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The expulsion of a magnetic field by a hot-electron gas whose pressure is significantly higher than 
the pressure of the magnetic field is considered. It is shown that such an expulsion process in a 
highly conducting medium is accompanied by a reconstruction of the magnetic field over periods 
of time significantly shorter than the skin-penetration time. Nonlinear wave solutions are con- 
structed for the case of a constant propagation velocity u that can be significantly lower than the 
velocity of the hot electrons. 

PACS numbers: 7 1.45.Gm 

In the present paper we solve the problem of the expul- 
sion, by a hot-electron gas, of a magnetic field H frozen in a 
conducting medium. We shall assume that the hot electrons 
are electrically neutralized because of the high conductivity 
of the medium. The freely moving electrons of a such a cloud 
then fly into the surrounding magnetic field and revolve in it 
along orbits with the Larmor radius. The diamagnetic cur- 
rentj' of the electrons of the cloud induces in the conducting 
medium, over a time r significantly shorter than the skin 
time 

Z, =4xor2/c2 

(a is the conductivity of the medium and r is the characteris- 
tic dimension of the current region) a reverse currentj, which 
cancels out the diamagnetic current of the hot e1ectr0ns.l.~ 
Since the reverse current j = a E  is proportional to the in- 
duced electric field, this results in the lowering of the mag- 
netic field strength H over a characteristic time 

( p' is the pressure of the electron cloud). This means that the 
magnetic field is expelled by the hot-electron cloud. 

The above-formulated problem differs essentially from 
the traditional formulation for magnetohydrodynamic 
shock waves and tangential discontinuities within the frame- 
work of magnetohydrodynamics3 by the presence of an addi- 
tional hot component. 

In magnetohydrodynamics the pressure p of the medi- 
um can be counterbalanced by the magnetic-field pressure 
H '/87~. In the problem under consideration this is impossi- 
ble, since the cloud pressurep' = n'ymv'' (n' is the hot-elec- 
tron density, v' is the electron velocity, and y is the relativis- 
tic factor) is significantly higher than the magnetic field 
presure: pl>H '/87r. The possibility of the pressure of the 
hot-electron cloud being counterbalanced by the inertia of 
the medium then arises. The electromagnetic force c- 'j X H 
that arises in the conducting medium in the course of the 
expulsion of the magnetic field by the hot electrons as a re- 
sult of the Hall effect produces an electric field, which trans- 
fers momentum from the cloud of hot electrons to the ions of 
the medium. 

The problem under consideration turns out to be close 
in its formulation to the problem of the propagation of heat 
in a longitudinal magnetic field,4 where the hot electron 
component, moving along the strong magnetic field, dis- 
places the cold electron component, which leads to heat 
propagation. The front of such a wave is determined in this 
case by electric potential fields. The present formulation of 
the problem differs essentially from the formulation for the 
displacement wave in that in it the hot-electron cloud is re- 
strained by the field. 

The problem as formulated here, in which a hot-elec- 
tron gas and a conducting medium are present, is, to use a 
more remote anlogy, somewhat similar to the problem of the 
interpenetration of a superconducting and a normal fluid in 
the theory of superconductivity.5 The hot-electron gas, car- 
rying current and transporting heat without hindrance, is 
analogous to the superconducting component, while the me- 
dium with a finite conductivity is analogous to the normal 
component. An important difference here lies in the charac- 
ter of the inertia: the superconducting component is charac- 
terized by the inertia of the electrons, while the motion of the 
cloud is inertialess. 

Let us now proceed to derive the basic equations de- 
scribing the wave of expulsion of a magnetic field by a hot- 
electron cloud. 

The evolution of the magnetic field is described by the 
equation 

rot H=4nc-' (j'tj), 

where j' is the diamagnetic current of the hot electrons and j 
is the current carried by the conducting medium. The con- 
ducting medium is described by the hydrodynamic equa- 
tions for the ions 

MdV/dt=ZeE (2) 

and the inertialess equation for the electrons 

which has the meaning of Ohm's law. Here V and v are re- 
spectively the ion and electron velocities, M and m are the 
ion and electron masses respectively, vei is the electron-ion 
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collision rate; p is the electron pressure, and n is the electron 
density. 

