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The results of an investigation of the interaction between two bound complexes consisting of 
charged particles-their effective interaction potential, the elastic scattering phase shifts, and the 
bound state energies-are presented. The simplest case of a system consisting of a charged struc- 
tureless particle and a complex is considered in detail. It is found that the conventional l/r4 law is 
valid only for not very light particles. In the opposite case this law holds only for extremely large 
distances, being replaced at smaller values of r by the 1/12 law, which possesses a number of 
unusual properties. There occurs in the case of a highly polarizable complex a family of bound 
states that are similar in their properties to the Efimov levels. Simple analytic formulas expressing 
the phase and energy level shifts arising as a result of the polarization of the complex in terms of a 
half-integer moment of its oscillator-strength distribution are presented. The interaction between 
two complexes corresponds to the ordinary van der Waals forces if certain quite rigid conditions 
leading to the l/r4 law are not fulfilled. The specific applications pertain to the "charged particle 
+ deuteron" system. 

PACS numbers: 03.80. + r, 34.10. + x, 34.20.Fi 

I. INTRODUCTION 

There exist a number of important atomic- and nuclear- 
physics problems consisting in the description of the interac- 
tion (scattering, bound states) of a light charged particle with 
a bound complex made up of charged particles. Examples 
are systems of the type "lepton or pion + atomic nucleus," 
"electron + muonic atom," "muon + molecule," etc." The 
term "light particle" denotes smallness of the particle mass 
compared with that of the complex's "valence" particle, 
which determines the size of the complex (in the just cited 
examples, compared with the masses of the nucleon, the 
muon, and an intramolecular atom or ion respectively). A 
more exact condition has the form 

m< (eR2)  - I ,  (1.1) 

r> (me)-'", (1.3a) 

it is being replaced in the region 

R<r< (me)-" (1.3b) 

by a law of the 1/12 type. In the case of a slightly polarizable 
complex 

where d is its dipole moment; the polarizing force in the 
region (l.3b) acts only in thes state and, like the gravitational 
force, is proportional to the particle mass. In this region the 
nature of the polarization potential is itself unusual: what is 
excited is not internal motion in the complex, as occurs in the 
region (1.3a), but relative motion of the particle and the com- 

where m is the particle mass, E is the characteristic excitation plex, the source of the excitation being the zero-point oscilla- 

energy of the complex (its binding energy), and R is the radi- tions of the dipole moment of the complex. 

us of the complex; here and below we set f i  = 1. The description with the aid of the polarization poten- 

The method, which suggests itself, of describing sys- tial has, as a rule, been carried out for systems of the type 

tems of the type in question consists in the use of the well- "electron + atom," in which the outer and the valence parti- 

known expression for the polarization potential1 cles have the same mass and the condition (1.1) is clearly not 
fulfilled. In this case the region (1.3b) does not exist at all, 

V ( r )  =-e2a ( 0 )  /2r4, ( and the usual interaction law (1.2), which is valid for all r)R, 
where e is the charge of the particle, a ( w )  is the polarizability 
of the complex, and r)R. This potential arises as a result of 
the polarization of the complex by the outer particle, and 
acts even in the case of a complex that, as a whole, is neutral, 
when the usual Coulomb interaction between the particle 
and the complex as a whole does not occur. It turns out, 
however, that it is precisely for a light particle, i.e., one 
whose mass satisfies the condition (1. I), that the expression 
(1.2) ceases to be valid. 

Most precisely, the interaction law (1.2) remains valid 
only when the distance between the particle and the complex 
is extremely large, i.e., when 

. . 

obtains. 
The polarization forces acting between a charged parti- 

cle and a complex (as well as between two complexes) are 
systematically investigated in Secs. 2-5 of this paper. In Sec. 
2 we formulate the basic general relations. Section 3 contains 
the derivation of the expressions for the polarization poten- 
tial in the weak-coupling case, when the condition (1.4) is 
fulfilled. In Sec. 4 we consider the intermediate- and strong- 
coupling cases as applied to the region (1.3b). It is shown that 
the interaction law in these cases is also of the 1/? type, and 
that there arise at a sufficiently large value of the coupling 
constant a series of bound states of the particle in the field of 
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the complex that are similar in their properties to the well 
known Efimov levels.* In Secs. 3 and 4 we consider only 
systems of the type "particle + complex." Section 5 contains 
a brief description of systems of the type "complex + com- 
plex" and the formulation of the conditions that must be 
fulfilled in order for the ordinary van der Waals expression 
to be valid. 

