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The equivalent second-order perturbation theory correction operators for the hydrogen atom in 
crossed electric and magnetic fields are computed with the aid of the Sturm basis. The corrections 
themselves are computed, and the question of the lifting the residual degeneracy in this order in 
the case of perpendicular fields is also investigated. 
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L INTRODUCTION 

The problem of the spectrum of the hydrogen atom in 
crossed fields is not only of general theoretical interest. It  is 
important also in different areas of physics: in solid state 
physics (excitons in external fields), in astrophysics for the 
study of many-photon ionization processes in the field of a 
monochromatic wave, and in the physics of atomic colli- 
sions, where an effective magnetic field arises on going over 
into the rotating system of coordinates. Lately, because of 
new experimental techniques, much attention is being given 
to the direct investigation of the Rydberg states of the hydro- 
gen atom in external fields. 

The first-order perturbation theory for the hydrogen 
atom in crossed electric I: and magnetic H fields was first 
considered in 1923 by Einstein within the framework of the 
old Bohr theory.' The first-order quantum perturbation the- 
ory was developed by Demkov et al., In this problem, in spite 
of the strong degeneracy of the energy levels of the hydrogen 
atom, we can relatively simply find in the general case the 
correct wave functions of the zeroth-order approximation, 
and obtain the first order correction to the energy. The sec- 
ond order perturbation theory is also considered in Ref. 2, 
but the result for the correction due to the electric field turns 
out to be incorrect, since it is obtained under the erroneous 
assumption that the corresponding correction operator is 
diagonal in parabolic coordinates; this error has already 
been pointed in a number of papers (see, for example, Ref. 3). 
For the correction conneted with the magnetic field, an in- 
correct expression is given in Ref. 2 without derivation. All 
this impels us to return to the computation of the second- 
order corrections. In the present paper we obtain with the 
aid of the Sturm representation equivalent operators for the 
second-order corrections, compute the corrections them- 
selves, and also investigate the question of the lifting in this 
order of the residual degeneracy in the important-for appli- 
cations--case of perpendicular fields. 

Following Ref. 2, we state the first-order perturbation 
theory results that will be needed below. The Hamiltonian 
R of the hydrogen atom in crossed fields has the form 
(fi  = m = e = 1, c is the velocity of light) 

In first order in the field intensities (the field intensities are 
assumed to be of the same order of smallness), the diamagne- 
tic interaction potential V, does not make any contribution, 
and V ,  can be diagonalized because of the existence of an 
operator equality for the Runge-Lenz vector A normalized 
by the condition A + L = n2 - 1, namely, 

This equality is valid in the subspace of hydrogen wave func- 
tions with a fixed principal quantum n (i.e., on the n sheet). 
Using (I), we can write the interaction potential V, on then 
sheet in terms of the generators L and A of the 0 (4) group in 
the form" 

V,=w,I,+o,I,, (2) 
where 

I,='/, (L+A) , I2='I2(L-A), 

The commuting operators I, and I, obey the normal commu- 
tation relations for the angular momentum operators in 
three-dimensional space, and on the n sheet 

I,"I,"j ( j + l ) ,  

where j = (n - 1)/2 (see, for example, Ref. 4). The correct 
wave functions of the zeroth-order approximation are the 
eigenfunctions of the operators I  ,, ( I  ,, is the projection of I, 
onto o,) and I,, (I,, is the projection of I, onto a,): 

The explicit expression for the functions $,,.,. is given in 
terms of the hydrogen wave functions in parabolic coordi- 
nates in Ref. 2. In the basis of these functions the interaction 
V, is diagonal, and the first order correction to the energy is 
equal to E ['I = o1n1 + w2nn. 

2. SECOND ORDER PERTURBATION THEORY FOR THE CASE 
OF ARBITRARY MUTUAL ORIENTATION OF THE FIELDS 

The quadratic-in the field intensities--correction E ',' 
to the energy is the sum of the second order correction from 
V, and the first-order correction from V,. In this case the 
magnetic field entering into V, does not make any contribu- 
tion, since the operator H-L gives rise to only matrix ele- 
ments that are off-diagonal in the principal quantum num- 
ber, and are equal to zero. Choosing the direction of the z 
axis along the electric field, we can write the correction E',' 
in the form 
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where 

I film) (Elm I I d m )  (elm I Gn=C E - - E , -  
;rim 0 lm 

is that part of the Coulomb Green function which is regular 
at E = En and the lnlm) are the eigenfunctions of the opera- 
tor %,, in spherical coordinates. 

To compute the contribution of the electric field, we 
transform in G, from the hydrogen to the Sturm basis, in 
which only a finite number of the matrix elements of z are 
nonzero. The Sturm functions Jnlm), for which we shall use 
round brackets, are the eigenfunctions of the charge opera- 
tor. 

