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The wave functions for highly excited states of atoms located in a strong radiation field whose 
frequency w is lower than or of the order of the level spacing is found in a quasiclassical approxi- 
mation. The wave functions obtained are used to calculate the probabilities W, of radiative 
transitions that result in absorption of a photon offrequency fl(f2)w) and of k photons of frequen- 
cy w. The calculated W, agree satisfactorily with the measured dependences of W, on k, on the 
principal quantum number n of the final state, and on the intensity and frequency of the micro- 
wave field. 

PACS numbers: 3 1.50. + w, 32.70. - n 

91. INTRODUCTION 

The excitation of hydrogen atoms from a level with 
principal quantum number ni = 10 to a level with nf of the 
order of 50 by an infrared laser in the presence of a strong 
microwave field was recentlyL investigated. Besides the prin- 
cipal resonance corresponding to a transition from ni to nf 
there was observed a large number of satellite resonances 
corresponding to absorption of a photon from the infrared 
field simultaneously with the absorption (emission) of k pho- 
tons of the microwave field. The probability of excitation at 
various k was investigated as a function of nf the intensity 
and frequency of the microwave field. 

To calculate the probabilities of such radiation transi- 
tions it is necessary to find the wave function of the highly 
excited states of a hydrogen atom in a strong low-frequency 
field. The search for such a wave function was first underta- 
ken by Blokhintsev.' He found that the basic action of the 
low-frequency field on the degenerate hydrogen states re- 
duces to a change of the time-dependent part of the wave 
function, and that the function takes the form 

1 3Fon (nl-n,) 
'Y (r ,  t )  =cp,,,,, ( r )  exp it/2n2-i sin at) , 

20 

where qn,,n2 (r) is the coordinate part of the wave function of 
the hydrogen atom in parabolic coordinates3; n, n,, and n, 
are the parabolic quantum numbers; F, and w are the ampli- 
tude and frequency of the alternating field. It can be seen 
that the only difference from the unperturbed wave function 
lies in the appearance of a sine term in the exponential, pre- 
ceded by a factor comprising the ratio of the Stark energy to 
the photon energy. The wave function (1) was obtained in the 
basis of the wave function of one shell, and can therefore be 
used at frequencies o much lower than the distances between 
the levels. Allowance for the influence exerted on the wave 
function by states of other shells is based in this method on 
perturbation theory. 

In Ref. 4 were calculated the probabilities of the radia- 
tive transitions between states described by the wave func- 
tion (1) under the influence of a second field of frequency fl. 
It  is typical that the probability of such radiative transitions 
with absorption of one photon of frequency f2 and of k pho- 

tons of frequency o is proportional to the square of a Bessel 
function whose argument is equal to the factor preceding the 
sine function in (1). In Ref. 4, however, was considered only a 
transition from the ground state to the first excited level. In a 
recent studyS undertaken to explain the experiment of Ref. 1, 
an expression differing somewhat from that obtained in 
Refs. 2 and 4 was obtained for the probability of exciting the 
k th satellite. The excitation probability on the basis of this 
expression oscillates strongly with change of field intensity, 
whereas in experiment there is observed only one peak, fol- 
lowed by a plateau. In Ref. 5 only one parabolic state of the 
final level was taken into account. We note that a wave func- 
tion of the form (1) was considered also in Refs. 6 and 7 to 
find the spectrum of atoms and in Ref. 8 to find the probabili- 
ties of their tunnel ionization in a low-frequency field. 

In the present paper the wave function of highly excited 
states of atoms in a strong low-frequency field is obtained in 
the basis of a quasiclassical approximation. In the case of 
multiphoton ionization, quasiclassical perturbation theory9 
turned out to be accurate enough even at small n. The wave 
function obtained is valid in a larger interval of the frequen- 
cies w of the alternating field than the function (1). The wave 
function obtained was used in $3 to calculate the probabili- 
ties of the radiative transitions of frequency f2 as applied to 
the experimental conditions of Ref. 1. 