In Secs. 6 and 7 we compute the contributions of the 
polarization effects to the phase of the elastic scattering of a 
particle by a complex (the particle energy is lower than the 
breakup threshold E of the complex) and the bound state 
energy of a particle in the field of a charged complex. In Sec. 
6 we give simple analytic expressions for the phase shift in 
the case of a neutral complex when the condition (1.4) is 
fulfilled and in the case of a charged complex when the fol- 
lowing more rigid condition is fulfilled: 

ee, ( r n / ~ ) ' " < i ,  (1.5) 
where e, is the charge of the complex. We also give expres- 
sions for the energy-level shift,which are valid when the con- 
dition (1.5) is fulfilled. In Sec. 7 we give specific formulas 
pertaining to the interaction between a light particle and a 
deuteron (or any weakly bound two-particle system when 
the condition (1.1) is fulfilled). 

For simplicity, we consider in the present paper only 
the case of a maximally symmetric complex having zero 
mean angular-momentum and multipole-moment values. 
The relativistic, magnetic, and spin effects are neglected. 
When the conditions given above are fulfilled, we can also 
neglect the short-range effects: the nuclear interactions, the 
exchange effects, etc." 

2. THE POLARIZATION POTENTIAL 

It is convenient to carry out the description of the inter- 
action between two complexes, one of which can simply be a 
charged particle, in terms of the variables r (the vector join- 
ing the centers of mass of the complexes) and p,, (the vector 
connecting the center of mass of the n-th (n = 1,2) complex 
with its i-th particle). Because of the relations 

(the m's are the masses of the particles of the complex), the 
number of independent p vectors is smaller than the total 
number of particles. Below we shall denote the product 
dp,, dp,, ... of the independent-vector elements by dp, and 
the product dp,dp, by dp. 

In terms of the variables introduced, the motion within 
the complexes, which is described by the equations 
(H, - En )@, = 0 (H, , En,  and @, are respectively the Ha- 
miltonian, the energy, the the normalized-to unity-wave 
function of the internal motion), is kinematically separable 
from the relative motion of the complexes. To the latter mo- 
tion corresponds the Hamiltonian 

where e's are the particle charges and p is the reduced mass 
of the complexes; here only the long-range Coulomb interac- 

tion between the complexes has been taken into account. The 
Schrodinger equation 

where ER is the energy of the relative motion, forms the basis 
of the subsequent analysis. 

Below the complex-disintegration threshold it is the 
complex-complex interaction description averaged over the 
internal motion that makes sense. It amounts to the replace- 
ment of the quantity U in (2.1) by some effective potential 
V (r) that, generally speaking, depends on the momentum op- 
erator p for the relative motion; such a potential should give 
the same values for the scattering phases, the bound-state 
energies, etc., as the solution to Eq. (2.2). We shall call the 
potential V the polarization potential, although its meaning 
does not directly correspond to this term in all cases. 

The internal-motion-averaged wave function $(r) of the 
relative motion of the complexes is evidently equal to the 
projection of the exact wave function onto the state 
@ 

Representing Y in the form f$, where f is some operator 
defined by the relation s d P 8 ~  = 1, and taking the projection 
onto @ of Eq. (2.2), we easily arrive at the Schrodinger equa- 
tion for the relative motion: 

[-A/2p+V (r) -ER] $=O, (2.3) 

where the sought polarization potential 

From (2.1)-(2.3) we can derive an equation for the oper- 
ator f :  

where p is the momentum operator, which acts on the wave 
function $. Everywhere below, except in Sec. 4, the struc- 
tural effects discussed in this paper are assumed to be weak, 
which corresponds to the closeness of f to @. Therefore, 

here and below the angle brackets denote averaging over the 
internal states of the complexes, i.e., the integration 
/dp8 (...)@. We find in accordance with (2.4) that 

where U,, is the matrix element of U between the ground @ 
and the excited @, states of the complexes (E, is the corre- 
sponding energy and v = v,v,). The prime in the sum (2.6) 
indicates the omission of the state @, = @, and the summa- 
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tion itself encompasses three cases: the case in which only 
the first complex is excited, the case in which only the second 
complex is excited, and the case in which both complexes are 
excited. The formula (2.6) clearly corresponds to the first 
two orders of perturbation theory in terms of U. 

