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The stability of the simplest stationary structures of a sufficiently large cholesteric liquid crystal 
with positive magnetic susceptibility anisotropy AX = x - xI in a homogeneous magnetic field 
is considered. It is shown that a state in which the cholesteric axis is parallel to the magnetic field 
is stable provided that the angle 8 of inclination of the director to the axis is less than some critical 
value 8, (i.e., in the case of a sufficiently strong "conic deformation"); in the opposite case it is 
unstable. It is also found that the most favorable direction of the cholesteric axis in weak fields, 
namely the one perpendicular to the field, can become unstable before the cholesteric crystal 
changes into a nematic. 

PACS numbers: 61.30.Gd 

1. INTRODUCTION 

Meyer' and de Gennes2 proposed a theory that de- 
scribes the behavior of a cholesteric liquid crystal in a mag- 
netic field and the field-induced transition from the choles- 
teric to the nematic phase. The calculations were made for 
large enough samples of a substance with positive anisotrop- 
ic magnetic susceptibility" AX = x - x L ,  placed in a uni- 
form magnetic field H parallel or perpendicular to the cho- 
lesteric axis h. In the case hl(H it followed from the 
calculations of Ref. 1 that the angle 8 between the director n 
and the cholesteric axis should decrease with increasing field 
and vanish at a certain field H = H ; for substance with lon- 
gitudinal bending modulus K3 exceeding the torsion modu- 
lus K,, the decrease of 8 should be jumplike from v/2 to zero, 
and in the opposite case it should be continuous, with forma- 
tion of the so-called conical deformation. At K2 > K, the 
pitch of the helix should decrease in inverse proportion to 
the field intensity. An experimental investigation of the opti- 
cal activity3 and of the "blue shift" of the band of selective 
light reflection of the cholesteric, both corresponding to this 
decrease, revealed strong deviations from the prediction of 
the theory. The director deflection served in Ref. 4 was attri- 
buted in Ref. 5 to the polycrystalline structure of the sample. 
It will be shown in this article that even for an ideal crystal 
one can expect agreement between the theory and the theory 
of conical deformation only in the angle interval 0 < 8 < 8,. 
The angle 0, depends on the elastic moduli, but is always 
contained between 45" and arcsin (2/3)lt2z55". At 8 > 8c 
the conical deformation is unstable to small perturbations. 
The regime of nonlinear elimination of this instability turns 
out to be hard: the conical structure becomes strongly dis- 
torted directly after the passage through the instability 
threshold, and hysteresis should therefore be observed. In 
particular, the value of 8, obtained below can be approached 

tain field H =  H,.  The subsequent experiments (see, e.g., 
Refs. 9 and 10) have confirmed these predictions. However, 
as will be shown below, deviations from the theoryZ should 
be observed for a number of substances. These are due to the 
instability of the cholesteric axis. A sufficient (but not neces- 
sary) condition for such an instability is, for example the 
inequality K2 > (7?/4)K3. This inequality was satisfied in the 
 experiment^,^ and although their agreement with Ref. 2 was 
taken to be good, one can note on the plots of the helix pitch 
against the field intensity in Ref. 3, a difference between the 
experimental and theoretical curves. More accurate mea- 
surements will probably permit a reliable determination of 
this difference and of the instability threshold. 

We note that the cholesteric-axis instabilities discussed 
here, in contrast to those investigated the~re t i ca l l y '~ '~  and 
e~~er imenta l ly '~- '~  before, are due not to competition 
between the orientational actions of the field and of the sam- 
ple boundaries, but to the fact that the character of the orien- 
tational action of the field on the axis depends on the field 
itself. This difference manifests itself most distinctly in suffi- 
ciently large liquid-crystal samples whose dimensions ex- 
ceed noticeably the pitch of an ideal cholesteric helix. In 
such samples, surface forces can compete with magnetic 
forces only if the field is very weak and has practically no 
effect on the helix. The effects of interest to us, however, 
which are connected with a noticeable distortion of the helix, 
take place in a much stronger field and can therefore be con- 
sidered here without taking the surface forces into account. 

