
Alfven waveguide 
A. S. Leonovich, V. A. Mazur, and V. N. Senatorov 

Siberian Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, Siberian Division 
of the USSR Academy of Sciences 
(Submitted 25 September 1982) 
Zh. Eksp. Teor. Fiz. 85, 141-145 (July 1983) 

Waveguide propagation of Alfven waves in a nonuniform plasma is investigated by solving the 
equations of two-fluid hydrodynamics under the assumption that cold dispersion is present. 
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1. INTRODUCTION 

The present article is devoted to determining whether 
natural Alfven waves can exist in a nonuniform plasma. 
Transverse inhomogeneity plays a special role in a magne- 
tized plasma, since the longitudinal inhomogeneity of the 
plasma is, as a rule, much less than its transverse inhomoge- 
neity as a consequence of the free flow of the plasma along 
the magnetic field. 

Transverse dispersion of waves propagating in a trans- 
versely nonuniform plasma is important; in the case of Alf- 
ven waves, the transverse dispersion is low and is usually 
ignored: w = kll A, where A is the Alfven velocity. In such an 
approximation, there are no natural Alfven oscillations in a 
nonuniform plasma. ' Because there are no natural oscilla- 
tions, we are forced to study the evolution of the initial per- 
turbation, i.e., the improper oscillation of the medium,lv2 a 
typical example of which is a wave packet. The increase in 
the mean wave vector of the wave packet in accordance with 
the equation d k/dt = - dw/& plays the basic role in the 
time evolution of the packet. As a result, the packet is carried 
over in k-space into the region of large wave vectors, where it 
attenuates by viscous dissipation. 

There are two distinct effects that lead to transverse 
dispersion of Alfven waves. The first is due to the finite Lar- 
mor radius of the ions p, and produces what is known as 
"hot" dispersion, which has order of magnitude k : pf. Cold 
dispersion results from the fact that the ratio W/W,, where w, 
is the cyclotron frequency of the ions, is finite. The role of hot 
dispersion has been discussed in a number of In a 
low-pressure plasma, P = 877p/B *(I, hot dispersion pre- 
vails over cold dispersion only at very high values of the 
transverse wave vector: k, >fl -'I4kl,. The present article is 
devoted to the study of the influence of cold dispersion on 
the behavior of Alfven waves in a nonuniform plasma. 

Dispersion of a wave causes it to propagate along the 
density gradient. At an appropriate density profile, the wave 
may become "locked" into some region in space bounded in 
the transverse direction. This type of natural oscillation can 
be referred to as an Alfven waveguide. 

dv 1 an 
min - = -[rot B, x B] , - + div nv=O. 

dt 4n dt (2) 

Here B is the magnetic field, v is the velocity of the plasma, 
and n is the density of the plasma. 

In equilibrium, we may set B = (O,O,B,), B, = const, 
v = 0, and n =. n(x). The perturbation in the wave will be 
described by means of the dimensionless vector b = B1/B0, 
where B' is the perturbed magnetic field. Setting 

b=b(x) exp ( - io t+ ik , z ) ,  

and linearizing the initial equations, we arrive at the follow- 
ing system of equations for b, and by : 

d2b. , + ($ - k,') b==-iuk,lb., 

Here A =A (x)=~,J(4m(x)rn,)~~~ and u = w/w, is a small 
parameter which "entangles" Eqs. (3) and (4). 

In the limit u = 0, Eqs. (3) and (4) separate; the first 
equation describes a fast magnetosonic (FMS) wave in which 
by = 0 and b, #O. Depending on the density profile, the so- 
lutions of this equation may belong to the continuous as well 
as the discrete spectrum. Equation (4) with u = 0 describes 
layered Alfven waves: 

and at each point x = xo there exists an oscillation localized 
at this point and having a frequency w2 = k :A 2 ( ~ O ) .  

Dispersion of the Alfven waves occurs if u is finite. This 
is quite simple to understand for a uniform plasma. In this 
case, the system (3),(4) yields the dispersion equation 

2. BASIC EQUATIONS where k = k : + k t, while the plus sign corresponds to the 
The simplest technique for studying the influence of FMS wave and the minus sign to the Alfven wave. Small 

cold dispersion is that of two-fluid hydrodynamics. Ignoring corrections due to the parameter u in the case of a FMS wave 
the inertia of the electrons and the electron-ion collisions, do not play any special role. On the other hand, dispersion of 
and assuming that the plasma is cold, we have the Alfven wave is entirely due to the small correction 
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where kg = 2uk t. Hence it is clear that the nature of the 
dispersion depends on the ratio k, /ko. Dispersion is substan- 
tial if k, 5 ko (referred to as quasilongitudinal propagation). 
It  is easily verified that in this case the Alfven wave has 
elliptical polarization (which turns into circular polarization 
if k, = 0). If k, %ko, dispersion (5) becomes negligibly 
small.'' In this case, the polarization ellipse elongates and 
the polarization becomes nearly linear. 