The polarization potential can be expressed in terms of 
the electric form factors and the generalized polarizabilities 
of the complexes. These quantities can, in their turn, be ex- 
pressed in terms of the r Fourier component of the charge 
density: 

Fn (kl p) =x e d  exp (ikpnc). 
i 

The form factor F, (k ) of the complex is equal to the mean 
(F,  (k,p)), and the first term in (2.6), which is denoted below 
by ~ " ' ( r ) ,  has simply the form of the Coulomb interaction 
energy of the distributed charges: 

a3k v") (r) =< ~ ) = 4 n  1 k- Ft (k) F2 (k) exp (ikr) . (2.7) 

The generalized polarizability A, (k,q,w) relates the 
change in the k-th Fourier component of the charge density 
of the complex to the effect of the q-th component of the 
same quantity: 

I 

-2 (F. (k, p)) ,% (F.  (q, p) ) . , , O ~ ~ O  (o*2-w2-f~)-il 
v. (2.8) 

where w, = EVn - En. The anti-Hermitian part of (2.8), 

[Am (k, q, W) -An (-q, -k1 a) I /2i, 
which can simply be denoted by the symbol Im, has, for 
o > 0, the form 

In the long-wave limit, i.e., for k, q-0, the quantity (2.8) 
goes over into the usual polarizability a(@)-the function 
characterizing the response of the "dipole moment d to a 
uniform external electric field:" 

A=(kl q, o )  +-(kq)an(w) (2.10) 

where a, is given by the formula (2.8) with F, replaced by 
dz . 

The second term in (2.6), which is denoted below by 
V'2'(r), can easily be expressed in terms of the quantity (2.9): 

where 

The first term in (2.11) describes the polarization of the sec- 
ond complex by the charge distribution in the first complex; 
the second term, the inverse process; and the third term, the 
mutual polarization of the complexes. For a "particle- 
+ complex" system, which we shall mainly consider below, 

the formula (2.11) yields3' 

(r) 

3. THE SYSTEM "PARTICLE + COMPLEX" 

In this section the general relations obtained above will 
be applied to the simplest system in the class of systems con- 
sidered in this paper, namely, the system consisting of a 
maximally symmetric complex (see Sec. 1) and a structure- 
less particle with charge e and mass m. We shall seek the 
expression for the polarization potential in the region of dis- 
tances r that are large compared to the radius R of the com- 
plex. This will allow us to neglect the quantity (2.7), which 
trivially reduces to the Coulomb interaction, and use the 
long-wave limit (2. lo), which corresponds to the discarding 
in the potential Uof multipole moments of order higher than 
that of the dipole moment. Accordingly, the formula (2.12) 
yields 

V( ' )  (r) 

Let us compare with each other the terms of the de- 
nominator of this expression, the first of which (w) corre- 
sponds to the excitation of the internal motion in the com- 
plex, i.e., to the polarization of the complex; the second (q2/ 
2p + ...), to the excitation of the relative motion of the parti- 
cle and the complex. The first term is of the order of the 
characteristic excitation energy a,, denoted in Sec. 1 by E, 

of the complex. Since q- l/r  in (3. I), the second term in that 
expression is, in order of magnitude, equal to l/p?. Leaving 
out the case, of little interest, in which the particle is signifi- 
cantly heavier than the complex, we can replace the reduced 
mass by the particle mass m, and then the estimate for the 
second term in the denominator of (3.1) assumes the form 1/ 
m?. 

It is clear from these estimates that, if the particle mass 
m is greater than, or of the order of, 1/&R ', then the second 
term in the denominator of (3.1) is small compared to the 
first term in the entire region r>R under consideration. 
Then, using the well known sum rule 
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we easily arrive at the expression (1.2) for the polarization 
potential (see Sec. 1). 

But for a very light particle, when the condition (1.1) is 
fulfilled, the region r)R splits up into two parts. At the dis- 
tant periphery (1.3a) the second term in (3.1) is, as before, 
small compared to the first term, and the usual expression 
(1.2) continues to remain valid there. On the other hand, in 
the near region (1.3b) the second term in the denominator of 
(3.1) predominates. Simple calculations with allowance for 
the s m  rule 

(see (2.9), (2.10)) yield for the polarization potential an entire- 
ly different expression, which is valid in the region (1.3b): 

< d 2 > 0  V(2) ( r )  ~ - 3 1 2 ~ 2  - sin ( p r )  o=- 
3 f  ' exp ( - i p r )  . (3.2) 

P ' 
And what is more, the mechanism underlying the appear- 
ance of the polarization potential in this region is entirely 
different: It consists not in the polarization of the complex 
by the outer particle, but in the excitation of the relative 
motion of the particle and the complex by the zero-point 
oscillations of the complex's dipole moment (the quantity 
(d ') in (3.2)). This corresponds to adiabaticity in the particle 
motion: owing to its small mass, the particle follows the fluc- 
tuations in the dipole moment of the complex. The power of r 
in (3.2) is found in accordance with the mechanism under 
discussion, namely, in the second-order correction to the en- 
ergy the square of the matrix element [dV(l/r)I2 cc l/r4, and 
the energy denominator is of the order of l/m?. This is also 
the cause of the dependence of the potential (3.2) on the par- 
ticle mass m. 

