comprises about three decades of Or, 
there will follow a region in which 8, and 2 are practically 
independent of Or. Assuming that r d p  = 1 at log O r  = 0 
for a frequency of 4.2 MHz, and also that2' ro = 3 X lop9 s, 
we obtain the curves for 8, and 2 that are shown as dashed 
lines in Figs. 2 and 3. The solid lines on these drawings indi- 
cate the total contribution of the critical and noncritical fluc- 
tuations. Curves 1 and 2 in Fig. 2 refer respectively to the 
frequencies of 4.2 and 15.9 MHz. The curves in Fig. 3 refer to 
the frequency of 27.7 MHz (at frequencies of 2 and 9 MHz 

FIG. 3. Sound velocity dispersion in a nitroethane-isooctane solution as a 
function of Or, 0, A, -2 MHz, 9.3 MHz and 27.7 MHz, respective- 
ly)-experimental points taken from Ref. 6; the lines are theoretical 
curves, the dash-dot curves refer to the contribution from critical fluctu- 
ations of the concentration, the dashed curves to the contribution from 
noncritical fluctuations at 27.7 MHz, and the solid curve is their sum. 
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FIG. 4. Theoretical curve for the absorption per wavelength at a frequen- 
cy of 4 GHz in nitroethane-isooctane solution; the dot-and-dash curve is 
the contribution from the critical fluctuations, the dashed curve, the con- 
tribution from noncritical fluctuations and the solid curve is the sum 
curve. 

the contributions of the noncritical fluctuations to A are 
small). We turn our attention to the fact that consideration 
of the noncritical fluctuations leads to the result that A at 
large O r  depends not only on O r  but also (significantly) on 
the frequency, in accord with the results of Ref. 6. As is seen 
from Figs. 2 and 3, account of the noncritical fluctuations, 
along with the critical, can, with a certain choice of param- 
eters, explain the dispersion of the velocity and the absorp- 
tion of sound over the entire range of O r  investigated in Ref. 
6. , 

The calculated plot of 6, vs O r  at a frequency of 4 GHz 
in the same solution is given in Fig. 4. The dash-dot curve is 
the contribution from the critical fluctuations, the dashed 
curve the contribution from the noncritical fluctuations, and 
the solid curve is the sum of the other two. As is seen from 
this drawing, the contributions from the critical and noncri- 
tical fluctuations diverge at this frequency; the absorption of 
hypersound increases upon approach to the critical point, up 
to a certain maximum value. At temperatures different from 
critical by less than 0.1 K, the value of O r  at 4 GHz is more 
than lo5, so that 6,  is close to the maximum value, which is 
equal to 0.075. Since the wavelength at this frequency is 
equal to 2.5 x cm, the absorption coefficient turns out 
to be equal to 3000 cm-'. A value of 3000 cm-' was also 

. obtained in Ref. 13 at a frequency of 3.5 GHz for the absorp- 
tion coefficient in this solution at a temperature close to the 
critical. Absorption coefficients of the same order of magni- 
tude (from 8000 to 27,000 cm- I )  for hypersound of frequen- 
cy 4 GHz, which increases upon approach to the critical 
point, have been observed in aniline-cyclohyxane and nitro- 
benzene-n-hexane  solution^.^ Such large values of the ab- 
sorption coefficient of hypersound have not found explana- 
tion within the framework of existing theory; the possibility 
of their explanation is a persuasive argument in favor of the 
use of the representations developed here. 

4. STRONGLY VISCOUS LIQUIDS 

According to the local diffusion theory of wave propa- 
gation in strongly viscous liquids,14 the dispersion and 
anomalous absorption in them are due to the an increase or 
decrease of degree of ordering because of the diffusion of 

holes through the boundaries of these regions. The charac- 
teristic time of this process (the time of rearrangement of the 
ordered region) is equal to r, = a2/2Dh, where a is the radi- 
us of the ordered region and Dh is the diffusion coefficient of 
the holes. Since Dh is inversely proportional to the viscosity 
p, r, a p and changes rapidly with temperature. In this con- 
nection, the dependence of the velocity dispersion and the 
absorption coefficient, referred to the frequency, on Or, can 
be tracked not only by changing the frequency, but also by 
changing the temperature. The nonlocal diffusion theory is 
appli~able'~ only if Or, < (ah,)'. This theory gives a fair 
description of the propagation of shear, sound, and electro- 
magnetic fields in a large number of highly viscous liquids at 
not too large Or,'. At large Or,, i.e., at high frequencies and 
low temperatures, a systematic deviation from this theory is 
observed in a number of liquids.16 These deviations are 
manifest by the fact that upon increase in OT, the absorption 
coefficient, referred to the frequency, falls off more slowly 
than according to the law (Or,)-"2 given by the nonlocal 
diffusion theory. Similar deviations are observed also in the 
propagation of electromagnetic waves. l7 We can explain 
these deviations by inclusion of the mechanism of the wave 
absorption by of hole-concentration fluctuations (with wave 
numbers k > b /a) inside the ordered regions (the mutual in- 
fluence of the holes in thedisordered liquid should be signifi- 
cantly weaker than in the ordered regions). These fluctu- 
ations are analogous to the noncritical fluctuations 
considered above. 

