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An analysis is given of the possibilities of absorption or stimulated emission by a free electron of 
electromagnetic-field quanta, possibilities due to the inhomogeneity of the intensity distribution 
in space or to the limited duration of the pulse. The probabilities of multiphoton processes are 
found, and the nonrelativistic and relativistic limits are discussed. It  is shown, in particular, that 
when a beam of relativistic electrons is at a small angle to the direction of propagation of a laser 
beam a very considerable energy broadening of the former may occur. This broadening is a linear 
function of the field strength and is due to its inhomogeneity or to the short duration of the pulse. 

PACS numbers: 42.50. + q 

L INTRODUCTION 

It is well known that a free electron can neither absorb 
nor emit a single photon or several identical photons. Such 
processes are forbidden because the laws of conservation of 
energy and of momentum cannot be simultaneously satis- 
field for them (in the absence of a third body). This conclu- 
sion is valid only for true photons, i.e., for plane waves infi- 
nite both in space and time. It is clear, however, that the 
electromagnetic radiation emitted by any real source is not, 
strictly speaking, a plane wave because the source is local- 
ized both in space and in time. When these factors are taken 
into account, the above restriction on absorption and stimu- 
lated emission of field quanta is, in general, removed. When 
the duration r of the pulse of electromagnetic radiation is 
long in comparison with the time taken by the electron to 
traverse the region of space in which the field is concentrat- 
ed, the restricted duration of the pulse can be neglected in the 
first approximation, i.e., it may be assumed that .r = co . Spa- 
tial localization of the field is then the dominant factor. For a 
monochromatic electromagnetic wave of frequency w, prop- 
agating along thez axis and restricted in the transverse direc- 
tions x and y, the electric field can be written in the form 

%=3,j(z, y) sin ( o t - k z ) ,  (1) 

where k = w/c and f (xy) is the spatial amplitude envelope, 
normalized to unity at the maximum &,, = 1). We note 
that the representation of the field by (1) is approximate be- 
cause the function g ( ~ ,  y, z, t ) given by (1) does not, strictly 
speaking, satisfy the Maxwell equations. However, (1) is val- 
id in free space if the transverse dimension d of the beam, 
which is a measure of the rate of variation of the continuous 
function f(x,y), is much greater than the wavelength 
A = 2flc/w of the radiation. The relation A /d( 1 is then an 
indication of the precision with which (1) can be used. 

Absorption or stimulated emission of field quanta &J 
becomes possible when an electron interacts with the inho- 
mogeneous field 8 given by (1) because the laws of conserva- 
tion of momentum in the transverse directions need not then 

necessarily be satisfied. It is clear that the probabilities of 
such processes will not be small when the function f (x,y) is 
sufficiently sharp, since the opposite limit of completely con- 
tinous dependence of 8 on the transverse coordinates x and 
y corresponds to the transition to a plane wave. It follows 
that, in free space, we have two opposite situations, namely, 
either the function f (x,y) is smooth (d>A ), so that the field 
can be taken in the form given by (I), or g is a rapidly- 
varying function of x and y and gives rise to an appreciable 
absorption or emission of photons. Calculations show that 
these two conditions are not contradictory and can both be 
satisfied in the relativistic limit of electron energy. For non- 
relativistic electrons in free space, the condition that the 
function f (x,y) be sufficiently sharp cannot be satisfied simul- 
taneously with the condition that d>A. However, when the 
field 8' is produced not in a vacuum but on the separation 
boundary between two media, a sharp discontinuity can oc- 
cur on this boundary. For example, when the skin-layer 
depth 6 is small, both the field 8' and the function f (x,y) rise 
rapidly over the short distance S on the surface of the metal 
from zero to some finite value. Calculations show that, in 
this case, the probability of emission or absorption of field 
quanta &J need not be small for moderate values of the field 
strength 8,. 

Finally, if the pulse length .r is small in comparison with 
the time taken by an electron to traverse the region in which 
the field is localized, the evolution of the field 8 in time 
becomes more important than the spatial inhomogeneity. 
This means that the space envelope f (x,y) in (1) must be re- 
placed by the time envelope f (t ). The latter may be due to, for 
example, the rise and fall of the field amplitude as the pulse 
of radiation crosses the focal region. Here again, field quanta 
&J can be absorbed or emitted when the radiation pulse in- 
teracts with relativistic electrons. We note that, for the sake 
of simplicity, we shall confine ourselves to planar geometry, 
i.e., assume that f (x,y) = f (x), when we examine thedistribu- 
tion of the field in space. Analysis of the one-dimensional 
space envelope f (x) and time envelope f (t ) is mathematically 
very similar. The final general solutions can be obtained by a 
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simple redesignation of the parameters. Nevertheless, these 
two cases are physically distinct both in the formulation of 
the problem and in the final solution and in the conditions 
for its validity. 