%=r(Z, ,-E)+l  

and differ by a normalization factor from the hydrogen wave 
functions for the same charge value Z and the same energy 
value E.5 The Coulomb Green function G (E,Z ) in the Sturm 
basis has the form 

7 I nlm)(nlml I film) (film 1 
G ( E , Z ) = ~  -Z +x ZG-Z . 14) 

lm nln~ 

Here the part that is singular at Z+Zn has already been 
separated out, but it differs from the singular part of the 
Green function for E E ,  , since, on the one hand, the rela- 
tion between the charge and the energy is nonlinear, i.e., 
Zn = n( - 2E ) ' I2 ,  and, on the other, the Sturm functions are 
taken at energy E #En. Expanding the Sturm functions and 
the denominator in the first sum up to first order in 
AE = E - E n ,  and then separating out the part that is regu- 
lar for A E 0 ,  we obtain for Gn the expression 

where G",s the second sum in (4) for Z = Zn = 1 and 
E = En (i.e., the regular part of the Coulomb Green function 
in the Sturm representation). 

Using for Gn the expression (S), we compute the matrix 
elements of the operator W = zG, z on the n sheet in the 
spherical basis. The matrix elements ofz are computed in the 
Sturm basis with, as usual, the aid of the recursion formulas 
for the Sturm functions. It follows from the structure of the 
recursion formulas that, out of the infinite sum over ii in G i, 
only the terms with f i  = n + 1, n + 2 makes nonzero contri- 
butions, and the matrix elements 

W l m l ~ m ~ =  (nlm I W 1 nl'm') 

are nonzero only for m = m'; I ' = I ,  I + 2. After simple, but 
tedious computations, we obtain for the WIml.,, the expres- 
sions 

Comparing (6) with the matrix elements of A t, which are 
computed in Ref. 6, we obtain the following operation equa- 
tion, which is valid on the n sheet2': 

The equivalent operator for the diamagnetic interaction 
on the n sheet is derived in Ref. 6: 

where L, and A,  are the components of the angular mo- 
mentum and the Runge-Lenz vector along the direction of 
the magnetic field. 

The correct zeroth-order functions $,,.,- are the eigen- 
functions of the two independent momentum operators I, 
and I,. Owing to the operator equations (7) and (8), the cor- 
rections E '2' can be computed with the aid of the standard 
techniques of the theory of angular momenta, if L and A are 
expressed in terms of I, and I,. The final result for the cor- 
rection E '2' has the form 

n2H2 + -[7nZ+5+4n'n"sin y1 sin y2+ (n2-1) (cos2 yI+cos'yr) 
48c2 

-12 (nr2  cos2 yI-n'n" cos y1 cos yz+nff2 cos2 yz) 1, (9) 

where y, and y, are the angles between the vector H and the 
vectors o, and o, and y = y, + y,. The correction E "' is, in 
order of magnitude, proportional to the square of the field 
intensities, but it is not of the bilinear form in F and H; the 
dependence ofE "'on the field intensities has a more complex 
character, since the zeroth-order functions themselves de- 
pend on the mutual orientation of F and Hand on the ratio of 
one field strength to the other. 

3. THE CASE OF PERPENDICULAR FIELDS 

The expression (9) obtained above for the second order 
correction is valid in those cases when the degeneracy is lift- 
ed completely in the first-order perturbation theory. If the 
degeneracy remains, we must further diagonalize the opera- 
t o rn  = V2 - F 2  Win the subspace of the wave functions for 
which the energy levels are degenerate in the first-order per- 
turbation theory. Such a situation arises in three particular, 
but important cases: the Stark effect (H = O), the Zeeman 
effect (F = O), and perpendicularly oriented fields. The qua- 
dratic Stark and Zeeman effects have already been investi- 
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For perpendicularly oriented fields, the second-or- 
der perturbation theory has not been investigated. In this 
case w, = w, = w, and the first-order correction depends 
only on the sum q = n' -I- n" of the quantum numbers n' and 
n". The degree of degeneracy then turns out to be the same as 
for the linear Stark effect. The degeneracy of the levels with a 
given q is completely lifted in the second-order perturbation 
theory, and the correct zeroth-order functions in a subspace 
with fixed n and q are the eigenfunctions of the operator A. 
The nontrivial part of the operatorn in this subspace has the 
form 

Aq=bIiaIzaf 2aIipIzp, (10) 

where 
nzHz nZHZ 9n'F2 nzH4 

a=-- b = - - -  +- 
2c2 ' 4cz 4 8c60z' 

I, is the component of Ii along the vector mi, whileI,, is the 
component of Ii in the direction lying in the (a , ,  a,) plane 
and orthogonal to the vector mi . The operatorn differs from 
the operator A, by terms that are constant in the (n, q) sub- 
space and are given by the right-hand side of (1 1). The com- 
ponents of the vectors I, and I, in (10) are taken in different 
coordinate systems, but because I, and I, commute with 
each other, the operator A, has the same eigenvalues A 
(A, $,,, = A$,,, ) as it would if these components pertained 
to the same coordinate system. In the last case the spectral 
problem is solved through the separation of the variables in 
ellipsoidal cylindrical coordinates on a sphere in four-di- 
mensional momentum space.' The ellipsoidal cylindrical co- 
ordinates a, /?, p are specified by the parameter k = [(b + a)/ 
(b - a)]"2, and are connected with the Cartesian coordi- 
nates in the following manner: 

x,=sin a [I-k" sinZ I] " cos cp, 

xs= [ I - k 2  sinZ a )  " sin !3, x4=cos a cos P, 
OGcp<2n, OGaf x,  --x/2G8<~d/2, 

where k " = 1 - k ,. The correction E "' to the energy is con- 
nected with the eigenvalue A by the relation 

