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Evolution of electromagnetic showers in crystalline media is considered. It is shown that a shower 
can develop in a crystal over a much shorter length than in an amorphous medium. It is estab- 
lished that at sufficiently high particle energies the cascade functions in the crystal differ only by a 
scale factor from those in an amorphous medium. The cascade functions are found for the region 
of relatively low photon energies, when coherent effects manifest themselves in the shower devel- 
opment only when particles radiate in the crystal. The probability of appearance of a large num- 
ber of shower particles over a radiation length in a polycrystal is estimated. 

PACS numbers: 6 1.80. - x 

91. INTRODUCTION 

The cascade theory of electromagnetic showers, first 
proposed by Bhabha and Heitler' and by Carlson and Op- 
penheimer2 and subsequently developed by Landau and 
Rumer3 and by Tamm and Belen'kii; is applicable to the 
case when the substance in which the shower develops is 
amorphous. In this case, according to the equations of cas- 
cade theory, the shower develops over the radiation length. 

The present paper is devoted to a theoretical investiga- 
tion of the development of electromagnetic showers in crys- 
talline media. 

It was shown in Refs. 5-7 that when high-energy parti- 
cles interact with crystals coherent and interference effects 
can be caused by radiation and production of electron-posi- 
tron pairs, and that owing to these effects the probabilities of 
radiation and pair production at high energies can exceeed 
considerably in crystals the corresponding probabilities for 
an amorphous medium. It is clear that coherent and interfer- 
ence effects should manifest themselves also in the presence 
of electromagnetic showers in crystals. 

The first attempt to study the development of electro- 
magnetic showers in crystalline media was undertaken in 
Ref. 6 in connection with observation, in cosmic rays, of 
several events with anomalously large numbers of particles 
(electron-positron pairs) on the radiation length8-" (the so- 
called Schein showers). Namely, it was assumed that these 
events are due to the fact that the shower develops in a poly- 
crystal rather than in an amorphous medium. In this case, 
however, by far not all the possibilities were investigated, 
and the cases considered led in essence, for a shower passing 
through a polycrystal, to the same results as in an amor- 
phous medium. 

It was suggested in Ref. 12 that the Schein anomalous 
showers are connected with the radiation of electrons and 
positrons channeling in a polycrystal. 

An investigation of the spatial distribution of the ioni- 
zation in cascades produced by high-energy muons in lead 
has revealed the so-called "short" cascades, i.e., cascades in 
which particle absorption is faster than in ordinary electro- 
magnetic cascades. l7 In the study of the factors that lead to 
such cascades, attention was called to the fact that in the 

experiment the shower developed not in an amorphous me- 
dium but in a p~lycrystal. '~ 

It was shown in Ref. 18 that coherent effects can occur 
in the development of a shower in a polycrystal only if the 
polycrystal grain dimensions are large enough. That is to 
say, it is necesary that the shower have time to develop with- 
in the confines of individual grains of the polycrystal. Atten- 
tion was called in Refs. 18 and 19 to the fact that coherent 
effects can arise in the course of shower development not 
only when the particles interact with the polycrystal, but 
also in the case when the shower develops in a single crystal. 

We develop in the present paper a theory of electromag- 
netic showers in crystalline media, with consistent account 
taken of coherent effects in the interaction of the particles 
with the crystal-lattice atoms. We show that owing to these 
effects the length over which the shower develops in the crys- 
tal can be much shorter than the radiation length, and that 
coherent effects in the development of the shower in the 
crystal can take place at energies attainable with modern 
accelerators. 

In $2 we present the general equations of the cascade 
theory of showers and discuss the peculiarities of the solu- 
tion of these equations in the case of particles moving in an 
amorphous medium, in a crystal, and in an intense external 
field. In addition, we obtain in this section equations for the 
case when production of electron-positron pair can be disre- 
garded and when the characteristic photon-emission fre- 
quencies are low. 

In Sec. 3 is determined the cascade function of the elec- 
trons at low energy transfers and when the production of 
electron-positron pairs is neglected. It becomes possible in 
this case to consider from a unified point of view such ques- 
tions as the ionization energy lost by fast particles in a medi- 
um, the electron energy losses in a synchrotron with fluctu- 
ations taken into account, and the formation of photon 
showers in single crystals. 