Account of the fluctuations of the hole concentration in 
ordered regions is a natural development of the nonlocal dif- 
fusion theory of wave propagation in such liquids. Actually, 
according to Ref. 14, the degree of order in the ordered re- 
gions can be characterized by the hole concentration6 which 
takes on the equilibrium value lo at the specified pressure 
and temperature. This means that the thermodynamic po- 
tential of the ordered region can be represented in the form 

where2 and 3 are certain functions of the pressure and tem- 
perature. From the condition that @ be a minimum we find 
6, = 2 /23. In order that the equilibrium value change ap- 
preciably upon change in the pressurep in the sound wave, as 
was assumed in Ref. 14, it is necessary that either 2 or 3 or 
both depend strongly onp. ~ h e ~ a r a m e t e r z  has the meaning 
of the energy of hole formation. It is known that this quanti- 
ty does not change withp, so that it must be assumed that 
(dg /dp)/g is sufficiently large in the ordered region. The 
term that depends on the fluctuations 66 in the thermody- 
namic potential of the ordered region has a form similar to 
Eq. (1): 

where the notation is the same as in (I), while integration 
over k extends from b /a to b /ro. By changing the designation 
3 to B,, we obtain for the velocity dispersion and the excess 
sound absorption Eqs. (15) and (16), in which p should be 
replaced by a. Since (dg /dp)/g is large, we can expect the 
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FIG. 5. Dependence of the sound absorption per wavelength 6,,  multi- 
plied by (d- 'B& B;, , /($, , - Bk, ), on nr, in 2-3 butanediole (a) and 
polytriethyleneglycolsuccinate (b); theexperimental points are taken from 
Ref. 16; a) W, - 10", 0- - 20", A- - 35", 0- - 50 "C; b) 
A*, A-30", 0-20", - 2', C - 11 "C. The dashed curve is 
the dependence as given by the nonlocal diffusion theory, the dash-dot 
curve represents the contribution from fluctuations of the hole concentra- 
tion, calculated from the equation of Ref. 16, the solid curve is their sum. 

contribution of the fluctuations of 6 to the dispersion and 
sound absorption to be considerable. The same applies to the 
shear and electromagnetic waves. 

A feature of the strongly viscous liquids is that the time 
of rearrangement of the ordered regions, T, = aZ/Dh , which 
enters into the nonlocal diffusion theory, has the same de- 
pendence on the temperature as the time 7, = d/D, in Eqs. 
(15) and (16), since a depends weakly on the temperature in 
comparison with Dh . Therefore, the total contribution of the 
two mechanisms (rearrangement of the ordered regions and 
fluctuations of the hole concentration inside these regions) to 
the velocity dispersion and the sound absorption per wave- 
length will be functions only of the products Or, (or Or,), 
which are proportional to Oq. 

The ratio r0/r0 is equal to h(~/r,)~. The maximum ab- 
sorption per wavelength connected with ra is observed at 
Or, =:2, while the maximum associated with ro occurs at 
Or,=: 16, so that the ratios of the quantities Or, correspond- 
ing to these maxima are equal to 

( 6 2 ~ ~ )  ,/ (QT,) 2='/i (r,/n)'. 

Since the peak corresponding to r, is very broad (about three 
decades of Or,) only at (ah,)' > 100 are the regions of dis- 
persion associated with r, and r, separated (they overlap 
weakly). In the opposite case, they are superimposed, giving 
a very complicated picture. 

Figure 5 shows the experimental data for absorption at 
the wavelength SA referred to 

nC2 (C , , , - ~ " (O ) ) IV " (% ,V" (~ ) ,  

(6(,, and fi(,, are the limiting high-frequency and low-fre- 
quency values of the sound velocity fi) as functions of Or,, 

taken from Ref. 16, for two strongly viscous liquids: 2-3 
butanediol and polytriethyleneglycolsuccinate. The dashed 
curves are those computed from the nonlocal diffusion the- 
ory. The dash-dot curve shows the contribution from the 
fluctuations off, constructed from Eq. (16) at 

The values of these two quantities were chosen by us in order 
to obtain best agreement with the experiment. The solid line 
is their sum. As is seen from Fig. 5, the much weaker depen- 
dence of 6, on Ora at large Or,, in comparison with what is 
provided by the nonlocal diffusion theory, can be explained 
by the contribution of the fluctuations of the hole concentra- 
tion. 
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