The present paper is concerned with the set of problems 
outlined above. In all cases, we shall find the solution of the 
problem, i.e., the expressions for the probabilities of absorp- 
tion or stimulated emission of several field quanta h. 

The solutions given below are approximate and valid 
only under certain restrictions on the field strength 8, even 
though the solutions are found without using a perturbation 
theory in the field 8,. We shall discuss the physical restric- 
tions imposed on the field parameters by the conditions for 
the validity of these solutions. We shall also consider the 
possibility of and conditions for the experimental observa- 
tion of the effects. 

2. GENERAL SOLUTIONS 

Neglecting spin effects, we start with the Klein-Gordon 
equation for an electron in the field 8 (1) in planar geometry: 

a2 a2 az a 
+2ie - f ( x )  cos ( w t - k z ) -  

d x  

where the field vector @ is assumed to lie in thex, y plane and 
f i = c = l .  

Let us now represent the electron wave function in the 
form of a superposition of plane waves: 

where E = (pZ + m2)'12, p = (p, , O,pZ ] is the initial momen- 
tum of the electron as (x-+ - co ), and N, is a normalizing 
constant. 

The required functions C,, (x) have the meaning of prob- 
ability amplitudes for absorption (n < 0) or stimulated emis- 
sion (n > 0) of In I photons h when the transverse coordinate 
of the electron is equal to x. I C,, ( oo ) I  are the probabilities of 
these processes after the electron has passed through the lay- 
er of electromagnetic radiation. When In1 photons are ab- 
sorbed (emitted), the electron energy changes by n h ,  and its 
momentum along the z axis changes by n a .  It follows that, 
in principle, the absorption or emission of quanta can be 
detected experimentally by measuring the energy or the an- 
gular distribution of scattered electrons. The energy distri- 
bution should have a principal maximum at E' = E as well as 
additional peaks separated from the principal peak by n h .  
As for the angular distribution, the absorption and emission 
of photons splits the initial beam into a "fan." It is clear that 
this redistribution of electrons can be observed if the result- 
ing effective width of the energy distribution (- InI,,,fiw), 
or the angular width of the "fan," is greater than the initial 
energy of angular width of the electron beam. 

Substitution of the expansion (3) in (2) yields the follow- 
ing equations for the functions C,, (x): 

where (kp) = O(E - p, ). 
We shall seek the solution of these equations by assum- 

ing that the functions C,, (x) are slowly varying and that the 
field 8, is not too high. These approximations will be formu- 
lated more rigorously in the next section, where their valid- 
ity will be examined. Assuming for the moment that these 
conditions are satisfied, and neglecting all terms on the 
right-hand side of (4), we obtain the following simpler form 
for the functions C,, (x): 

where 

The boundary conditions for (5) are C,, ( - oo ) = S,, , 
The set of equations given by (5) is a special case of the 

Raman-Nath equations.' The appearance of these equations 
is typical of problems in which an electron interacts with 
periodic  perturbation^.^ The particular feature of (5) is the 
absence of anharmonism, i.e., the absence of a term a n2. 
Comparison with the exact equations (4) shows that the ab- 
sence of anharmonism from (5) is unconnected with the ap- 
proximations made above, and is more readily a general 
property of the interaction of an electron with one inhomo- 
geneous electromagnetic wave. In more complicated sys- 
tems, e.g., when there are two waves, or a wave and an undu- 
lator field, the anharmonic term quadratic in n will 
necessarily appear in the Raman-Nath equations.* 

In the absence of anharmonism, the Raman-Nath equa- 
tions (5) can be solved exactly. Let us introduce the function 

which, by definition, must be periodic in c: 
g(x, E*2n) =g(x, E) 

and must satisfy the boundary condition g( - co , l  ) = 1.  
The coefficients C,, (x) are then given by the Fourier in- 

tegral 

The relationship between Y andg(x,l ) can now be readi- 
ly found by comparing the above function with the original 
expansion (3) of the wave function JY: 
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The physical significance of g(x, f ) in (7) is now clear 
from (9): g(x, f ) is the modulating function that depends on 
the coordinate x and the phase kz - wt of the wave, and 
results from the interaction between the electron and the 
wave field. When this interaction is absent, we haveg=l and 
the electron wave function Y given by (9) is a plane wave. 
When the field is uniform, we have f (x)= 1, and the function 
g(x, f ) is independent of x and depends only on the phase 
f = kz - at. The explicit form of the function g g )  in this 
case enables us to reproduce the well-known Volkov func- 
tions (3) for an electron in the field of a plane electromagnetic 
wave (4). In an inhomogeneous field, the modulating func- 
tiong depends on two variables, and the determination of its 
explicit form is essentially the solution of our problem be- 
cause the determination of the coefficients C, (x) given by (8) 
for known g(x, f ) is an elementary problem. 