In $4 we investigate the development of electromagnet- 
ic showers when particles move near the crystallographic 
axes in the absence of channeling, and show that if the energy 
of the particles that participate in the shower are high 
enough the shower functions in a crystal differ only by a 
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scale factor from the shower functions in an amorphous me- 
dium. 

In $5 is investigated shower development in crystals at 
relatively low photon energies, when the influence of the 
production of electron-positron pairs on the shower devel- 
opment can be disregarded. 

In $6 we consider shower development in polycrystals. 

42. BASIC EQUATIONS OF CASCADE THEORY 

We denote by r (w)dw and 17 ( E ) ~ E  the numbers of pho- 
tons and electrons and positrons in the energy intervals (a ,  
w + do) (E, E + d ~ )  at a penetration depth t of the particles in 
the medium. It is known then3 that the development of an 
electromagnetic shower in a medium at high energies is de- 
termined by the system of equations 

00 8 

+ J d u n  (u )  n (u, u-E) - J d u n  ( E )  n (e, e-u) , 
E o (2. la) 

(ID 

-- dr(a)- Sdun(u )n  (u. a )  - jdur (o)  ( a ,  u) .  (2. ib) 
dt 

D 0 

Here a(u,o) and y (a ,  u) are the probabilities, per unit length, 
of emission of a photon of energy o by an electron of energy E 

and of formation, by the photon, of an electron-positron pair 
with electron energy1' u. These quantities are connected with 
the cross sections do,, (u, o) for photon emission and d o  + (a ,  
u) for electron-positron pair production by the relations 

n (u,  o )  =n do,(u, a )  do* (o, u)  
, y (o ,u )=n  

d o  du 1 (2.2) 

where n is the number of atoms per unit volume. 
Equations (2.1) are independent of where the shower 

develops, in an amorphous or crystalline medium. This fac- 
tor governs only the structure of the quantities T and y. 
Equations (1.1) can be used also when the shower develops in 
a given external field, in which case it is necessary to know 
only the corresponding probabilities a and y. 

In the case of an amorphous medium the values of a and 
y are determined by the known Bethe and Heitler equa- 
tions3v7: 

where 

L is the radiation length, zleI is the charge of the atom of the 
medium, and m is the electron mass. Inasmuch as in the case 
of an amorphous medium L is the only quantity with the 
dimension of length in Eqs. (2. l), it is natural for the shower 

to develop in an amorphous medium over a length of the 
order of the radiation length. 

When fast particles move in crystals the quantities a 
and yare much more complicated functions of the particle 
energy than in an amorphous medium.' The reason is the 
presence of coherence and interference effects that manifest 
themselves in the motion of high energy particles at small 
angles to the crystal axes or planes. Owing to these effects, 
the probabilities of radiation and pair production in the crys- 
tal can exceed considerably those in an amorphous medium. 
Consequently the development of electromagnetic shower in 
a crystal can also proceed more intensively than in an amor- 
phous medium. 

The study of photon emission by fast particles in a crys- 
tal is similar in many respect to the problem of photon emis- 
sion by high-energy particles in an external macroscopic 
field.20 Thus, in a number of cases the probability of forma- 
tion of electron-positron pairs in a crystal turns out to be 
much less than the photon-emission probability. The situa- 
tion is similar as a rule even in strong external fields. In these 
cases the cascade-theory equations become much simpler: 

We see that here the distribution in electron energy does not 
depend on the photon distribution and is determined by the 
first equation of (2.4). Finding from it the function we can 
obtain in accord with (2.4b) the distribution in photon ener- 
gy I- (4. 

Equation (2.4a) can obviously be rewritten in the form 

If the characteristic photon-emission frequencies are low 
( W ~ E ) ,  we have 

and Eq. (2.5) takes the form 

where 
m m 

E ( E )  = d o o n  (e, a ) ,  k ( e )  = j dao2n  ( E ,  o ) .  (2.8) 
0 0 

If the total energy lost by the particle to radiation is low, 
the quantities a(& + o ,o )  and a(&,@) in (2.5) can be replaced 
by a(eO,o), where E, is the initial energy of the electron. In 
this case (2.5) takes the form 
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An equation of this type was first obtained and used by Lan- 
dauzl to determine the distribution function of fast particles 
that lose energy to ionization in a thin layer of matter. 