The force acting on the particle and corresponding to 
(3.2) is proportional to the particle mass. This leads to a situ- 
ation in which all the particles for which the condition (1.1) is 
fulfilled move in identical fashion in the field of the complex. 
We can therefore speak of a "principle of equivalence" of the 
forces under consideration and the inertial forces. We are 
convinced that this property is not at all an exclusive at- 
tribute of the gravitational forces, as is often assumed, but is 
also a characteristic of simple systems with the Coulomb 
interaction. 

Another characteristic of the potential (3.2) is that it 
acts only in the s state: 

This can easily be verified by letting the operator 0 act on the 
wave function 

and expanding $(p) in terms of the spherical harmonics. 
Thus, when the condition (1.1) is fulfilled, the polarization 
potential in thestates with I #O acts only in the region (1.3a): 
to within higher-order effects the polarization interaction 
does not occur at all in the region (1.3b). 

4. STRONG COUPLING 

The analysis in Sec. 3 encompasses only the case of 
weak coupling pertaining to the interaction of a particle with 
a rigid, slightly polarizable complex. The corresponding di- 
mensionless coupling constant for the region r)R can be 
found by making in (2.1) the substitution 

where d is dipole-moment operator for the complex (we 
have, for simplicity, dropped the trivial Coulomb term in the 
expression for the particle-charged complex interaction). 
Comparison of (4.1) with the kinetic energy l/,u?, i.e., their 
ratio, yields the dimensionless coupling constant, which it is 
convenient to choose in the form 

g=2pe ( ( d 2 > ) ' " .  (4.2) 

In the weak coupling case g( 1. 
The same dependence on r of the interaction (4.1) and 

the kinetic energy allows us to describe the case of the inter- 
mediate and strong coupling g 2  1 as well if we limit our- 
selves to the consideration of the region (1.3b) (the condition 
(1.1) is assumed to be fulfilled) and the s state. After making 
the substitution (4.1) in Eq. (2.5) and dropping the small 
quantity 8, (Hn - En ), we can seek the solution to the equa- 
tion in the form 6 = f (x)@, where x is the cosine of the angle 
between the vectors d and r; it is important here that in the 
case of thes state the operator p.V, does not act on the angle 
variable. Going over to the dimensionless variable S = d/ 
((d 2))"2, we obtain with allowance for (4.2) the equation 

The quantity 5 in this equation is given by the relation 
sdp3{ = 1 (see Sec. 2), and is equal to 

~ = - ~ ( ( S l f ) ) ,  ( ( f ) )=l .  (4.4) 

Here and below in this section the averaging over the inter- 
nal states of the complex has been split into two parts: angle 
averaging, which is denoted by a bar, i.e., 

and averaging, denoted by double angle brackets, over the 
absolute value of S, i.e., the dipole moment. 

The polarization potential is given by the expression 
(2.4): 

V 2 )  (r) =-o/2mP. (4.5) 

It can be seen that the l/r2 law holds in the region (1.3b) for 
any value of the coupling constant. 

Let us proceed to solve Eq. (4.3). It the quantity S were a 
fixed number, the condition (4.4) (without the brackets) 
would have determined a and, above all, ensured the regu- 
larity of f(x) at the points + 1. But in fact we have 
A = ( gSx + a) f #O (only the result of the S averaging, i.e., 
the quantity ((A ) ), is equal to zero on account of (4.4)). This 
leads to the appearance in f (x) of a logarithmic irregular part, 
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and, after expanding the remaining regular part in a series in 
Legendre polynomials, we obtain 

where the a, are unknown quantities to be determined. The 
substitution of (4.6) in (4.3) with the use of the well-known 
properties of the Legendre polynomials leads to the system 

where ao=l/A, the nonzero C have the form 

and the right-hand sides of the equations are given by 

Consequently, a, = Do/D, here D = detlC 1, and Do is ob- 
tained from D by substituting the b, for the zeroth column. 
The condition ((A )) = 0 yields an equation for the a as a 
function of the coupling constant g: 

((DIDo))=O. (4.7) 

When g is small, a is also small. This yields 

D=2a-gVS2/3, Do=-2, a=g2/6, 

which takes us back to the formula (3.2) (for the s state). As 
g-+co, we also have a - + w  at the same time. In this limit the 
system of equations for the a, and the left-hand side of (4.7) 
are homogeneous in a and g; whence 

-Kg, (4.8) 
where the numerical constant K depends on the specific 
structure of the complex. From this it follows that the value 
a = a, which corresponds to the onset of the "fall-to-the- 
center" regime, is attained at some g =go (see (4.5)).' Of 
course, an actual fall does not occur because of the presence 
of the left boundary of the range (1.3b) of action of the law 
(4.5). The quantity go is itself determined by Eq. (4.7), in 
which we can use for D and Do the following expressions, 
which are accurate to within 3-5%: 

D=z7/l,-g,Z62, DO=8'/18 (3+1n 2 )  + (4 -3  In 2)g;6'. 