92. WAVE FUNCTION OF HIGHLY EXCITED STATES OF 
ATOMS IN A STRONG HIGH-FREQUENCY FIELD 

We use as the basis of the quasiclassical theory devel- 
oped in Refs. 9 and 10 for the description of an electron 
moving simultaneously in a Coulomb field and in a periodic 
radiation field. The wave function for the electron is sought 
in the form 

1 
fnr ( r )=  2ikNr% ( r )  {aNt+ ( r )  exp [ i ( s N I  ( r )  +a141 I 

-aN, - ( r )  exp[-- i (SNl ( r )  +n/4)  I ) ,  (3) 
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where E is the electron energy, Y ,  are spherical functions; 
M is the magnetic quantum number which is a conserved 
quantity for the linear field polarization case considered 
here. 

The quasiclassical approximation is valid when the ac- 
tions,, is large. It becomes greatly simplified if it is possible 
to separate from among the quantities S,, in all the channels 
that make a noticeable contribution to the considered pro- 
cess a large term So that is common at all N and I. Physically, 
separation of such a term means that it is possible to separate 
in the electron motion the classical motion along a certain 
trajectory in the Coulomb field (this motion predominates). 
In this case one can neglect the influence of the alternating 
field on the classical motion of the electron, but account 
must be taken of the transitions, due to the alternating field, 
between the states with different Nand I. It follows from (5) 
that separation of such a general motion is possible if two 
conditions are satisfied. First, the orbital momenta I in all 
the channels must differ insignificantly from a certain mean 
value L )  1. Second, either E + Nw must be considerably less 
than the last two terms in (5), meaning motion along a pa- 
rabola, or IN I w is considered smaller than I E I, meaning mo- 
tion along an ellipse. In both cases 

and for the slowly varying amplitudes we obtain the follow- 
ing simple equations9: 

Here rand p(r) are the classical time and angle, while a ,  (7) 

is equal to a,, +(r) and a ,  -(r) at T > 0 and r < 0, respec- 
tively. The summation in (8) is over all N '  = N + 1 and 
m' = m + 1. In the case of multiphoton ionization it was 
shown in Ref. 9 that under the condition w>nP3 it suffices to 
consider motion along a parabola. At w of the order of or less 
than nW3 the energy in all the channels differs insignificantly 
from E, and we must consider motion along an ellipse, de- 
fined by the following parametric equations": 

r=voZ( l -E  cos u ) ,  T = Y ~ ~ ( U - E  sin u ) ,  

To ensure the correct behavior of the ffinctions f,, (r) in 
the classically forbidden regions, the following condition 
must be imposed on a,, (u): 

a,, ( - n )  exp (-2invN) =a,, ( n )  , ( 10) 

v N =  (-2E-2No) -'". (1 1) 

The solution of such first-order differential equations as 
(8), in which the matrix elements depend only on the quan- 
tum-number differences N - N '  and m - m', can be ob- 
tained with the aid of a generating The general 
solution of the system (8) takes the form 

x expliy- ( u )  (N-N1+s--s') +iy+ ( u )  (s'-s) 1, (12) 

h* (u) =[c*' ( u )  ( u )  1 "', tg y_+ ( u )  =c* ( u ) / d ,  ( u )  , (13) 

x Jdu'r (uf )  (1-8 cos ul)cos[wr(ur)-trp(ut)  I ,  (14) 
-n 

Fovol 
a* (u )  = - 2 

U 

XJ dulr (u') (1-e om u l )  sin [ o r  (u') *rp (u') 1, 
-n 

Here R is a normalization factor, and the arbitrary constants 
6 ,  must be determined from the boundary condition (10). 
Since h . ( - P) = 0 and Bessel functions of zero argument 
differ from zero only if the index is zero, it follows from (12) 
that 

~ N S  ( - n )  =Rbrva. (16) 

Substituting (12) and (16) in (10) and recognizing that 
d + (17) = 0, we obtain the following infinite system of alge- 
braic equations: 

Since Nw is assumed small compared with I E I, the quantities 
v,,, in (17) are replaced by the first terms of the series in Nw. 