We note that the Landau equation (2.9) goes over at 
W(E into Eq. (2.7) if E replaced by E, in the expressions E (E) 

and E '(E) in this equation. Clearly, such a replacement is 
valid only for particles passing through a thin layer of mat- 
ter. 

Equations (2.4)-(2.9) are simpler than the inital Eqs. 
(2.1) of cascade theory, and will therefore be the starting 
point of our analysis. 

53. CASCADE ELECTRON FUNCTION IN THE CASE OF SMALL 
ENERGY TRANSFERS 

A formal solution of the Landau equation (2.9), satisfy- 
ing the condition 

~ ( E ) I , = O  =a(& - EO), 
is known to be of the form 

1 
= d~explp(e~-c)-tW(p)I, 

2nz (3- 1) 
- im+a 

where 

~ ( p )  = J dwn(a., w) (i-e-pm). 
0 

S (E - E ~ )  is a delta function, and u > 0. 
If the characteristic frequencies of photon emission by 

an electron in an external field are small compared with the 
electron energy, the function Wlp) can be expanded in pow- 
ers of p. Retaining the first two terms of the expansion we 
find that 

- 
W (p) =pBo-'lzp2E02, (3.2) 

where Eo = E ( E ~ )  and Eo2 = E ' (E~). We then obtain for I7 (E) 

fl (E) = (2;nEt) -Ih exp {- ( E ~ - ~ B ~ - E ) ~ / ~ ~ E ~ } .  (3.3) 

It is clear that the same expression can be obtained from 
(2.7) by replacing in the latter E(E)  and E '(5) by Eo and Hi 
respectively. 

The quantities (tEo) and (t r) in (3.3) determine the 
mean values of the particle energy lost to radiation and the 
mean fluctuations of the energy lost to radiation at the depth 
t. 

In the particular case of motion of a relativitic electron 
along a circle in a magnetic field, the function .rr(~,w) takes 
the formzz 

where H is the magnetic field strength, 

w, = 3~~ /2 rn~R, ,  

R ,  = &/eH is the radius of the electron orbit and K ,,, (f ) is a 
Bessel function of imaginary argument. 

According to (2.8) we have then 

Knowing E we easily find the fluctuation of the radius of 
an electron orbit in a synchrotron 

(This expression for first obtained by Sokolov and TernovZ3 
by another method2'). 

If we disregard in (2.7) the fluctuations of the electron 
energy losses, (2.7) takes the form 

The solution of this equation can be obtained for an arbitrary 
value of the electron energy loss in an external field (see, e.g., 
Ref. 24): 

Knowing IT(&), we can find according to (2.4b) the 
change of the number of photons with penetration depth t: 

t 0. 

r ( ~ ) =  Jdt'n(c(t1). a ) .  LO)-- J ~ E E I I ( E ) .  (3.9) 
0 0 

whereqt)  is the mean electron energy at the depth t. The 
¶uantity q t  ) satisfies according to (3.8) the equation 

de(t)/dt=-E(e) . (3.10) 

In the particular case of an ultrarelativistic electron 
moving in an electric field of intensity E the value of E is 
given by 22 

E (e) =2e4EE,Zez/3m', (3.11) 

where E, is the E component orthogonal to the electron ve- 
locity. In this case, according to (3. lo), 

This formula was first obtained by Pomeranch~k .~~  It is val- 
id if the characteristic frequencies of the radiation are low 
and, in addition, the electron-positron pair-production 
probability is negligibly small. 