BASIC EQUATIONS 

The free energy of a deformed liquid crystal in a mag- 
netic field is of the form 

only by decreasing the magnetic field. It is not excluded that 
conical deformation in pure form can be obtained simply w=tl.l/,{Kt(div nY+Mn rot n + q ) 2 + ~ s [ ( n ~ ) ~  ~ I ~ - - A ~ ( ~ H ~ ) .  , . ,  

only by this method. (11  

Besides the stability of a stationary structure with h(  IH To decrease the number of parameters on which F depends, 
we shall discuss the case hlH. In this case it was predicted in we shall measure the distance in units of a = (K2/AxH 2)'t2 

Refs. 1 and 2 that the cholesteric helix will be distorted by and the energy density in units ofAXH '. The expression for 
the magnetic field and its pitch will become infinite in a cer- Wis then 
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W='/2{Ri(div n) '+(n rot n+qa) '4-Rs[(nV)X n] '-- (nH/H)'), 

Let 8 and p be the polar and azimuthal angles of the direc- 
tion of n in a coordinate frame with unit vectors ex, e,, , and 
ez : 

n=e, sin 8 cos cp+e, sin 8 sin p+e, cos 0. 

Introducing the unit vectors 
%= [e,xn] /sin 8=-e, sin q+e, cos rp, 

ee= [e,xn] =e, cos 0 cos cp+e, cos 0 sin rp-e, sin 0, 

we can represent the free-energy density in the form 

W='/, {R, (ee V0+sin 0hVrp) '+ (sin Bee Vcp 

The form of (3) allows us to take into account explicity the 
director unit length, thus facilitating the determination of 
the stationary states: they are given by the externals of the 
functional F: 

The necessary and sufficient condition for the stability of the 
stationary state no = n(pO,B O) to small perturbation is that 
the second variation of the functional Fon this state be posi- 
tive-definite. 

3. CHOLESTERIC AXIS PARALLEL TO MAGNETIC FIELD 

A stationary state with hl lH was found in Ref. 1. Di- 
recting the z axis along the field, we can represent this state 
in the form 

If R, < 1, the constant 8 O, which minimizes the free energy 
on the class of distributions (4), is specified by the relations 

The critical field H I I  at which the cholesteric is transformed 
into a nematic is determined from the condition 

qzal~=Rs (q2Kz"=lr,A~Hll". (6)  

I fR ,> l ,  then8°=OatH>R3H11,80=n-/2atH<HlI ,  
and in the field interval H ,I < H < R3H the free energy has 
on the class of distributions (4) two minima, B 0  = 0 and 
8 = r / 2 ,  with the lower energy corresponding to a state 
with 8 O = 0 i fH > R,"~H I, and to the state with B O = n-/2 in 
the opposite case. 

We put in (3) 

and confine ourselves to terms quadratic in 8 ' and p'. As a 
result we obtain an expression for the second variation F, of 
the functional Fon the stationary state 8 O, pO. With the aid of 
this expression we readily find that the state with 8 = 0 is 
stable at H > H ,, and unstable at H < H ,I , while the state with 
8 O = ?r/2 is always unstable. Since no possibilities other than 
8 O = Oand8 O = n-/2 exist for R,, it remains to investigate the 
stability at R, < 1 in the field interval R,H < H < H , where 

conical deformation exists. To this end it is convenient to 
improve the choice of units of length and energy by making 
the changes 

r+@-'r, W+qZW. 

Since F, is invariant to shifts and rotations in thex,y plane, it 
can be assumed without loss of generality that at the instabil- 
ity threshold perturbations are excited of the form 

(p'=(E,eipr+c.c.) /sin €I0, 8'=gze'Qr+c.c. 