Theequation for the modulating functiong(x, 6 ) follows 
from the definition (7) and from Eq. (5): 

It is readily seen that Eq. (10) can be solved exactly and 
that when the boundary condition for g(x, f ) is taken into 
account the solution assumes the form 

d x ~ f ( x ~ ) c o s [ p ( ~ ~ - x ) + ~ ~ ) .  (11) 
- m 

When the probabilities C ,  (x) are calculated from (8), it 
is convenient to dispose of the term - qx in the argument of 
the cosine in (1 1) by substituting the new integration variable 
f ' = 6 - qx. Fourier expansion of the periodic function of6 ' 
followed by integration with respect to f ' then yields 

I 

Cn (x) = exp ( in 

j d z ' f  (xg) sin qxr I 
-m 

arctg I 

Finally, the asymptotic probabilities of multiphoton 
emission or absorption after the electron has traversed the 
region in which the field is localized take the form 

We note that, subject to the approximations introduced 
above, Eq. (1 3) gives w, = w - ., i.e., the probabilities of ab- 
sorption or stimulated emission of In I quanta are equal. This 
means that, on average, there is no change in the electron 
energy. It is clear that this is valid so long as the energy 
change \n\fiw is small in comparison with the initial energy E 

[see condition (28) below]. When this condition is not satis- 
fied, the terms on the right-hand side of (4) must be taken 
into account more accurately. In particular, unless these 
terms are included it is impossible to predict when absorp- 

tion or stimulated emission of photons will predominate. 
This problem is of independent interest, but will not be ex- 
amined here. 

3. PHOTON MULTIPLICITY. RELATIVISTIC AND 
NONRELATIVISTIC APPROXIMATIONS 

The derived general formula (13) expresses the prob- 
ability of multiphoton emission or absorption, w, , in terms 
of the Fourier transform of the field spatial envelope f (x). 
The parameter q has the significance of momentum trans- 
ferred along the x axis and determines the characteristic di- 
mension d, = l/q with which we must compare the trans- 
verse dimension d of the region in which the radiation is 
localized. When d(dc, Eq. (13) assumes the form 

The argument of the Bessel function and, hence, the 
maximum number n,,, of quanta +ia that can be absorbed or 
emitted by the electron are given by the following order-of- 
magnitude expression: 

The physical significance of n,,, (15) is that this is the 
ratio of the work done on the electron by the field 8, over 
the distanced to the energy fiw of the quantum. When d 5 dc 
is not inconsistent with the original condition d>A, the for- 
mula (15) yields the correct estimate for n,,, , which may be 
large for very moderate values of the field 8,. Particular 
estimates of n,,, will be given in Sec. 4 after we have exam- 
ined the validity of (13) and the upper bound of go. 

We note that (14) and the estimate (1 5) for n,,, are uni- 
versal at d 5 dc in the sense that they do not depend on the 
electron energy or the geometry of the experiment, i.e., on 
the angle 8. Only the transferred momentum, i.e., the char- 
acteristic length d, = l/q, depends on the energy E and the 
angle 8 (see below). 

Finally, we note that (14) is equivalent to the results 
obtained by Raman and Nath in the case of scattering of 
light by ultrasonic waves' (see also Ref. 5). When d)dc, the 
Fourier transform of theenvelopef(x) is small. For the Gaus- 
sian curve 

the Fourier transform is exponentially small: 

dxeiqrf (x) =dn" exp 
-OD 

For other forms off (x), the Fourier transform may take 
the form of a power function rather than an exponential. For 
example, when f (x) = e - we have 

As an example, we also note that when 
' / a ( I +  C O S ( X / ~ ) ) ,  I~ l<nd,  

Ixl >nd. 

the Fourier transform of the envelope is 
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Whenever qd> 1, i.e., d>d, , we have 

1 j dxf (z) eiqx 1 < d .  

Consequently, when d>dc , the argument of the Bessel func- 
tions in (1 3) is smaller than at d 5; d, [Eq. (14)l. In the limit as 
d-+ UJ , the argument tends to zero and w, 4,,, , i.e., in the 
limit of an absolutely smooth envelope, the probabilities of 
absorption and emission of field quanta tend to zero, as they 
should. 