This yields 

(by definition ((6 ,)) = 1). The quantity go- 1, but depends 
on the structure of the complex. 

The most important property of the system "particle- 
+ complex" when g > go consists in the occurrence of a se- 

ries of bound states that arise as a result of the action of the 
polarization potential. The corresponding wave function has 
the form1 

$ ( r )  ~ ~ C O S  [ (a-'IL) I h  In ( r / R )  +const],  

from which we can find the number N of such bound states as 
the number of zeros of 1C, occurring within the limits of the 
region (1.3b): 

The level energies obey also the scaling law 

(n is the level number), which is obtained by substituting (4.5) 
into the Bohr-Sommerfeld quantization rules for the radial 
motion. 

The bound states in question are very similar in their 
properties (4.10) and (4.11) to the Efimov levels,, which oc- 
cur in a system of three particles resonantly interacting with 
each other (the two-particle scattering length a is large com- 
pared to the range ro of the forces). And in this case there 
appears in the region a)%)ro, where ?Jt is the mean dimen- 
sion of the system, a potential of the type l/?Jt2, which is the 
cause of the appearance of the set of bound states. The fore- 
going shows that an analogue of the Efimov levels can occur 
also in systems of the "particle + complex" type when the 
particle mass is small and the polarizability of the complex is 
sufficiently high. 

5. THE "COMPLEX + COMPLEX" SYSTEM 

To complete the investigation of the polarization poten- 
tial, we turn in this section to a system that consists of two 
complexes containing charged particles. In the general for- 
mula (2.1 I), which corresponds to the weak-coupling case, 
we shall be most interested in the last term, which describes 
the mutual polarization of the complexes (the potential (2.7) 
does not merit a special discussion, and the first two terms of 
(2.11) yield potentials that, in the case of charged complexes, 
are similar to those considered in the preceding sections and, 
in the case of neutral ones, fall off rapidly with distance). 
This term has a form similar to that of the potential (3.1): 

d3q exp ( iqr)  
x ~ r n  ol (0 , )  ~ r n  az (az)  J . (5.1) 

qz[ml+w2+ (q2+2pq)/2p1 

Let us compare the sum of the first two terms of the 
denominator in (5.1) with the last term, considering the re- 
gion of large distances between the complexes, i.e., the re- 
gion r)R, + R,. This amounts to the comparison of the 
quantity E, + E, with 

Normally, the characteristic excitation energy E - 1/ 
m a  ,, where mo is the mass of the "valence" particle, which 
determines the size, of the complex; that is the way it is with 
an atom or an atom-like compact object. Then, for all the 
values of r under consideration, the ratio of E ,  + E ,  to the last 
term in the denominator of (5.1) is greater than the quantity 
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which, in turn, is large compared to unity, since the mass of 
the valence particle contained in the complex is clearly 
smaller than the mass M of the ~omplex.~ '  Consequently, 
neglecting the last term in the denominator in (5. l), we arrive 
at the well-known expression for the van der Waals potential 
with the London coefficient: 

6 - d o i d a ;  
~ ( ~ 1  ( r )  =- -J - Im a 1 ( o )  Im az ( a ) .  (5.2) 

n2r6 01+02 
0 

The opposite situation, in which we can neglect the 
quantity E, + E, in (5.1), and we have the excitation of the 
relative motion of the complexes to deal with, is, in contrast 
to the case of the "particle + complex" system, realized only 
when the quite rigid conditions E, (l/m,, R are fulfilled. 
Such conditions could, in principle, be realized in the case 
when the complex is, for example, a diatomic molecule with 
an unusually flat interatomic potential energy. In this case 
the characteristic excitation energy E will be determined by 
an anomalously small vibrational quantum when the oscilla- 
tor strength is sufficiently great. Although we are not in a 
position to give actual examples of this type, we shall give the 
result. 