Assume that the system (17) can be satisfied if b ,  is 
chosen in the form 

biv,=JN+s ( g - )  Jab?+) exp [i(Nrpt+ S T , ) ] .  (18) 
The constants g-, g+,  pl, p2, and vo should be so defined 
that the system (17) turns into an identity. Substituting (18) 
in (17) and using the addition theorem for Bessel functions,14 
we find that the system is indeed satisfied if 

. . 
g&=c, ( n )  / 2  sin non3. 

Here n is an integer and according to the definition (9) it 
corresponds to the principal quantum number. 
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Substituting (18) in (12) and using again the addition 
theorem for Bessel functions, we obtain ultimately 

Q , , ( u )  = R l ~ + ~ ( w - ( ~ ) ) l ~ ( w + ( ~ ) )  

xtkxp{iN[y-(u) + ~ p -  ( n ) ]  

+is [y -  ( u )  - y  ( u )  + $ - ( u )  - $ - ( u ) + x ] ) ,  (20) 

gZ sin[y+ ( u )  -non3] = w ,  sin Q,. (21) 

Expressions (2), (3), and (20) determine the sought qua- 
siclassical wave function of a highly excited state with large 
quantum numbers n, L, and M in a radiation field. Although 
neither the energy nor the orbital quantum number is pre- 
served in the presence of a field, they remain on the average 
the same as without a field. It follows from (19) that in our 
approximation the level with the quantum number n neither 
shifts nor splits in the presence of a field, and only quasien- 
ergy states are produced, separated from the given level by 
Nw. In the same manner, the field mixes in states with other 
orbital quantum number into the given state. The admixture 
of the quasienergy states and of states with other orbital 
quantum numbers depends substantially on the radiation- 
field intensity. The fact that in our treatment the level 
neither shifts nor splits is a consequence of the approxima- 
tion of equidistant levels. 

The derivation of the wave function obtained above is 
based on the assumption that the field frequency w is lower 
than or of the order of the distance between levels. As can be 
seen from (19), at frequencies o that are multiples of nP3, i.e., 
at resonance, it is apparently impossible to use the obtained 
wave function, since rapid excitation of the atom takes place. 
As a result it suffices to confine ourself to the equidistant- 
level approximation used in the derivation of Eqs. (17), and it 
is necessary to take into account the succeeding terms of the 
expansion of Y, in terms of No. Actually there is a certain 
upper bound on the field, but this bound is difficult to deter- 
mine, since it depends on the proximity to resonance. In 
practice it is convenient to formulate this bound in the form 
of the following requirement: it is necessary that those effec- 
tive N, that make a substantial contribution to the wave 
function (2) be such that oN,, remain in the region where the 
levels are equidistant. The closer the frequency w to reso- 
nance, the weaker the fields at which this requirement is 
violated. 

If we use the expansion (6) and the asymptotic represen- 
tation for the Legendre functions at large I, the sums over I 
and N in (2) can be convoluted with the aid of the addition 
theorem for the Bessel functions, and $,,, can be expressed 
in terms of elementary functions. But since the arguments of 
these functions have a very complicate form and the varia- 
bles in them are entangled, it is convenient not to do so in the 
calculations that follow. It is easy to find the normalization 
function: it coincides with the unperturbed value ( 2 ~ n ~ ) ' ' ~ .  
We note that the wave function obtained does not go over 
into the function (1) at wn3(1, for in contrast to (1) our wave 
function was obtained in spherical coordinates and in a qua- 
siclassical approximation. 