In Eq. (2) we have neglected the term with the magnetic 
field, assuming that the characteristic dimensions in the 
problem are significantly smaller than the ion Larmor radi- 
us. We assume the conducting medium to be quasineutral, 
and, in view of the fact that the density n'of the electron 
cloud is low, i.e., that nl(n, we set 

The variation of the temperature T = p/n of the elec- 
tron component in the course of the expulsion of the magnet- 
ic field is determined by the ohmic dissipation: 

n dT j2 
--=--. 
a-l d t  o(T) '  

where a is the effective adiabatic exponent. We have neglect- 
ed in Eq. (4) the heat transfer because of the presence of the 
electronic thermal conduction. As will be shown below, this 
condition can be fulfilled for typical parameters of the prob- 
lem. 

We shall, in considering the wave of expulsion of a mag- 
netic field by a hot-electron cloud, investigate the one-di- 
mensional formulation in which at the initial instant of time 
the hot electrons occupy the half-spacex < 0, while the mag- 
netic field Hz occupies the half-space x > 0. We shall in this 
case seek the wave solutions propagating in the region of 
positive x, and depending only on the variable s = x - ut. 
Equation (1) allows us to estimate the characteristic magni- 
tude of the expulsion rate u. Setting jy = aEy , and using for 
the determination of Ey the induction equation 

1 dH ---- - rot E, 
c d t  

we obtain in the high-conductivity approximation, in which 
the reverse current of the medium cancels out the diamagne- 
tic currentj; z u E y ,  the following estimate for the expulsion 
rate: 

ulc-j,,'loIfz. (6) 

Below we shall assume the following apoproximation for the 
conductivity a :  

o=croTk, k>O. (7) 

If the plasma electrons are not magnetized, the condi- 
tion a,, (v,, (aHe = eH/mc is the electron cyclotron fre- 
quency), together with (6), leads to vy (24, where vy is the 
current velocity of the electrons of the medium. This, with 
allowance for the fact that nu,, -n'vf, yields 

U B  v 'n'ln. (8) 

Below we shall, in investigating the expulsion wave, neglect 
the motion of the ions, assuming their velocity Vx to be sig- 
nificantly lower than the wave velocity u. Then, equating the 
ion velocity to the sound velocity calculated from the pres- 
sure of the hot electrons, we obtain 

We shall, with the above assumptions taken into account, 
investigate the expulsion wave within the framework of the 
equations 

n dT 1 ,dA 
a-l ds c I-, ds 

where 

and A is they component of the vector potential. 
The diamagnetic current j' generated by the hot-elec- 

tron cloud is equal to 

where the distribution function f is found from the Vlasov 
equation 

This equation has a solution that depends on s = x - ut, 

In deriving (1 3) we neglected the small Hall electric field Ex. 
In the one-dimensional formulation under considera- 

tion, the hot-electron cloud will be modeled by a flux of rela- 
tivistic electrons that travel from x = - oo in the positive 
direction, turn around in the magnetic field Hz ,  and return. 
Let us, assuming A is equal to zero at x = - a, choose f in 
the form 

Let the distribution function for the relativistic electrons in- 
jected at x = - oo in the positive x direction be equal to 

fo=Fo(&)&(~u)6 (PZ). (15) 

Then, as follows from (14), the resulting distribution func- 
tion for the electron cloud in the regionx > - oo will depend 
on u, which is due to the reflection of the initial function f, 
from the magnetic field moving with velocity u. 