Assuming that the condition 

p e  [ ( & I ? - & 2 )  ( R t + R 2 ) 2 ]  -', (5.3) 

is fulfilled, we can easily verify that the ordinary van der 
Waals expression (5.2) remains valid at extremely large dis- 
tances, i.e., for 

r> [ ~ ( E ~ + E ~ ) ] - ' ~  . (5.4a) 

Straightforward but tedious calculations yield for the poten- 
tial v'~'  in the region 

R I + R 2 K r K  [ p  ( E ~ + E ~ ) ]  -IA, (5.4b) 

of small distances, where we can neglect the quantity E, + E, 

in (5. I), the expression 

2 v  V(') ( r )  =- -(diZ> < d Z 2 > 0 .  
9r4 

And here we encounter a decrease-by two-of  the power of 
r in the denominator. 

As in Sec. 3, the quantity 0 is a momentum-dependent 
factor: 

sia('r) ] e x p ( - i p r ) .  cos ( p r )  +3ipr - 
P 

In the present case it is nonzero not only in the s, but also in 
thep state, and does not, moreover, reduce simply to projec- 
tion operators. Expanding the wave function on which 0 
acts in terms of the spherical harmonics, we find that 

Because the r dependences of the polarization potential 
and the kinetic energy are different, the question of the limits 
of applicability of the weak-coupling approximation re- 

quires a special discussion. In any case, it is necessary that 
the potential be small compared to the kinetic energy at the 
right boundary of the region (5.4b): 

p 3 ( ~ t + ~ 2 )  ( d I n ) ( d 2 ' ) < < l .  (5.7) 
And for the expression (5.5) to be applicable in the entire 
region (5.4b) the following more rigid condition should be 
fulfilled: 

p 2 ( d 1 2 > ( d , Z > ~  (Rl+R2)'. (5.8) 

6. SCAlTERlNG AND THE BOUND STATES OF COMPLEXES 

In this section we shall apply the above results to the 
description of the scattering by each other, and the bound 
states, of complexes. Not being interested in the bound states 
that arise as a result of the presence of the polarization po- 
tential (see Sec. 4), we shall limit ourselves to the computa- 
tion of the corresponding level shift in a bound system of 
oppositely charged complexes. 

The basic problem will be the problem of two complexes 
interacting through the potential V"' (see (2.7)) that consti- 
tutes the Coulomb interaction of fixed charges distributed 
over the volumes of the complexes. The corresponding scat- 
tering problem with the relative momentum k is described by 
the equation 

(-A/2p+V"'-k2/2p)  qo ( r )  =0, (6.1) 

where it is convenient to normalize the wave function go in 
accordance with the following condition at infinity: 

$,,-+sin( kr-I-6,) lkr. (6.2) 

Here So is the scattering phase shift (for simplicity, we con- 
sider only the s state). The solution to the complete equation 
(2.2) with E, = k '/2p has the asymptotic form 

Y-+@ sin (kr+6) /kr ,  (6.3) 

where S is the exact scattering phase shift; its determination 
is our aim. 

There exists a simple relation connecting 6 and 6,: 

sin (6-60) =- 

To derive it, we must multiply (2.2) on the left by a$,, the 
complex conjugate of Eq. (6.1) on the right by P, subtract the 
resulting equations from each other, use the Green formula, 
and take the asymptotic forms (6.2) and (6.3) into account. 
Using (2.4) and the definition of the wave function t,b (see 
(2.3)), we have 

sin (6-6.) =- Irk J dr$. (u-v"') $, 
2n 

where the wave functions are assumed to be real. Similarly, 
replacing E, in (2.2) by the exact energy value En and k '/2p 
in (6.1) by E E,  the energy value corresponding to the poten- 
tial V"', and carrying out the same operations performed 
above, we find a relation for the level shift: 

Below we shall limit ourselves to the consideration of 
the system "particle + complex," assuming the condition 
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(1.1) to be fulfilled. Let us, limiting ourselves to the analysis 
of only the weak-coupling case, rewrite the corresponding 
criterion (see Sec. 4) in the form 

me ( (d2>) '"-R/a ,<l .  (6.6) 

Here a, = l/rneP is the Bohr radius and 5 = ((d 2 ) )112 /~  is 
the effective charge of the complex. It is assumed, for simpli- 
city, that, if the complex is charged, its actual charge is of the 
order of P. Hence the subsequent formulas will contain only 
the quantity a,, which, in relations pertaining to a charged 
complex, should be taken to be l/mee,, where e, is the total 
charge of the complex. 

In the weak-coupling approximation we can replace the 
sine in (6.4a) by its argument and $by the quantity IC,,; we can 
also replace in Eq. (6.5) IC,, by the bound-state wave function 
ICI,, normalized to unity. As a result, we obtain 

(6.7) 

where V"' is taken in the form (2.12). In fact, owing to the 
condition (1.1), we can go over in this last expression to the 
long-wave limit: the characteristic values of q and k are of 
the order of (rn&)'I2, while the characteristic momentum of 
the internal motion in the complex is - 1/R, and is signifi- 
cantly higher. Let us also note that, when the condition (6.6) 
is fulfilled, the purely structural effects, which are responsi- 
ble for the deviation of V"' from the Coulomb potential (or 
from zero in the case of a neutral complex), are weak, which 
allows us to replace $O by the Coulomb (or, respectively, the 
free) wave function; the same thing applies to the function 
$,, (see below). 