54. EVOLUTION OF ELECTROMAGNETIC SHOWER 
PRODUCED IN A CRYSTAL BY A PARTICLE MOVING ALONG 
A CRYSTALLOGRAPHIC AXIS 

Proceeding to the investigation of electromagnetic- 
shower evolution in crystalline media, we consider first the 
case when there is no particle channeling in the crystal. To 
this end it is necessary that the angle I/J between the incident 
beam and the crystallographic axis (the z axis) exceed the 
critical axial-channeling angle I/J, = (4Ze2/&d )If2, where d is 
the distance between the atoms along the z axis.26 

The cross section for emission of a relativistic particle in 
a crystal is determined by the following general formula7: 

where du,,, and du, are respectively the coherent and non- 
coherent parts of the radiation cross sections. In the absence 
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of channeling du, hardly differs from the cross section for 
electron scattering by an isolated atom. The coherent part of 
the radiation cross section in the absence of channeling is 
given by 

-=- d4(s~-* 
dueoh (2n)3  IS(^) 1' exp(-czg2)- 
do A dgdo ' (4.2) 

where A is the volume of the unit cell of the crystal, S (g) is the 
structure factor, g are the reciprocal-lattice vectors, ?is the 
mean square of the thermal vibrations of the lattice atoms, 
and d 4uB - / d g h  is the differential cross section, with re- 
spect to the momentum transfers and the frequencies, for 
electron emission by a single atom of the crystal. The sum- 
mation overg in (4.2) is camed out with account taken of the 
conditiongll )a, where6 = m20/2E(& - o) andg is the com- 
ponent of g parallel to the incident-electron momentum. 
This equation is valid if the conditionsZ0 $,$, and ZeZ/ 
m$d( 1 are satistied (the condition that the radiation be di- 
polar). 

The cross section for the production of an electron-posi- 
tron pair by a photon in a crystal in the absence of channeling 
and when the condition Ze2/m$d(l is satisfied is deter- 
mined by equations similar to (4.1) and (4.2). It is necessary 
to make in (4.1) and (4.2) the substitutions w-t - w, 
E+ - E+, E' = E - W--+E - and to multiply the cross section 
(4.1) by 

(E + / ~ ) ~ ( d ~ + / d w ) ,  

where E- and E+ are the energies of the electron and posi- 
tron. 

These expressions for the cross sections for radiation 
and pair production should be substituted in Eq. (2. I), which 
determines the shower development in a crystal. The equa- 
tions obtained in this manner are very complicated and can 
be solved in general form only with a computer. We shall be 
interested mainly in how the coherent effects manifest them- 
selves in the course of shower development in a crystal. It is 
well known that all the coherent effects in radiation and elec- 
tron-positron-pair production come into play for particles 
moving near crystal axes or crystal planes. A particularly 
simple case is that when the particles move in the crystal 
near one of the crystal axes but far from close-packed crystal 
planes. In this case simple expressions can be obtained for 
the cross sections for coherent radiation and pair production 
in the crystal. We begin with consideration of just this case. 

When fast particles move in the crystal at a small angle 
4 to the crystal axis z but far from close-packed crystal 
planes, the coherent part of the radiation cross section (4.2) 
can be represented in the formz0 

doc& 8Z2e6 6 E' gl" -=---ZJ d 2 g - .  
dw  m2w d  E 

Bz 
gl12 

exp (-EZg2) o 
[I+-- 

(g2+R-Z) 
(4.3) 

2.2~' g11 

R is the screening radius of the atom, and d 2g = dg, dgy . A 
similar formula determines also the cross section for elec- 
tron-positron pair production in a crystal. 

Equation (4.3) shows that the periodicity of the atom 
arrangement in the crystal along the z axis affects strongly 
the radiation by the electron if the conditions S -' 2 d /2n- 
and $5 R /d. are satisfied. The first of these conditions 
means that within the limits of the coherence length I = - 1 
there are many crystal atoms; the second condition stipu- 
lates that the collisions of the electron with atoms lncated 
along thezaxis becorrelated. IfS - ')d /2rand $(R /d, the 
main contribution to (4.3) is by the term with g, = 0. In this 
case the radiation cross section (4.3) takes at 2 = 0 the form 

where k = ~ / 2 1 n  (1832 -It2). 
Figure 1 shows the results of a numerical integration of 

the cross section, differential with respect to frequency, for 
the emission of an electron (positron) in a tungsten crystal, 
(4.1), with do,, determined from (4.3). The calculations 
were performed for a fixed angle $ = rad between the 
electron momentum and the crystal axis ( 11 1) at T = 293 
K. The ordinate is the function f connected with the cross 
section (4.1) by the relation odu/do = (Z 'e6/m21f, and the 
abscissa is W/E. 