We can, bearing in mind the fact that the distribution 
function f is constant along each trajectory of the individual 
particles, derive the following expression for F(Z) from (14): 

F (a) =2F, [yU2g+ ( yu2-I) 'I2 (ezyu2-m2c') (16) 

where 

Below we shall consider the most interesting case, in which 
u(c and the expulsion wave velocity is significantly lower 
than the characteristic velocity of the electrons of the cloud. 
In this case F s  W,,. 
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Notice that the expulsion wave velocity should, when 
the foregoing limitations are taken into consideration, sa- 
tisfy the following inequalities: 

If we normalize the distribution function (14) by the condi- 
tion 

then we can derive the following expression for the diamag- 
netic current of the relativistic-electron cloud: 

where 
(18) 

Here we have chosen the function &(E) in the form 

which corresponds to electron energy in the interval 
mc2 < E < emax. Such a choice of Fo(&) allows us to obtain a 
fairly simple final equation for the magnetic-field profile in 
the wave. 

Let us now use the expression obtained above for the 
diamagnetic current of the relativistic-electron cloud, and 
substitute j from Eq. (10) into Eq. (1 1). Performing the inte- 
gration over s, we obtain as a result an expression for the 
plasma temperature as a function of A and dA /ds: 

Here 0 = 87~p;/H:, where p; = +n;(d - l)mc2 is the 
pressure of the relativistic electron cloud at x = - a,. 

The characteristic magnetic-field value H. is uniquely 
determined by the parameter 0, 1, which is equal to the 
ratio of the pressure of the relativistic electrons to the mag- 
netic-field pressure. The temperature 

nof T.=2 (a- 1)-(yQ2-1) mc2 
n 

characterizes the heating of the conducting medium by the 
reverse current and To is the temperature of the conductive 
medium at the boundary of the diamagnetic current. The 
quantity j, gives the order of magnitude of the diamagnetic 
current(l8). The expulsion wave velocity u/c = ilj. /a. H, is 
determined by the eigenvalue il of Eq. (20), and depends on 
the boundary conditions of this equations. 

Let us now show that the system of equations (1),(3)-(5) 
has an integral that allows us to unamnbiguously determine 
the expulsion wave velocity. Using they component of Eq. 
(3), we represent Eq. (4) in the form 

where we have neglected the small velocity alongx due to the 
motion of the ions. 

Now, substituting the expression forj  from (1) into this 
equation, we have 

If the Poynting vector cEy HZ/4 r  vanishes as x-+ + a,, 
then, integrating (21), we find that the quantity that has the 
physical meaning of the plasma free energy is conserved dur- 
ing the heating of the plasma by the extraneous current. This 
is valid if Hz 4 as x- + co . 

Let us discuss in greater detail the case in which 
Hz -+H, as x-+ + a, . Since the plasma current jy = aE, 
vanishes at x--+ + co , E, = 0 when a is nonzero at x - +  + W .  

Here To and Ho are the plasma temperature and the magnet- Thus, the conservation of the energy (and of the magnetic 

ic field at the boundary of the hot-electron cloud. To this flux) is possible only when a, #O. But, strictly speaking, a 

boundary corresponds a magnetic-field flux per unit length 
stationary magnetic-field-expulsion wave exists only if by 

along they axis, A, = cPJe, that can cause the hot electrons chance the conductivity a, in front of the wave is equal to 

to turn around. 
zero and the magnetic field is expelled unimpeded to infinity. 

Substituting the expression obtained for T into a (T) ,  It is natural to assume that a, #O, but small compared to 

and using the expression j = m c -  'dA /ds for the current, we a,. Then an expulsion wave with constant velocity u will 

obtain from (10) the following final equation for a = eA /cPo: 
exist if the characteristic skin dimension 

6, = (c2.r/4no,)'"-r (o./po,)" 
2 dh 1 1 

-h-=a(l-a2)'"-Ah zo+-(h2-ha2)+ -(I-a')" 
3, da [ 3, 3 1 " is significantly greater than the characteristic dimension r of 