The formulas (6.7) correspond, of course, simply to a 
perturbation theory in terms of the polarization potential. 
For an uncharged complex the first of them gives, after the 
substitution $, = sin(kr)/kr, the following difference: 

where 

+ 
arctg[2x(l-x">"(l-2x2)-I] 

ql ( x )  = (1-s t )  - Ih  

2x(l-x2)" 

It turns out that, when the condition 

11 ( m e )  "'ao*: 1 (6.9) 

which is more rigid than (6.6), is fulfilled the formula (6.8) is 
valid in the case of a charged complex as well, if we further 
introduce in its right-hand side the amplification factor 

which is equal to the ratio of the probabilities of finding the 
charged particles to be coincident in the presence and ab- 
sence of the Coulomb interaction. The point is that the char- 
acteristic value of r in (6.7) is, as can be seen from (2.12), of 
the order of ( m ~ ) - ' / ~ ,  and this quantity5' is, when (6.9) is 

fulfilled, small compared to a,, i.e., lies in the region where 
$, = A sin(kr)/kr. For small values of k - 

OD 

6-6.= ~ 2 m % ' ~ ' k ~  Im o (a) 
n a '1, 

0 

Turning to the second formula in (6.7), i.e., the formula 
for the level shift, and assuming that the condition (6.9) is 
fulfilled, we easily arrive at the expression 

" do 
En-E~=4(2m)"ezIp0.'(O) Im ~ ( a ) ,  (6.11) 

0 

which is valid for levels with E ( E .  The last condition fol- 
lows directly from (6.9). Notice that the last two relations 
contain a moment of the quantity Ima (or, which is almost 
the same thing, a moment of the oscillator-strength density) 
lying between the moments entering into the polarization 
potentials in the regions (1.3a) and (1.3b) (see Sec. 3). This is 
due to the fact that the quantities (6.10) and (6.11) have the 
character of space integrals. 

Speaking of scattering by the polarization potential, we 
should note that this potential, in behaving like 1/? in the 
region (1.3b), has the features of a long-range potential from 
the point of view of potential scattering theory.' Thus, the 
total particle-complex scattering cross section, which di- 
verges logarithmically in the case when the law I/? obtains 
in all space, has in our case a singularity of the type ln(l/ 
r n ~ R  2). 

In conclusion of this section, let us briefly discuss the 
quantities So and E corresponding to the potential V"' (see 
(6.1)). It is easy to verify that the inequalities assumed above 
lead to a situation in which the deviations of these quantities 
from the purely Coulomb values are small and can be com- 
puted with the aid of perturbation theory in terms of the 
difference V"' - V c  (the index c denotes the Coulomb inter- 
action). In fact, the situation reduces to one in which, if the 
form factor (see Sec. 2) for small k is 

then the corresponding corrections for the structure of the 
complex have the form 

60-6c=kmeA2Q/3, En0-Ene= (2neQ/3)IpOnZ(O), (6.12) 

which is well known in the literature (see, for example, Ref. 
4). 

7. INTERACTION OF A CHARGED PARTICLE WITH A 
DEUTERON 

In this final section we consider as a specific example 
the system "particle + deuteron," where by particle we 
mean any lepton or meson (electron, muon, pion, etc.) lighter 
than the nucleon. The results presented below equally apply 
to systems in which the deuteron is replaced by a weakly 
bound two-particle complex (when, of course, all the neces- 
sary conditions, i.e., (1. l), (6.6), and (6.9), are fulfilled). For 
the deuteron itself, these conditions are fulfilled quite well if 
we consider it in combination with the above-enumerated 
particles. 
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The internal dynamics of the deuteron can be described 
with the aid of the Hamiltonian Hd = - A,/4M, which 
corresponds to free motion, with energy Ed = - x2/M 
when the following boundary condition is imposed at p = 0: 

(pa) )  ' /pa)  = -2x ,  

where M is the nucleon mass.6' the quantity x = 0.23 fm-' 
serves as the only characteristic of the internal structure of 
the deuteron, determining its radius R -x-', the character- 
istic excitation energy E-x2/M, etc. The deuteron polariza- 
bility a(o) can be found from the long-wave limit of the for- 
mula (2.8) by writing it in the operator form 

e02(p, [ (Hd-Ed-u- i6 )  - ! f  (Hd-&+a+ is)-'] pZ) 

and using it to average the deuteron wave function 
'12 exp ( - 2 x p )  