The separation of the variables in ellipsoidal cylindrical co- 
ordinates leads to the generalized Lam6 equations, for which 
the eignevalues A cannot be computed analytically. The so- 
lution to these equations is analyzed in detail in Ref. 8. The 
correct zeroth-order functions $,,, can be expressed in 
terms of the functions $,,.,. with a fixed value of the sum 
q = n' + n": 

n'n" 

where the expansion coefficients Ct.,. (k ) are the same as in 
the expansion of the hydrogen wave functions in ellipsoidal 

cylindrical coordinates in terms of the wave functions ob- 
tained through the separation of the variables in cylindrical 
coordinates on a four-dimensional sphere. These coefficients 
can be regarded as generalized Clebsch-Gordan coefficients, 
since they relate two types of unitarily equivalent bases of 
one and the same representation of the 0 (4) group. 

There exists another version of the problem of the hy- 
drogen atom in perpendicular fields, that arises in the theory 
of collisions. In certain cases the effect of the incoming parti- 
cle on the hydrogen atom amounts to the action of a uniform 
electric field directed along the internuclear axis. According 
to the Larmor theorem, there appears, on going over to the 
coordinate system rotating with the internuclear axis, an ef- 
fective magnetic field directed perpendicularly to the colli- 
sion plane, but the diamagnetic interaction V, does not oc- 
cur. Because of the absence of the diamagnetic interaction, 
the correction E ',' and the parameter k each has a different 
value: 

4. CONCLUSION 

The problem considered in the present paper is unique 
in the sense that we have been able to obtain here, apparently 
for the first time, the second-order correction in the problem 
with unseparable variables in the elementary form. Until 
now, such results have been obtained only for systems that 
admit of complete separation of the variables (the hydrogen 
atom in an electric field, the problem of two Coulomb 
centers, etc.), for which the asymptotic methods of the the- 
ory of ordinary differential equations can be used. The com- 
putation of the second-order corrections for the hydrogen 
atom in crossed fields was made possible by the introduction 
for the operators Wand V, of equivalent--on the n sheet- 
operators, i.e., operators having the same matrix elements 
on the n sheet and expressible in terms of the integrals of 
motion L and A of the unperturbed problem (or in terms of I, 
and I,). There is, generally speaking, no universal recipe for 
the determination of the equivalent operators, but we can 
indicate a procedure that will help greatly in those cases 
when the original operator is a function of the coordinates 
and of the momenta, F(x,  p). This method consists in the 
preliminary solution of the classical problem, and is used in 
Ref. 6 to find an additional integral of motion for the hydro- 
gen atom in a weak magnetic field. The equivalent operator 
obtained there for the diamagnetic interaction has been used 
in the present paper to determine the second order correc- 
tion. The analog in classical mechanics of the equivalent op- 
erator on the n sheet is the value of the functions F(x, p), 
averaged over the unperturbed classical trajectory. The 
averaged function F(x,  p) can be expressed only in terms of 
the integrals of the motion for the unperturbed problem i.e., 
F(x,  p) = F,(L, A), and allows us to purposefully choose the 
equivalent operator in quantum mechanics. When this pro- 
cedure does not lead to an exact expression for the equivalent 
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operator, it is natural to use the operator Fo(L, A) as its ap- 
proximate value. The procedure proposed here is not always 
applicable. For example, the operator W cannot be repre- 
sented in the form of a function of the coordinates and the 
momenta, and therefore there is no simple analog for it in 
classical mechanics. In this case we are obliged to choose the 
equivalent operator blindly, which makes the solution of the 
problem considerably difficult. 

The use of the Sturm basis for the hydrogen atom is 
natural when the perturbation is a polyomial in the coordi- 
nates and the momenta. In this case only a finite number of 
the Sturm states become involved in each order of the pertur- 
bation theory. The problem can be reduced with the aid of 
the recursion formulas for the Sturm functions to an algebra- 
ic problem, and its subsequent solution can be carried out on 
a computer, using standard analytic languages such as 
REDUCE-2. This approach can be used to investigate the 
hydrogen atom in crossed fields in the higher orders of the 
perturbation theory. 

The author is grateful to T. P. Grozdanov, Yu. N. Dem- 
kov, and V. N. Ostrovskii for useful discussions. 

"The expression (2) for the interaction V ,  was first obtained by Einstein in 
the old Bohr theory.' Einstein also showed that the problem is reducible 

in first order with the aid of this expression to the quantization of the two 
independent angular momenta I, and I,. 

"In Ref. 2 it is assumed in the derivation of the second-order correction 
due to V ,  that the operator zG,z is diagonal in the parabolic system of 
coordinates, as a result of which an incorrect expression is obtained for 
the equivalent operator on then sheet. It can be seen from the relation (7) 
that the diagonal character is destroyed because of the presence of the 
operator L '. 
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