63. PROBABILITIES OF RADIATIVE TRANSITIONS IN THE 
PRESENCE OF A STRONG MICROWAVE FIELD 

We calculate now the probabilities of radiative transi- 
tions between the states obtained in the preceding section, as 
a result of the action of a field with frequency f2 and unit 
polarization vector e whose direction relative to the z axis 
(the direction of the polarization of the field of frequency w )  
is given by the polar angles 6, and p,. The probability of 
this transition is determined by the matrix element 

i 

T - - ~ J  d t ( ynyL  ,I (er) e-lntl Y::~, ), (22) 
0 

where the indices i and f pertain respectively to the initial 
and final states. Substituting (2) in (22), carrying out a simple 
integration with respect to the angle  variable^,^ and using 
time-dependent perturbation theory, we find that the transi- 
tion probability per unit time, summed over Mf, is 

where I, is the intensity of the field of frequency 0 ,  and a is 
the fine-structure constant. Since M, and Lf differ little from 
the corresponding Mi and Li, whereas these quantities 
themselves are large, the factor, 1 - M j / L j  was replaced 
everywhere in (24) and (25) by 1 - M:/L :. Expression (23) 
has a structure typical of multiphoton processes. The pres- 
ence of a 6  function in (23) means that the transitions occur at 
frequencies equal to the energy difference between the final 
and initial states of the atom plus kw. 

We calculate now the radial integrals (25). Inasmuch as 
the experiment1 dealt with radiative transitions between 
states widely spaced in energy (ni = 10 and nf of the order of 
50) we continue the analysis subject to the following restric- 
tion on the frequency 0: 

When this condition is satisfied, the calculation of the radial 
integrals is greatly simplified, since a noticeable contribu- 
tion to the transition probability between states widely sepa- 
rated in energy is made only by states with L<n (E -  l), and 
by the region of variation of r near the turning point closest 
to the n u c l e ~ s . ~ . ' ~  If E is replaced by 1 - L :/2n:, a new vari- 
able v = uni/ Li is introduced, and account is taken of (3), 
(6),  and (9), we have in this case 

Xexp [-iQzt* irp (z ' )  I ,  (27) 

r=L: (1+v2)/2, zf=Lf (v+vS/3)/2, 9'2 arctg v. (28) 

The amplitudes a,,(v) in the integral (27) also depend on the 
variable v, but at small u and at L(n this dependence can be 
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neglected. Indeed, in this case the functions (14) take at 
w = 0 the form 

It follows therefore that the second terms in the square 
brackets of these functions can be neglected both at small 
and at large values of the parameter R L  (f2)n-3) which 
determines the value of the integral (27). At nonzero w it is 
more difficult to obtain such an estimate, but it can be shown 
that if wn3 is less than or of the order of unity it is still possi- 
ble to neglect in the integral of (27) the dependence of the 
amplitudes a ,  on v. As a result the amplitude a,,,(O) takes 
the form 

x I . ,  ( 5 cos p )  exp{i ( 2 ~ ~ ~ ~ + s a ) ) ,  (30) 

wj=ci ctg noni3-di, (31) 
111 

ci=-F.n: J du (i- cos u)' cos on? (u- sin u )  . 
0 

(32) 

du ( I -  cos u)'sin on? (u- sin u ) ,  

tg y i=dd i ,  sin B=M~/LI. (33) 

A similar expression holds for the amplitude a,,,,(O). 
The integral (27) can now be expressed in terms of an 

Airy function and its derivative." Using also the addition 
theorem, we obtain ultimately a representation for the radial 
integrals: 

R,+=P+I,+~ (5 cos $ )I .  (5 cos $) erpfik ($+27r) +ixnl .  

(34) 
5=[wi2+wf2-2wiwt cos 2 ( y i + ~ f ) ] ' ~ '  

w, sin 2 ( y , + y , )  =x sin 9, 
(35) 

P,=(n,nf)  -' (22/52")'"[-Ai'(y) *y '"Ai (y ) ] ,  (36) 

x= (L,-L,-k+1)/2, y=(52L,3/2)'". (37) 

The radial integral R ; is obtained from (34) by replacing x 
by x - 1 and P+ by P-. x takes on only integer values. 