Taking into account the second relation of (S), we obtain for 
these perturbations 

-- ( 8, I -%sin ~ + i p  (b cos €lo cos z-1, sin z) I 2  
dbl + - -sin BO+ip ( t i  cos 0' cos z+E2 sin z) -Ez sin 20' I dz 1' 

+ Rs [ I $ cos OO+ipip sin W' cos z /Ia 
+ I  'Leos 0O+ipt1 sin 00 cos z 

dz I 
4 1  +2Re (-E; sin 2B0+z&E,. cos 20' coa z 

The angle brackets denote here averaging overz; further, {is 
a two-component vector and L is a matrix Hermitian opera- 
tor that depends on four parameters (R,,R3,8 O g ) :  

The operators i o , i  ' , i  " do not depend on p. 
The necessary and sufficient condition for the stability 

of conical deformation to small perturbation is that L be 
positive definite at all values ofp. At the stability threshold 
[which must exist in our case, since conical defamation with 
8 O-, + 0 (H+H I I  - 0) is stable, and one with 8 O+(n-/2) - 0 
(H-tR3HII + 0) is not], 8 O is a function of R,  and R,: 

0"0, (Ri, Rs) . (8) 

The critical field H, is uniquely connected with 8, by the 
relations (4) and (5): 

Q Ks va H, = 
sin' 0.+Ri COS' 0. ( K )  ' (9)  

Certain conclusions concerning the function 8, (R 3,) 
can be drawn without calculations. Thus, for example, since 
the first term of (7) is positive and the last term is negative at 
the instability threshold, 8, is an increasing function of R,  
and a decreasing one of R,. The highest and lowest values of 
8, on the segment 0 < R3< 1, R , = const, are reached respec- 
tively at R 3 4  and R,  = 1. In the case R 3 4  the only dan- 
ger to the stability are perturbations that cause the first two 
terms of (7) to vanish. From the exact equality of these terms 
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to zero follows the relation 

with the aid of which it is easy to verify that such an equality 
is possible only at 

An approximate equality is possible as p - 4 .  For the most 
dangerous perturbations 

sin 0"-ip cos 0" sin z 

so that the first two terms in (7) are proportional top4. Sub- 
stituting (10) in (7) and leaving out terms of order p4 we ob- 
tain - 

W2=R,p2(1-3/2 sinz 0°), 

from which follows 

max sinZ O,=sinz 0,l,+0=~/3. 
R3 

(11) 

In the opposite limiting case (R, = 1) we assume first that R, 
is also equal to unity. In thqsingle-constant approximation 
(R, = R, = 1) the operator L simplifies to the limit: 

f;,,=E22=-d2/dz2+pZ, L2,=Z12+=-2ip sin 0' cos Z. (12) 

The substitution 6,-ti6, makes the operator (12) real, so that 
its eigenfunctions can be chosen in the form 

with real 7, and v2. The equations for the functions 77, and 77, 
do not change when the subscript 1 and 2 are interchanged, 
so that we can put, without loss of generality, 77, = 77, or 
q1  = - T ~ .  Actually it suffices to consider one of these 
cases, since each reduces to the other by the replacement 
z+z + T. Putting 

we obtain for r] the well-investigated Mathieu equation: 

(-dz/dz2+pz-2p sin 0' cos z) q=hq. 

With the aid of tables or plots (see, e.g., Ref. 16) it is easy to 
ascertain that at the instability threshold there are excited 
long-wave @a) perturbations, periodic in z, for which 

q=1+2p sin 0' cos z+O (p2), h=pz cos 20"0(p4). 

Consequently, 

9 e  I RI-RI=I=x/~. 

Since 8, is an increasing function of R ,, we have 

Oel&=I,  R1>i>Oe (Rt=Rs=1=~/4. (I3) 

On the other hand, putting in (7) R, = 1, p a ,  and 

E= ( ip sin" cos z j* 
we obtain w2 = 4 p2cos 26 ", whence 

Be\ f i=1G~/4. (14) 

The inequalities (13) and (14) are compatible only at 

In all the particular cases considered above, long-wave 
perturbations @A) were excited at the instability thresh- 
old. If this property is preserved in the general case, the in- 
stability threshold $an be obtaned analytically. Indeed, at 
p = 0 the operator L is positive-definite, as is clear without 
calculations, since the solution (4), (5) minimizes the free en- 
ergy on the class of director distritutions that depend only 
on z. The smallest eigenvalue that L has a tp  = 0 is zero and 
corresponds to the eigenmode2' 6 O = ( A ) .  A s p 4  the small- 
est eigenvalueA @,8 O,R ,,R,) ofthe operatorL corresponds to 
a mode close to 6 O and can be obtained by perturbation the- 
ory: 