The numbers at the curves correspond to different elec- 
tron energies E in GeV, for which the calculations were 
made. The dash-dot curve corresponds to the cross section of 
electron radiation on a single atom; the dashed curve corre- 
sponds to the incoherent part of the radiation cross section 
(4.1). 

The corresponding functions for the cross sections for 
electron-positron pair production by a photon in a tungsten 
crystal are shown in Fig. 2. The numbers at the curves denote 
the photon energies o in GeV. 

The plots presented show that the differential cross sec- 
tions for radiation and electron-positron pair production ex- 
ceed substantially, in a wide energy interval, the correspond- 
ing values for an amorphous region. For this reason the 
showers should develop more rapidly in a crystal than in an 
amorphous medium. 

The results show also that if the condition SR /$( 1 are 
satisfied up to values w -E, the probabilities of radiation and 
pair production in a crystal differ only by a numerical factor 

where 

g~~=g:+g/, gll=gl+gx sin $26, 

FIG. 1. 
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FIG. 2 

A - R /$d from the corresponding probabilities in an amor- 
phous medium: 

If 2 = 0, then A = kR /$d. The corresponding shower 
function for a crystal can be obtained in this case directly 
from the shower functions of the amorphous medium by re- 
placing in the latter the radiation length L by the modified 
radiation length L * = L /A. In this case the shower will de- 
velop in the crystal over a length smaller by a factor A s 1  
than in an amorphous medium. We emphasize that this situ- 
ation obtains only when the coherence lengths of the radi- 
ation I = 6-' and of the electron-positron pair production 
1 ,  = k+e-/m20 are large enough: I>R /$ and I ,  > R  /$. 
The quantity A has then a simple physical meaning-it is of 
the order of the number of atoms in an individual chain of 
crystal atoms on the coherence length (A - R  /$d atoms of 
the chain are contained in the coherence lengths I and I ,  at 
IsR /$ and 1 , > R  /$). 

The foregoing formulas are valid if the angle $between 
the direction of electron motion in the crystal and the crystal 
axis changes little in the course of shower development. The 
change of the angle $ is governed by two factors, by the 
photon radiation (in this case the change of the angle $ is of 
the order of m / ~ )  and by multiple scattering of the electron 
by the thermal vibrations of the lattice atoms (and then the 
change of the angle $ is of the order of 

where Es = 4rm2/e2). For the formulas given above to be 
valid it is therefore necessary to satisfy the conditions 

&eZ t m2 
> max (,- ,5 9 7 )  . 

If these conditions are not satisfied it is necessary, for shower 
development in a crystal, to take into account the redistribu- 
tion of the particles with respect to the angles. 

55. SHOWER DEVELOPMENT IN A CRYSTAL AT RELATIVELY 
LOW PHOTON ENERGIES 

In the preceding section we gave general formulas for 
the crosssections for radiation and pair production in a crys- 
tal and considered the shower development under condi- 
tions when the coherent effects manifested themselves sub- 
stantially both in radiation and in electron-positron pair 
production. This situation obtains if the coherence lengths 
1 = 6 - ' and 1 * = ~ E + E  -/mZw of radiation and pair pro- 
duction exceed considerably the lattice constant a. There 

exists, however, a wide range of particle energies in which 
coherent effects manifest themselves only for particle radi- 
ation in a crystal, but not for electron-positron pair produc- 
tion. This situation obtains if the energy of the photons that 
participate in the shower is relatively low, namely, it is nec- 
essary to satisfy the condition o Sm2a. This condition 
means that the coherence length of the electron-positron 
pair production process be small compared with the lattice 
constant a. The radiation coherence length can then be large 
compared with a ,  and this is precisely the case that we shall 
consider. 

If I ,  5: a, we can put in Eqs. (2. I), with good accuracy, 
Y(W,E)Z yB - ( o , ~ ) .  AS for the radiation, it is necessary in 
this case to take into account in the cross section both the 
term that describes the coherent effects in radiation and the 
term that describes incoherent effects in radiation. The latter 
term, as already noted, can be replaced with good accuracy 
by the cross section for electron radiation on an isolated 
atom. The quantity n-(&,a) then takes the form 

where vc,, = n(duCoh /do). 
The quantities y ( o , ~ )  and n-(a,&) given above must be 

substituted in Eqs. (2.1) that determine the shower develop- 
ment in a crystal. We assume next that the following condi- 
tions are satisfied: 

and that the shower develops at relatively small depths t < L. 
We can then neglect the production of electron-positron 
pairs and incoherent photon emission, i.e., the shower devel- 
opment is determined only by one function rCoh. The prob- 
lem of finding the cascade functions of the particles in a crys- 
tal reduces then to finding the cascade functions in the 
presence of an external field. 