After substituting R h in (24) we must carry out a num- 
ber of averagings and summations. First, summation over 
L f ,  which reduces to summation over all the integer x. We 
assume next an equiprobable population of the initial states. 
The averaging of the obtained expression over all Mi can be 
replaced by integration with respect t o p  between - n / 2  and 
+ ~ / 2 ,  and averaging over Li  by integration with respect to 

y (Ref. 9) .  Integrations of the squares of the Airy function 
and of its derivative entail no difficulty, so that we obtain as a 
result the following expression for the probability of the ra- 

diative transition per unit time with absorption of k micro- 
wave photons: 

G k ( r )  = y, dP cos P(U.1)'. - (40) 

U)=Jk+. ($ cos !) J .  ($ cos ) . 
We shall consider next only the case 19, = 0 ,  i.e., the 

case when the polarizations of both fields coincide. The 
probability of radiative transition with absorption of k pho- 
tons is then proportional to the function Fk(x) .  If we use for 
the squares of Bessel functions the representation14 

n 

n ~ ( z )  = J &p& ( Z z  sin ~ ) C O S  2kq (42) 

as well as the addition theorem, we can obtain after some 
transformations a relatively simple representation for the 
function Fk{x):  

i 

F , ( z )  =2 J C J Z ( ~ / ~ + Z ' )  J ; ( X Z ) .  (43) 
0 

This function has also the following asymptotic representa- 
tion at large x ( x )  I kl): 

where $(z) is a psi function." 
As seen from (43), Fk (x )  are symmetric with respect to a 

change of the sign of k and x .  The behavior of the functions 
Fk (x )  is the following. At small x and Ik ( > 0 they increase in 
proportion to x21k I, reach a maximum at a certain x,,, ( k  ), 
and then decrease. This decrease becomes very slow at large 
x.  The larger I k I the farther from zero the maximum of the 
corresponding F, (x).  Fork = 1,2,7 the functions Fk (x )  reach 
their maximum at x,,(k) equal respectively to 2.38, 3.9, 
5.1,6.3,7.5,8.7, and 9.9. Although the functions Fk (x )  oscil- 
late past the maximum, as can be seen also from (44), these 
oscillations are relatively small. 

The functions F,(x) depend on the intensity and fre- 
quency of the microwave field and on the principal quantum 
numbers n, and nf only via one dimensionless quantity x .  
This quantity is proportional to the field intensity F,, but it 
follows from (35), (3 I ) ,  and (32) that its dependence on w,  n , ,  
andnf is quite complicated. If n;)nf, we have approximately 

X = C ,  ctg noni3-d,, (45) 

where cf and df  are defined by the integrals in (32). We recall 
that our analysis becomes incorrect in the case of resonance, 
when wnj is equal to an integer. 

If an:( 1 ,  then 
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I, rel. un. in energy, as was done above and in Refs. 9 and 16 in the case 
of spherical coordinates. No such quasi-classical estimate of 
the dipole matrix elements in parabolic coordinates has been 
obtained so far. Actually, at wnj(1 there is no need for using 

.-a the quasiclassical theory expounded above, and it is better to 
perform all the calculations with the aid of the function (1) 
which is more accurate in this case. 

0 0.085 010 (W g4. COMPARISON WITH EXPERIMENT 

In the experiment of Ref. 1, ni = 10 and nf is approxi- 
\ 

\ 
mately 50, i.e., the initial and final states are far from each 

\----- 
other. This justifies the approximations on which the calcu- ---_ ---__ lations of the radial matrix elements in the preceding sec- -------____ 
tions are based. Since wn: does not exceed one-fifth in the 

FIG. 1. Relativeintensity Zof satelliteat k = - 1 andn = 44vs the power 
of a microwave source of frequency w = 7.829 GHz. The inset shows this 
dependence at low powers. Points and continuous curve-experiment'; 
dashed curvethe function (43) normalized the experimental curve at the 
maximum; dash-dot curve-asymptotic form (44) for the function (43) at 
high microwave-source powers. 