X=~1pZ+Xzp4+ . . . (16) 

The coefficient 2, vanishes on the surface 8 = 8, (R,,R,), 
defined by the equation 

0,=[2R, (1-2Rs)-Rj(1+Rs) +{[2R, (I-~RS)-R,(~+R?II " 
+4Rs (1-RJ) (l+R1) (3R1+R,))"'] [2(1-&) (R3+3R1) I-'. 

(17) 

In accord with the statements made above, sin28, increases 
with increasing R,, decreases with increasing R,, and can 
take on values from the interval (1/2; 3/2), the minimum 
being reached on the straight line R, = 1 and the maximum 
as R 3 4 .  The coefficient A, turns out to be positive on the 
surface 8' = O,(R,,R,). From this and from (16) it follows 
that perturbations with p(O are the most unstable of the 
perturbations with p< l  (the only one for which the expan- 
sion (16) is valid). Perturbations with p ~ l  can easily be 
shown to be stable at all values of R,, R,, and 8". All this 
confirms the assumption that the instability is long-wave. 

At the instability threshold are excited the perturba- 
tions 

cp' sin O0 

The coefficients bi , ci , etc. are explicitly calculable functions 
of R ,, R,, and 8 z 8,. Their estimated value is unity. Equa- 
tion (18) is applicable only in the linear approximation in the 
perturbation amplitude. To ascertain how strongly the state 
of the cholesteric is changed on going through the instability 
threshold it is necessary to take into account the nonlinear- 
ity. The general form of perturbations of finite but small 
amplitudes, which appear near the threshold, is 

cp' sin 0' 1 f(ex) bi sing 
( 0 )=  ( 0 ) ~ -  ( b , c o ~ ~ ) ' ( ~ ~ )  

, cos 25 

Here E( 1 is a small parameter connected with the long-wave 
character of the instability, 6 = z + f (EX)/E, and the prime 
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denotes differentiation of the trial function f with respect to 
its argument. The expansion in (19) is in powers off and E,  

and the ratio f / E  may also not be small. After substituting the 
expansion (19) in the exact expression for the free energy, the 
latter takes the form 

Calculation shows that the coefficient A (Rl,R3) is negative. 
Consequently the nonlinearity exerts a destabilizing action 
on the conical deformation, and the state of the cholesteric is 
strongly changed on going through the instability threshold. 
Since the field H, is strong enough to "crush" the helix, the 
equilibrium state of the cholesteric after passing through the 
threshold (i.e., at H < H, ) can turn out to be quite complicat- 
ed-the concept of cholesteric axis may have in this state no 
meaning even locally. It is not excluded, however, that di- 
rectly after the destruction of the conical deformation the 
cholesteric arrives, after going through a sequence of non- 
equilibrium and complicated states at a state with a choles- 
teric axis perpendicular to the field. We note that such a state 
certainly sets in starting with a certain field Hf (see the be- 
ginning of the next section). The question we leave open is 
whether H f coincides with H,, and if not, through what 
equilibrium states does the cholesteric go through when the 
field is decreased from H, to H f .  

4. CHOLESTERIC AXIS PERPENDICULAR TO MAGNETIC 
FIELD 

In a sufficiently weak magnetic field that causes practi- 
cally no distortion of the shape of the cholesteric h e l i ~ , ~ '  the 
stationary state with hlH turns out to be energetically most 
favored, since the liquid crystal averaged over the helix turn 
has negative anisotropy of the magnetic susceptibility rela- 
tive to the cholesteric axis (see, e.g., Ref. 17). In a stronger 
magnetic field the stability of the stationary state obtained in 
Ref. 2, with a cholesteric axis perpendicular to the field, is 
not obvious. Directing thex axis along H and thez axis along 
h, this state can be represented in the form 