To verify this, we estimate the average electron-energy 
losses in a crystal per unit length, due to coherent and inco- 
herent effects in the radiation: 

The value of the incoherent energy loss is given by 

The energy loss due to the coherent effect in emission is de- 
termined by the formula 

where 

and Ei (x) is the integral exponential function. [In the deriva- 
tion of (5.4) we have neglected the terms that describe the 
recoil in emission; this is justified if the characteristic fre- 
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quencies a,,,, -2E2$/m2R of the electron emission in the 
crystal are small compared with the electron energy E.] At 
?(R ' the coefficient 77 is of the order of unity: 

where C = 0.577. 
comparing El(&) and Em, (E) we find that when the con- 

dition &>m2d is satisfied the electron energy loss in a crystal 
is due to coherent effects in emission. The average electron 
energy loss =(a) in a crystal is of the order of the particle 
energy E at depths t(L. Thus, if the shower is produced in 
the crystal by an electron of energy &)mzd, the incoherent 
effects in emission can be disregarded at crystal thicknesses 
t(L, as well as the process of e+e- pair production. If the 
crystal thickness is small enough so that tE (445, the elec- 
tron distribution in E, with allowance for the fluctuations, 
will be determined by Eq. (3.3) in which we must substitute 

( ~ 0 )  = Ecoh ( ~ 0 )  and 

If, however, t z  (E) -E, the average electron energy loss 
at a depth t will be, in accord with (3.7) and (3.9), 

We note that E (E) and E(t ) do not depend on the angle $ 
between the electron momentum in the crystal and the crys- 
tal axis z. What depends on $ is only the region of applicabi- 
lity of Eqs. (5.4) and (5.8): it is required that the characteristic 
emission frequencies be low enough, w,,,, - 2e2$/m2R (E. 

So far we have considered coherent effects in shower 
development in the case when the particles move in the crys- 
tal near one of the crystal axes. As already mentioned, coher- 
ent effects appear also for particle motion near crystal 
planes. The qualitative picture of the shower development in 
the crystal is in this case the same as in particle motion near a 
crystal axis. We shall therefore not study in detail the shower 
development for particles moving near a crystal plane. We 
confine ourselves only to the case when the particle energy 
region is such that the effect of electron-positron pair pro- 
duction can be neglected, i.e., the case when the problem of 
finding the cascade functions in a crystal reduces to the 
problem of finding the cascade functions for particles mov- 
ing in an external field. This case is of interest also because it 
is possible to trace in it clearly the effect of channeling in 
shower development in a crystal. 

If a large number of atoms of the crystal plane is con- 
tained within the limits of the coherence length I and the 
angle B between the incident beam and the plane is small 
enough, B(R '/a2, the motion and the emission of the parti- 
cles in the crystal can be described by using the continuous- 
plane approximation-the crystal potential averaged over 
the coordinates of the atoms located in the crystal plane near 
which the particle moves. For many elements, the inter- 
planar potential can be approximated with good accuracy by 
a parabolic function2' 

where 

Uo=2nvnRdpZe~ 

x is the coordinate perpendicular to the plane, dp is the dis- 
tance between the planes, and v is a numerical coefficient of 
the order of unity and is determined from the condition of 
best approximation of the interplanar potential by a parabol- 
ic function. If there is no particle channeling in the crystal, 
i.e., if B)B,, where 8, = (2~&)" '  is the critical angle of 
planar channeling, and if the characteristic emission fre- 
quencies w - 2e2B /m2dp (E are low, the probability per unit 
length for coherent emission of an electron (positron) in a 
crystal is of the form.'O 

where 
g=2n/dp, 6'=am2/2~2 and n>6'/g0. 