I 

P 

satisfying the above boundary condition. Let us leave out the 
unwieldy formula for the polarizability itself, and give the 
expression for its imaginary part: 

Hence we find with the aid of the sum rules given in Sec. 3 
that 

a ( 0 )  =Meo2/32x" (d2>=eoz /8x2 .  (7.2) 

Let us further give the expression for the form factor of the 
deuteron: 

Let us go over to the expressions for the light particle- 
deuteron interaction potential. The potential ~ " ' ( r )  is ob- 
tained from (2.7) by replacing one of the form factors by the 
particle charge , and has the form 

eeo ee, v(*) = - - ---[exp ( - 2 x r )  -2xrE3(2xr)  1 .  (7.3) 
r r 

Here the first term represents the Coulomb interaction of the 
particle with the deuteron as a whole; the second factor is the 
structural correction, which reflects the charge distribution 
over the deuteron; and Ei is an exponential integral function. 
When the condition (1. I), which has the simple form m (M 
(m is the particle mass) in the case under consideration, is 
fulfilled, the polarization potential ~ ' ~ ' ( r )  is given in the re- 
gion r)(M/m)'I2/x by the formula (1.2), i.e., 

V ( Z )  ( r )  =-Me2ea2/64x4r4, (7.4) 

and in the region l / x ( r ( (~ / rn ) "~ /x  by the formula (3.2): 

V2' ( r )  =-me2e020/24x2r2.  (7.5) 

We further give, for completeness, the interaction potential 
for two deuterons: 

V(2) ( r )  =-Me04/32x1r1-0.0012Me04/xEr6, (7.6) 

where the first term corresponds to the polarization of each 
of the deuterons by the charge of the other deuteron and the 
second term has the ordinary van der Waals form. 

Further, let us give the expressions for the polarization 
corrections to the particle-deuteron scattering phase shift 

(for small momenta) and the ground state energy of the cor- 
responding atom. The substitution of (7.1) into (6.10) and 
(6.11) yields 

For the systems ( p d  ), ( r d  ), etc., the contributions of these 
expressions are quite substantial. Let us again give the ex- 
pressions (6.12), which give the quantities So and E:  them- 
selves: 

60-6,=-kA2/24?c2ao, En0-E,,=e2/12a03x2. 17.8) 

Notice that the corrections of second order in the potential 
V"' can be neglected, since they are smaller than the quanti- 
ties (7.7) by a factor of the order of ( ~ / r n ) ' / ~ .  

In conclusion, we give without derivation the expres- 
sions for the polarization corrections to the phase shift and 
the energy in the general case when the ratio of the particle 
mass to the deuteron mass is arbitrary (but the condition 
(6.9) is fulfilled): 

where (T = (m/2M )'I2 and 

x ( o )  = 

( 3 + 0 4 )  ( I f  02)' arctg a/08-  (15+2502+1304-50') /507-n/2.  

In deriving these formulas we used the general expression 
(2.12), which contains the generalized polarizability, i.e., 
multipoles of all orders. Applying (7.9) to proton scattering 
by the deuteron, we see that the corresponding polarization 
correction to the scattering phase shift is extremely small. In 
fact, the structural correction due to the potential V"' is also 
small (see Ref. 3). 

We are grateful to V. L. Ginzburg and the participants 
of the seminar conducted by him, as well as to Yu. N. Dem- 
kov, L. I. Ponomarev, and I. I. Sobel'man, for useful discus- 
sions. 

"Ofspecial interest are systems in which the role of the complex is played 
by a quark system: a nucleon, pion, quarkonium, etc. 

')Concerning the interference of the Coulomb and short-range interac- 
tions between the complexes, see Ref. 3. 

"In the formula (2.12) e is the particle charge. Below we shall, in consider- 
ing the system "particle + complex," drop the indices 1 and 2. 

4'This does not apply to quark systems. 
5'Notice that this characteristic r value is, on account of ( l . l ) ,  large com- 

pared to the radius of the complex. Therefore, the formulas given are 
insensitive to short-range interactions such as nuclear forces, exchange 
effects, etc. 

6'The occurrence of the "superfluous" powers of two in these formulas 
and those given below is due to the fact that the coordinate describing the 
internal structure of the deuteron is, in accordance with the variables 
adopted in Sec. 2, not the distance between the nucleons, as is usually the 
case, but the distance from the center of mass of the deuteron to the 
nucleon, which distance is smaller than the internucleon separation by a 
factor of two. 
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