0°=n/2, cp0=n/2+am (zlx, x) . (20) 

Here am is the Jacobi elliptic amplitude and x is the root of 
the equation 

(2ln)E(x) =%la, (21) 

where E is a complete elliptic integral of the second kind. 
The function q0 minimizes the free energy on a class of dis- 
tributions, that depend only on z, of the director with 0 = R/ 

2. The minimum value of the average energy density is 
W=L/2(q2az-1/~2). 

Equation (21) has a root at H < H, , where H, is determined 
from the condition x-1 - 0, i.e., 

As H-+H, - 0 the pitch of the helix becomes infinite. In 
fields exceeding the critical value, the nematic state is ener- 
getically favored. It corresponds to an average energy den- 
sity = &'a2 - 1). The same average energy density cor- 

responds to the deformation (20) with x = 1, which can be 
called a "twist soliton": 

However, the energy per unit area in the (x,y) plane is larger 
for a twist soliton than for a nematic state, by an amount 
?rqa(H/H, - 1). 

We examine now the stability of the stationary state (20) 
at arbitrary magnetic field intensity. To this end it is conven- 
ient to improve the choice of the units of length and energy 
by making the substitutions 

r ,  W+x-w. 

By virtue of the invariance of the second variation 
I;; = J W,dV of the free energy on the state (20) relative to 
shifts in the (x,y) plane one can assume, without loss of gener- 
ality, that at the instability threshold (if it exists4') are excited 
perturbations of the form 

p=p (e, cos a+ e, sin a ) ,  a=const, p=const. 

For these perturbations 

Wa=(R, I dg2/dz+pEI sin (qO-a) 12+ I dEI/dz+pE2 sin(cpO-a) 1 ' 
+2 (g-dn z) [ 1 E 2  I dn z-p (E1g2.+Ei8E2) cos (TO-a) I 

+R3 [ I pg, cos ($--a) -Ez dn z I2+p" ggl 1' cos"q"a)] 

+ X ~ ( ( ( E ~ ~ ~ C O S ~ ~ ~ + ~ E ~ ~ ~ C O S ~ ( P ~ ) ) = < E ( E ~ E ) .  
(25) 

The angle brackets denote here averaging over z, and 

are Jacobi elliptic functions; g = xqa is an auxiliary param- 
eter uniquely connected with tbe magnetic field intensity; { 
is a two-component vector and Lisa Hermitian matrix oper- 
ator that depends on the five parameters: R ,, R,, g, p, a ,x is a 
function of g), and 

The necessary and sufficient condition for the $ability of the 
stationary (20) to small perturbation is that L be positive- 
definite at all values of p and a. The stability threshold is 
specified by a certain function 

Knowing g, , we can use the formula 

to calculate the critical field, which is larger than smaller g. 
Inasmuch as with increase of the parameters R,  and R, the 
functional F, increases and the stability region broadens, g, 
is a decreasing function of R,  and R,. The stability condition 
is most rigid at R,(l,R3(1 and least stringent at 
RI%l,R3>1. 

Let R1(l and R3(1. Then at zZ(R,,RZ the necessary 
stability condition is violated: the operator L, is not possi- 
tive-definite. On the contrary, at x2(R1,R3 the state (20) is 
stable, since the reasoning presented at the beginning of the 
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section is valid. The instability threshold lies in the region 
x24  1, where 

The perturbations excited near the threshold cause vanish- 
ing of the second term in (25). Therefore the stability crite- 
rion contains in fact only the ratios R,/R,, x2 /R3  and the 
critical value of x' is given by a function of the form 

R3f (RtIR3) =x.2=4(l-g.). (28) 

In the case R, > I ,R,> 1 the only perturbations dangerous to 
the stability are 

which cause the vanishing of the first and fourth terms in 
(25). However, even these perturbations turn out to be stable 
at all values ofg. We note that considerable progress in inves- 
tigation of the stability of perturbations withp-0 is possible 
at arbitrary R,  and R, through the use of the neutrally stable 
mode < c (*"<) which exists at p = 0. Now, however, in con- 
trast to the case hl IH, such an investigation does not cover 
the problem exhaustively, since perturbations withp-0 are 
generally speaking not the most dangerous. 