The total loss of electron energy per unit path, due to coher- 
ent effects in emission, is according to (5.9) 

Comparing this expression for E,,, (w) with E ,  (E), we 
find that at lOnR '&/m2) 1 the main electron energy loss is 
due to coherent process in electron emission from crystal- 
plane atoms. In this case the electron distribution in energy 
at a depth t will be determined by the equations of $3, in 
which we must put (E) = EGO, ( E )  and 

Substituting in (3.8) the so-obtained electron distribu- 
tion in E in the crystal, we can obtain the the photon distribu- 
tion in the frequency a at the depth t. 

An important quantity that characterizes the process of 
electron emission in a crystal is the total number of photons 
emitted by an electron at a depth t. Let us estimate the length 
over which the number r of the emitted photons in the fre- 
quency interval f l < a < ~ ,  (fig&,) exceeds unity as the parti- 
cles move near the crystal planes. The quantity r can be 
represented in the form 

r=rceh+rl,  (5.12) 

where r,,, and r, are the numbers of photons produced on 
account of coherent and incoherent processes in radiation. If 
f l (2~'0/m~d,  and t(L, we have according to (2.3) 

According to (5.9) the total number of photon coherently 
emitted in the case of motion near a crystal plane is deter- 
mined by the expression 

Comparing r, and rCoh we see that emission of more 
than one photon in a crystal on acccount of coherent pro- 
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cesses takes place at a depth t much smaller than the radi- 
ation length, namely, r- 1 at t- (8dp 2/R ')L. We see thus 
that can develop a photon shower even in sufficiently thin 
single crystals (t(L ). 

The results above pertain to the case when there is no 
particle channeling in the crystal. We dwell now briefly on 
an elucidation of the role of the particle channeling in the 
development of an electromagnetic shower in a crystal. 

In channeling, the particles do not pass at close dis- 
tances to the nuclei of the lattice atoms, therefore for chan- 
neled particles the term with do, in the cross sections for 
radiation a pair production will be suppressed compared 
with the corresponding cross sections for an isolated atom. It 
turns out as a result that in channeling the role of coherent 
effects in the evolution of showers in crystals is enhanced. 

We consider now in greater detail shower development 
for channeled positrons moving along crystal planes that 
have a parabolic distribution of the interplanar potential. 

In this case, in the dipole appro~imation,'~ 

(5.15) 
where S = 6 'd, /28, and O ( x )  is the step function. 

Substituting the radiation probability (5.15) in (2.4) we 
obtain equations that describe the development of a photon 
shower in a crystal by channeled positrons neglecting the 
process of formation of electron-positron pairs. For chan- 
neled positrons we have then 

and3' 

e ( t )  = E O  [I+ (SqpnRZeot/m2L)] -'. (5.17) 

The total number of photons emitted by channelled po- 
sitrons at small depths is determined by the relation 

I'xt (8e2Uoz/9mz0,dp). (5.18) 

From this relation we find that r- 1 at 
t-  (B,dp2/RZ) L g  L. 

96. SHOWER DEVELOPMENT IN POLYCRYSTALS 

We have investigated above the evolution of showers in 
single crystals. It was shown that at high particle energies 
the shower can evolve in the crystal over short lengths 

t -  ($d/R) L e L .  

In the case of a lead crystal, e.g., at E = lo3 GeV and 
$ = rad, the length L * -($d /R )L over which the 
shower evolves is of the order of L * - 10 pm. Under these 
conditions, obviously, for the effect to be observable it suf- 
fices for the crystal dimensions to be of the same order as L *. 
In other words, there is no need for large crystals and we 
arrive at the problem of shower development not in a single 
crystal, but in a polycrystal whose grains (crystallites) should 
be of the order of or larger than L *. 