It can be seen that the quantity in front of the square bracket 
in this expression is the difference between the ratios of the 
energies of the outermost Stark components for the final and 
initial states to the photon energy. The second term in the 
square brackets is the first correction in wnj. 

In this limiting case of small on; it is possible to estab- 
lish a connection with the Blokhintesev theory. As noted 
above, calculations with the aid of the function (1) make the 
intensity of the k th satellite proportional to the square of a 
Bessel function whose argument is the difference between 
the ratios of the Stark energies of the initial and final states to 
the photon energy. Taking the sum over all values of n, - n,, 
which at large n can be replaced by an integral with respect 
toz = In, - n, l/n from zero to unity, we arrive at an expres- 
sion of the type (42). To find the factor preceding the square 
of the Bessel function it is necessary, however, to calculate 
the dipole matrix elements of the parabolic wave functions in 
a quasiclassical approximations for states greatly separated 

experiment, the correction in the square brackets in (46) can 
be neglected. The expression for Fk (x) was obtained under 
the assumption that the initial-state populations are equally 
probable. As noted by the authors of Ref. 1, this assumption 
is apparently not valid in their experiment. But since the true 
distribution is unknown, it makes sense nevertheless to com- 
pare the Fk(x) obtained under this assumption with the mea- 
sured transition intensities. 

In Ref. 1 the curves are plotted not as functions ofFo but 
as function of the microwave power P. It is noted there that a 
power 0.12 W corresponds to a peak field intensity close to 6 
V/cm. Although satisfactory agreement with experiment is 
observed also in this respect, the agreement is somewhat bet- 
ter if the last number is chosen somewhat smaller. We use 
hereafter the value 5.23 V/cm. 

In Fig. 1 are compared the resonance intensity mea- 
sured at k = - l and n = 44 with the function F,(x) normal- 
ized to the experimental curve at the maximum. Here and 
elsewhere nfwill be designated by n. It must be noted first of 
all that the function Fl(x) has its maximum approximately at 
the same values of the power Pas in the experiment. The fall- 
off of the resonance intensity on both sides of the maximum 
is described with sufficient accuracy by the function F,(x). 
At high powers the experimental and theoretical curves di- 
verge, inasmuch as in the experiment the intensity falloff 
slows down with increasing P, and above 7.5 W the intensity 
even increases. The cause of this discrepancy is still unclear. 
Nor does the theoretical curve show the experimentally ob- 

FIG. 2. a) Microwave-source power P,, (k ) corresponding to the maxi- 
mum excitation of the k th satellite: @ (n = 43) and 0 (n = 44) - k < 0; 
(n = 44) and A (n = 45) - k > 0; b) dependence of P,,, (1)  on the principal 
quantum number n of the final state; c) dependence of P-,(I) on the 
frequency w of the microwave source. Points-experiment,' solid 
curves-Eq. (47). 

Z Y 6 d  
o, GHz 
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tained small oscillations of the resonance intensities with 
change of P. 

Knowing x,,, (k ) we can find the power P,,, (k ) corre- 
sponding to the maximum probability of excitation of the 
k th satellite: 

Here Pis  in watts and w in GHz. The plots in Fig. 2 are based 
on (47) and on the values of x,, (k ) given at the end of the 
last section. It can be seen that they duplicate well the experi- 
mental dependence of P,,, ( k )  on k, n, and w. A possible 
exception is the dependence of P,,,(l) on w, since experi- 
ment indicates that Pma, (1) is proportional to w 3  *O.' and not 
to w2 as follows from (47). Although the correction in o n 3  
obtained above can raise the power of w in the dependence of 
P,,, (1) on w, in this experiment the correction is too small to 
require consideration. When the frequency is increased the 
dependence of P,, (k ) on the frequency is no longer qua- 
dratic and becomes more complicated, as follows from (45) 
and (32). It would be of undoubted interest to carry out ex- 
periments at frequencies o that approach resonance. 
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