Thus, depending on the relation between the elastic 
moduli of the liquid crystal, the stationary state (2) can either 
become unstable in fields weaker than H,, or remain stable 
in arbitrary fields in which the initial equation for the free 
energy is valid. If the values of the parameters R , and R, (the 
only ones on which the ratio H, /H, depends) are such that 
H, > H, , the predictions of Ref. 2 should hold all the way to 
the transformation of the cholesteric into a nematic. If 
H, < H,, the instability of the cholesteric axis in the field 
interval H, < H < H, should cause deviations from the the- 
ory of Ref. 2. It appears that such deviations have apparently 
not been reliably recorded as yet, although for the substance 
used in Ref. 3, with R, 1/4, the condition H, < H, was 
certainly satisfied. The latter is easiest to verify by noting 
that in the case 

Hl,>HA (Rs<4fnZ) (29) 
the state (20) cannot remain stable as H-tH, - 0. Indeed, as 
H-tH, - 0 it goes over into a twist soliton, for which nl IH 
in an overwhelming fraction of the volume. On the other 
hand the state with nl lH, as shown in Sec. 3, is unstable at 
H < H I / .  The instability criterion (29) (and even a stronger 
criterion) can be obtained formally by substituting in (25) the 
trial function 

5. CONCLUSION 

The calculations performed above show the following: 
a) De Gennes' predictions,' confirmed by many experi- 
ments, are still not universal-they should be satisfied for a 
number of substances at not all values of the field intensity. 

b) The Meyer theory of conic deformation, so far not 
confirmed by even one experiment, has nevertheless a region 
of validity. 

The general picture of the behavior of cholesteric liquid 
crystals in a magnetic field turns out to depend substantially 
on the direction of the field variation (hysteresis). To classify 
the possible types of behavior of cholesterics with increasing 
field (from a sufficiently small value) it is useful to note that 
the condition H, = H, (g, = 2/74 can define a certain curve 
R, = @ (R,). It is obvious from the results of Sec. 4 that this 
curve exists and lies entirely in the region R, >4/?rZ. If 
R, > @ (R,), then H, >H, and the predictions of Ref. 2 
should be satisfied all the way to the transformation of a 
cholesteric into a nematic. We note that in this case there can 
be observed in the nematic state, at H <  Hs, metastable 
states-twist solitons. If R, < @ (R ,), then H, < H, and de- 
viations from the de Gennes predictions2 should be observed 
in the field interval H, < H < H, . The question of the charac- 
ter of the deviations remains open. Some information might 
be obtained by investigating the regime of the nonlinear in- 
stability that sets in at H  = H, . In the de Gennes case, how- 
ever, the formal difficulties are so great that we were unable 
to solve even the simpler problem of finding H, . With de- 
creasing magnetic field (from a sufficiently large value to 
which the nematic state corresponds), substances with 
R, < 1 and R, > 1 behave differently. IfR, < 1, conical defor- 
mation appears in the region H < H ; it remains stable all the 
way to the field H, determined by Eqs. (9) and (17). On going 
through H, the state of the cholesteric changes jumpwise in 
view of the rigidity of the regime of the nonlinear elimination 
of the instability. Finally, at a certain field Hi the choles- 
teric goes over into a state with an axis perpendicular to the 
field, after which the theory of Ref. 2 becomes applicable. If 
R, > 1 then, as is known, no conical deformation occurs, but 
if we put H, = H ,, everything said above concerning the case 
R, < 1 can formally be retained. 

"The distribution of the director in substances with AX < 0 at the most 
suitable cholesteric axis orientation along the magnetic field is obviously 
indendent of the field intensity. 

''The neutral stability of this mode is due to the invariance of the free 
energy to shifts of the director distribution over r. 

"But is still sufficient to permit neglect of surface forces. 
4'To dispense with similar stipulations, we assume hereafter that the 

threshold field H, is infinite in those cases when the state (20) is stable at 
all H. 
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