(20) the wave front, a condition fulfilled when o<a. /a, . The 
where h = H / H a ,  ho = HJH. ,T, = TJT., propagation of the wave leads to the expulsion of the mag- 

netic field from the region x - r into the region x - 6, , where 
u H.o. a=--- , U.=O,,T.~, the magnetic energy is dissipated. In the process, the ex- 
c j .  pelled magnetic-field flux gets distributed over a region of 

characteristic dimension -a,, which leads over a time peri- ( y k- i) =la 
yoa- I= - od - r to the increase of the magnetic field strength in com- 

~, , , , (Y~-~  -I)"'+ ln 1 y,,,+'(~",,, -1) "'I ' parison with H ,  by an amount 
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The use of the above-indicated energy integral in this case is 
inconvenient, since it leads to integration over an x region of 
dimension -6, , which is arbitrary with respect to the prob- 
lem under consideration and, moreover, increases without 
restriction as a, decreases, which leads to the divergence of 
the energy integral. Let us show that in this case there an 
integral over the regionx<L ( < 6, ) is conserved, up to terms 
-r/SS. It is in fact equal to the difference between the energy 
and the magnetic flux multiplied by H ,  /4r. Let us intro- 
duce the notation HL =dl, (x = L ), where r<L < 8, .  Inte- 
grating (21) over x in the region - w <x<L, we obtain 

We can, on the basis of the arguments set forth above, esti- 
mate the right-hand side of this integral to be 

Since L < 6, , we find that the integral 

in which we have set L = + w in view of the convergence of 
the integral, exists at least accurate to - r/6,. Formally, this 
corresponds to the limiting case a,  = 0. 

For the solutions that depend on s = x - ut  and satisfy 
Eq. (20), the integral assumes the form 

The integral is defined such that it is equal to zero for the 
magnetic field jump: Hz = 0 for x <xo and Hz = H ,  for 
x > x,, where xo is an arbitrary coordinate. Thus, the infinite 
magnetic-field energy for x > 0 is not included in the integral 
W. This integral will be used below to determine unambi- 
guously the wave velocity u. 

The wave velocity u will now be determined for the var- 
ious cases depicted in Fig. 1. Figure la  corresponds to the 

FIG. 1 Schematic profile of the magnetic field of the expulsion wave: a) 
two types of solutions for the case of a finite magnetic field at x+ + CO; b) 
the case of zero magnetic field at x+ + m. 

situation in which the magnetic field for x+ + w has c on- 
stant value Hz = H ,  . In this case the form of the solution 
depends essentially on the exponent k in the formula (7). 

Let us analyze the character of the solutions to Eq. (20) 
as a function of the value of the exponent k. If we introduce 
the function 

1 1 
g (a, h) = T ~  + -(hZ-h,2) + -(I-U~)~*, 

38 3 
then Eq. (20) is reduced to the form 

Integrating, we obtain the relation 

1 
a 

i-k --AS h h ,  -(gl-k-To )- 
I-k 

1 

which turns out to be useful for the determination of the 
form of the function h (a) in the region 0 < a  < 1. 

Let us represent the magnetic field near the point h = ho 
in the form 

h=ho+hl (1--az)6~+h2(1-a2)6~+. . . . (26) 

In the case when r0 = O,ho = 1. Representing h - 1 in the 
form of a series in powers of 1 - a', and substituting this 
expansion into Eq. (25), we find that the magnetic-field pro- 
file should have a peak in the k < +, and that it is monotonic 
when < + < k < 1. The wave velocity for r0 = 0 can then be 
found from the solution to Eq. (20) for the boundary condi- 
tions 

h=O .for a=O and h=l  for a=l .  (27) 

The intetral W can be represented in the dimensionless 
form 

where a,,, corresponds to the total magnetic flux in the 
wave. From this it follows that w < 0 for the monotonic pro- 
file in the region < + < k < 1, since the integrand in (28) is 
nonzero in the region O(a( 1, where h <ho = h, . 