For shower development in a polycrystal, the cascade- 
theory equations (2.1) must be averaged over the crystallite 

orientations. If the crystallites are very small (r(L *) the 
shower development in a polycrystal will not differ from that 
in an amorphous medium. Indeed, in this case the change of 
the shower functions within the confines of an individual 
crystallite will be negligible, and what should consequently 
be averaged in Eqs. (2.1) are the probabilities q,, and y,,, . 
The probabilities qOh (~,w,q) and yc, (~,w,q), which are dif- 
ferential with respect to the momentum transfers and the 
energies, differ from the corresponding probabilities for an 
amorphous region only by the factor7 

1 B=-Z N  ex^ {iq ( m - r k )  ) , F1) 
n,k 

where N is the number of atoms in the crystallites, r, are the 
positions of the atoms in the lattice, and q is the momentum 
transfer. Averaging B over all the crystallite orientations we 
can easily show that B hardly differs from If, for 
example, the particle interaction takes place with an individ- 
ual chain of N atoms of the crystal, which are disposed along 
the z axis, we have 

where 9 is the angle between q and the axis z of the chain and 
[qd / 2 ~ ]  is the integer part of qd /2n-. Since the main contri- 
bution to the cross sections for radiation and electron-posi- 
tron pair production is made by values R -' 5 q 5 m, the cor- 
rection to unity in 8, due to the periodicity of the atoms in 
the chain, is negligibly small. The mean values of the proba- 
bilities of the radiation and pair production in the crystallite 
will be practically the same as the probabilities T,-, and 
y,-, and, consequently, the evolution of the shower in the 
polycrystal will proceed as in an amorphous medium. In oth- 
er words, in this case there should appear, in the crystal, over 
a length of the order of the radiation length L, at least one 
photon or one electron-positron pair. This result is valid of 
the crystallites are small enough, namely, if the grain dimen- 
sions r are small compared with the length L * over which the 
shower develops in the crystal. 

If, however, the crystallite size is comparable with the 
length L *, this conclusion is wrong, for in this case the show- 
er functions will vary significantly within the limits of indi- 
vidual crystallites. Over a length of the order of L there can 
then be produced not one particle but a large number of 
particles-photons and electron-positron pairs. Thus, for a 
shower to develop rapidly in a polycrystal it is necessary that 
its grain sizes be comparable with or larger than the length 
L *. 

For a large number of shower particles to be produced 
over a length L in a polycrystal it is necessary that over this 
length at least one crystallite with r 2 L * have a small angle 
between the crystallographic axis (or plane) and the particle 
momentum. It is clear that over the length L such a collision 
of a particle with a crystallite will be random. We estimate in 
this connection the probability of the appearance of a large 
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number of shower particles in a polycrystal over the radi- 
ation length. 

Coherent effects in shower development in a crystal, as 
already mentioned, appear not only when the particles move 
at a small angle $(R /d to one of the crystallographic axes, 
but also when the angle 8 (84R '/dP ') between the particle 
momentum and one of the crystallographic planes is small. 
We estimate first the probability of the particle colliding 
over the length L with a crystallite of size r R L * at a small 
angle $ to its close-packet crystal axes. This probability is of 
the order of 

Wr-Nr (29') (Llr),  (6.3) 

where N, is the number of crystallographic axes, closely 
packed with atoms, in the crystallite. The quantity 2$' is the 
ratio of the solid angle, in which the angle between the parti- 
cle momentum and one of the close-packed crystal axes is 
less than $, to the total solid angle. The factor L / r  is of the 
order of the number of crystals with which the particle col- 
lides over ;the length L. At r-L *, where L * -($d /R )L, we 
have according to (6.3) W, -Nr (R$/d ). 

We obtain similarly the probability that over a length L 
the particle will collide with a crystallite of size r - L, * at a 
small angle 8 (O(R '/d, ') to crystallographic planes closely 
packed with atoms: 

W,-N, (4%) ( L l r ) ,  (6.4) 

where Np is the number of crystallographic planes closely 
packed with atoms. At r-L, *, where Lp *-(Od i/R ')L, the 
sought probability 

Wp-Np (4RZ/ndp2) 

does not depend on 0. 
Comparing the quantities Wp and W, we find that in 

the region of angles $ and O of interest to us ($(R / d  and 
O(R '/dP ') we have Wp ) Wr . 

At crystallographic-plane orientations (loo), (1 lo), 
(1 1 I), (121), (1 12) and (2 11) at a small angle to the particle 
momentum, coherent effects in radiation are well observable 
in experiment (see, e.g., Refs. 30-32). Taking only these 
planes into account, we find that Wp - 

"We use a system of units in which the speed of light c and the Planck 
constant f i  areequal to unity. 

2'The quantity 6' introduced in Ref. 23 is connected AR &by the relation 
p = =/2. 
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