Let us now study the effects of finite u in a nonuniform 
plasma. Substituting by from (4) in (3), we obtain for b, an 
equation in Schrodinger form: 

d2b,/dx2-V (x) 6 ~ 0 ,  (6) 

where the potential is 

Depending on the type of the potential V(x), which is deter- 
mined by the density profile and by the value of w, Eq. (6) can 
have both infinite and spatially localized solutions. In the 
latter case, the parameter w in the potential (7) must be se- 
lected so that the Schrodinger equation (6) has a solution 
with energy E = 0. There may be several such values of w.  
This means that the energy level E = 0 may correspond both 
to the ground state and to excited states in the well V (x). 

By means of Eq. (6) it is possible to express b 1 in terms 
of b, . Substituting it in (4), we obtain 

-1 

-k: (I-u2) ] b.. 

3. WAVEGUIDE FOR ALFVEN WAVES 

We select a density profile n(x) with maximum at the 
point x = 0. The expansion 

n ( x )  =no (I-x2/a2) (9) 

applicable if Jx 1 (a may be used near the maximum point. 
Let us consider a wave with frequency nearly equal to 

k,Ao, where 

Ao=A ( 0 )  =Bol(4nmino)", 

for which we set 

w=k,A, (1-u2/2-6/2) ,  (10) 

and the parameter S is small: IS 14 1. Then the potential (7) 
takes the form 

I t  has no singularities at S > 0. Its plot is shown in the figure. 
The narrow well in the center is due to the finite value of u. If 
the bottom of the curve drops below zero, for which we must 
have S < u, Eq. (6) can have eigensolutions in the discrete 
spectrum (i.e., it can have the energy level E = 0). 

We find the solution in two limiting cases. The dimen- 
sionless parameter characterizing the potential well is the 
product of the depth and the square of the width. For the 

FIG. 1. 

narrow well in the center, it is equal to u2k :a2. If uk,a)l, 
the well may be considered deep and there are many solu- 
tions in the discrete spectrum. If uk,a( 1, the well is shallow 
and there is only one solution. 

If the level E = 0 is near the bottom of the deep well, the 
characteristic dimension A of localization of the solution is 
muchless than the widthas 'I2 ofthe well, i.e., A 2(a2S. Then 
the potential is quadratic and its solutions are well known. 
We have 

which, in accordance with (lo), means that 

In order of magnitude, the number of states in the discrete 
spectrum with S > 0 is n - uk,a> 1. In the ground state, the 
eigenfunction has the form 

b.=exp ( - z 2 / A 2 ) ,  A=2'" (a lk , )  ''. 

If A <a, meaning that 

k,aBI ,  

the expansion (9) is applicable. We assume everywhere below 
that the condition (12) is satisfied. In the case of a deep well, 
even the stronger inequality uk,a> 1 holds from which fol- 
lows the condition A '<a26 proposed earlier. 

In the case of a shallow well, uk,a<l, the dimension of 
localization of the eigenfunction is much greater than the 
width of the well. In this case, the result can be obtained by 
matching the solution within the narrow center well to that 
outside it (see, e.g., Ref. 5, p. 196). The equation outside the 
well has the form 

Its solution, which is decreasing as x+ + a, is designated 
b !+ '. We have 

b,'+'=Dp[ (2k, /a)'"x],  

where 

and D, (z) is a parabolic-cylinder function (see Ref. 6, Russ. p. 
1081). Equating the logarithmic derivatives of this solution 
and of the solution within the well, we obtain 
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Since k,a(S + 2u2)(1, using the formulas of the theory of 
parabolic-cylinder functions, we have for the unique solu- 
tion 

The eigenfunction extends far outside the narrow central 
well of the figure and coincides there with the solution b !+ ': 

The solution within the well in fact reduces to an abrupt 
change of the derivative and can be interpreted as a kink of 
the solution (13) at the point x = 0. The characteristic scale 
of this solution is A = (a/k,)"*. By virtue of the condition 
k,a> 1, we have A (a, and, consequently, the expansion (9) is 
valid. 

The polarization of the resulting solutions is of interest. 
According to (8), 

Hence it follows that in the case of a deep well, uk,a> 1, we 
have b,,(x)/b, (x) = - i, i.e., the polarization of a van Alfven 
wave is circular. This result corresponds to the fact that in a 
deep well the characteristic wave vector k,-l/A 
= ( k , / ~ ) ' / ~  satisfies the quasi-longitudinal propagation 

condition 
k,/k,- (k,a) -"*cu". 

In the case of a shallow well, the polarization is ellipti- 
cal, the semi-axes of the ellipse depending quite strongly on 
the coordinate x. If x = 0, we have 

though even at x = u ' / ~ u ~ A  the ratio of the axes is inverted, 
Ib,,/b, 1 < 1. 

In the present article we have studied the influence of a 
finite value of the parameter u = w / o i  on the propagation of 
Alfven waves in a nonuniform plasma. We have shown that 
natural (waveguide) solutions can exist for Alfven waves 
near the plasma-density maximum. This effect can play an 
important role in the physics of the magnetosphere and in 
the physics of the sun. Conditions necessary for the existence 
of waveguide solutions in the earth's magnetosphere may 
occur in the neighborhood of the plasmopause as well as in 
the magnetosphere ducts. As for the physics of the sun, Alf- 
ven waveguides may appear in the corona solar loops. 

"If k, > (mi/m,)"2kz, the inertia of the electrons begins to influence the 
dispersion of the Alfven wave. 
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