In the rO# 0 case, using the expansion (26), we find that 
the magnetic field has a maximum, and that it falls off when 
a >  1. Because of the heating of the plasma by the ohmic dissi- 
pation, r0 = (hh - h 2, )/38. The magnetic flux is then not 
conserved. The velocity u of this maximum can be deter- 
mined from the condition that the spreading of the magnetic 
field on account of the finite conductivity should be canceled 
by its steepening as a result of the expulsion by the hot-elec- 
tron cloud. Here it is convenient to assume that H .  = Ho 
and h co = 1. The expulsion-wave velocity for this case can 
be determined from the solution to Eq. (20) for the boundary 
conditions 

h=O .for a=O, h=h,(w) for a=l. (29) 

The function ho(w) entering into these conditions can be de- 
termined from (28). Notice that, for 7,,#0, the equation pos- 
sesses solutions for both k > 1 and k < 1. Integrating (24) over 
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a in the region (O,a), we obtain 

It follows from (30) that, if fork < 1 the magnetic-field flux at 
the wave front at the wave front is finite (h-1 for a < a ), for 
k > 1 it is infinite (h+l for a-a). 

Figure l b  corresponds to the case in which the magnetic 
field has a maximum and decreases to zero in the region 
outside the diamagnetic current. In this case the finite mag- 
netic flux A ,  = A (x = ), which is conserved, is frozen in 
at the expulsion-wave front. The boundary conditions for 
(20) in this case will be 

h=O for a=O, h=ho(a,) for a=l ,  (31) 

where h,(a, ) is given by the relation 

Here a, = eA , /cP, and r ,  = T,  /T .  is the dimensionless 
temperature corresponding to the preheating at x+a .  AS 
follows from the formula given, for r ,  = 0, a finite magnetic 
flux exists at the wave front only when 2k < 1. Equation (20) 
allows us to establish a relation between a, and w. 

We shall now show that Eq. (20) always has an eigenval- 
ue A, the proof being given for the case of the boundary con- 
ditions (29). For the proof, consider Eq. (24). To the eigenval- 
ueA = 0 correspondsg = const. Figure 2 shows thosecurves 
passing through the points a = 0, h = 0 and a = l,h = h, 
which correspond to the boundaries of the hot-electron 
cloud. Let us draw through the intercept (a = a. ) of the sec- 
ond curve on the a axis a straight line parallel to the h axis up 
to the point (h = h . ) where it intersects the first curve. Let us 
integrate Eq. (20) over a in the intervals (0,a. ) and (a,, 1): 

h,2 1-k 8-4 I-" *. 
(%+%) - ( )  =-h(i-k) hda, (32) 

0 

Here h, is the point of intersection of the integral curve ema- 
nating from the point a = 0,h = 0 with the straight line 

FIG. 2. 

a = a., while h, is the point of intersection of the integral 
curve emanating from the point a = 1,h = h, with the 
straight line a = a* .  

Let us form the difference 

$-I '-k f 

- ( ) +h(l-k) J hda. 
0 

Sincehg < p  wehaveA<Owhenk< 1 andA>Owhenk> 1 
as A 4 .  Let us now choose the eigenvalue A = A,,, corre- 
sponding to h, = h. in (33). Substituting A = A,,, in (33), 
and using the expression h : = p - h g, we obtain 

From this it follows that A > 0 when k < 1 and A < 0 when 
k > 1 at A = A,,, . Thus, there exists a value of il in the con- 
tinuous interval 0 <A <A,,, such that A (A ) = 0. This indi- 
cates that the trial integral curves emanating from the points 
a = 0, h = 0 and a = l,h = h, "join" at some value of A. In 
this case the derivatives also turn out, on account of Eq. (20), 
to be continuous at a = a.. 

In the present investigation we carried out a numerical 
computation of the rate of expulsion of a magnetic field by a 
hot-electron cloud for the case of a constant magnetic field 
H ,  at X-+W and for the case of a finite frozen-in flux A, 
with allowance for the preheating T, . In both cases the ex- 
ponent in the formula (7) was equal to k = -$. In the case of a 
constant magnetic field at infinity, the conservatin of the 
quantity w has to be used in order to obtain a unique velocity 
u. Using (24), we find from (28) that 

This expression gives the above-indicated function h,(w), 
which uniquely determines the boundary conditions (29) for 
Eq. (20). Let us note that a similar problem of the unambigu- 
ous determination of a wave velocity arises in the self-similar 
problems considered in Refs. 6 and 7. 

In the case when the magnetic field H, = 0 the quanti- 
ty w has the meaning of a magnetic energy. Then it can be 
shown that the eigenvalueA determining the expulsion-wave 
velocity can simply be expressed in terms of w. Using Eq. 
(20), we obtain 

Thus, the expulsion-wave velocity in the case when the mag- 
netic flux is conserved is inversely proportional to the mag- 
netic energy at the wave front. In this case the wave velocity 
increases significantly as the preheating 7, decreases. This 
can be explained in the following manner. Although the total 
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FIG. 3. Dependence of the expulsion rate u/c on the magnitude of the 
integral w for different values ofS: a) I d ;  b) 2X 10'; c) 10'. 

magnetic-field flux is conserved, as the temperature de- 
creases, the conductivity at the wave front decreases, and the 
characteristic dimension of the front increases. As a result, 
the magnetic field at the boundary with the cloud decreases, 
and the rate of its expulsion increases significantly. To find 
the dependence of the velocity u/c on the magnitude a, of 
the frozen-in flux, we must find the relatin between w and 
a, from Eq. (20). 

In Figs. 3 and 4 we present the expulsion-wave-velocity 
values obtained as a result of the integration of Eq. (20) with 
the aid of Euler's implicit method.' 

Figure 3 shows the dependence of the expulsion-wave 
velocity on the integral w for three different values of the 
parameter /3 in the case when the magnetic field assumes a 
constant value as x--+ + oo. The magnetic field profile then 
corresponds to the curve with the peak in Fig. la. The com- 
putations were carried out for the characteristic values of the 
hot-electron energy E = 1 MV, the hot-electron density n; 
= 10'' ~ m - ~ ,  and the plasma density n = 1019 ~ m - ~ .  

Figure 4 shows the dependence of the expulsion-wave 
velocity u/c on the dimensionless total magnetic field flux 
a, frozen in at the wave front. The typical behavior of the 
magnetic field corresponds to Fig. lb. It  can be seen that the 
expulsion-wave velocity depends essentially on the tempera- 

FIG. 4. Dependence of the expulsion rate u/c on the magnitude a, of the 
magnetic flux at the wave front for different values of the preheating tem- 
perature T ,  : a) 0.2 eV; b) 0.5 eV; c) 1.0 eV. 

ture T, characterizing the preheating. The wave velocity 
decreases with increasing T,  . 

In conclusion, let us analyze the equation for the elec- 
tron temperature with allowance for the heat conduction 
and the collisional transfer of energy to the ions: 

=- 
3m " '' + div(x-VT) - - nv.,(T-T3, 

a-i d t  o M (36) 

where Ti is the ion temperature. Comparing the left-hand 
side with the second term on the right-hand side, we find that 
the effect of the heat conduction can be neglected when 

n /~>x/P,  (37) 

where x is the thermal conductivity coefficient. 
Let us, to begin with, assume that the thermal conduc- 

tion is not magnetized9: 

x=3.16nTlntvei. 

To estimate the temperaure T, let us use its characteristic 
value T .  -T1n'/n [see the formula (20)], and take as the 
characteristic time T - T, /p. Substituting these estimates in 
(37), we find that the inequality (37) is equivalent to 

From this it follows that, whenP2 lo2 and n = lOI9 ~ m - ~ ,  
this inequality is satisfied for nl/n = Under this condi- 
tion the term with the thermal conductivity coefficient in 
Eq. (36) can be neglected, and Eq. (4) is valid. In the case 
o,, >vei, when the thermal conduction is magnetized, the 
term corresponding to heat transport in Eq. (36) is still 
smaller. The last term in Eq. (36) can be neglected when n'/ 
n > m/M, which is fulfilled in the case of the nf- and n-pa- 
rameter values chosen here for heavy ions. 
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