For finite d but d>dc, the order of smallness of the 
Fourier transform of the envelope f (x) depends on the form 
of the function f (x) in an essential way. Hence, the estimate of 
the magnitude of the argument of the Bessel functions and, 
hence, of the photon multiplicity of absorption and emis- 
sion, will be different for radiation pulses with different 
space-envelope profiles. For example, for the Gaussian pro- 
file (16) the argument of the Bessel functions in (1 3) is expon- 
entially small at d>dc , so that the absorption or emission of 
field quanta is hardly possible in this case in moderate fields. 
On the other hand, for pulses of the form (18) and (19), the 
Fourier transform off (x) for d>dc decreases as a power func- 
tion. Although the photon multiplicity n,,, under these 
conditions is lower than at d 6;' dc (1 5), it is nevertheless pos- 
sible, in general, to have n,, > 1 even for d>dc (see below, 
sec. 4). 

Let us now examine the dependence of the parameters q 
and d, on the electron energy and on the geometry of the 
experiment. Starting with the definition of q in (6), we can 
readily verify that, in the nonrelativistic limit v r  lpl /m<c 

o v cos 0 
q=,cos8' do= - . 

0 

The maximum value of the parameter dc in (2 1) is reached at 
8 = 0, i.e., when the electron propagates at right-angles to 
the light beam and (d,),, = v/o&. Hence, it follows that, 
whend)A, it is always the case that d)dc in the nonrelativis- 
tic approximation. When v(c in free space, the Fourier 
transform of the envelope f (x) is always small in comparison 
with d. 

Let us now suppose that the electron energy is high, so 
that y = E / ~ c ~ >  1. The most effective interaction between 
relativistic electrons and an electromagnetic wave occurs 
when the directions of the electron momentum p and the 
wave vector k are close to one another. We shall therefore 
suppose that 8 is close to r/2: x =r/2 - 84 1. If we adopt 
these approximations, we obtain 

When xy-  1 we have dc -y;l);l. It follows that it is 
possible to have the situation where 

dc-yh2d>h.  (23) 

The Fourier transform of the envelope f (x) is then not 
small ( z d  ) and the photon multiplicity n,,, is given by (15). 

When the relativistic electron travels at an angle to the 
light beam, the path length increases (compared with the 
case 8 = 0) but the electron velocity also increases (com- 
pared with the nonrelativistic case v(c). Equations (22) and 
(23) show that the velocity increase is the more important. If, 
for the nonrelativistic electron, the beam of electromagnetic 
radiation is wide, d)d, at high energies y) 1 and for oblique 
propagationx- l/y( 1, the increased a: y [Eq. (22)] ensures 
that the beam becomes thin for the electron. The function 
f (x) is then sufficiently sharp to ensure highly effective multi- 
photon absorption and stimulated emission field quanta Ziw. 

We note that all the conclusions relating to estimates of 
the characteristic length dc as well as the definition (6) of q 
and formulas (21) and (22) can be obtained directly from the 
laws of conservation of energy without solving the problem. 
As already noted, the physical significance of the parameter 
q in Eq. (5) and in all the subsequent solutions is that q is the 
momentum transferred from the electron to or drawn from 
the field in the direction of the x axis. Thez component of the 
momentum, p, and the electron energy E then satisfy the 
conservation laws 

Hence, it is readily shown that the change in the momentum 
along the x axis is given by 

(25) 
which is in agreement with the definition (6). 

We note that the quantity q [Eq. (25)] differs by the 
factor Ipl/p, = l/cos 8 from the minimum transferred mo- 
mentum q,, in the theory of bremsstrahlung of a photon by 
an electrons6 In the relativistic limit and for 8 = 0, we have 
q = q,, and, as is well known, qmin = W / V .  When y) I, 
~ ( 1 ,  Eq. (25) leads directly to (23) and all the conclusions 
relating to the characteristic size dc formulated above. 

4. CONDITIONS OF VALIDITY AND OF OBSERVATION 

After the representation (I), which is valid at d>A, has 
been used for the electromagnetic field 8 ,  the only approxi- 
mation introduced was the transition from the exact equa- 
tions (4) to the approximate equations (5). Let us now esti- 
mate the conditions for the validity of this transition, using 
the explicit form of the solutions (12). As already noted, the 
transition from (4) to (5) is justified if the functions C, (x) are 
sufficiently smooth and the field 8 not too strong. 

It follows from (12) that the rate of change of the func- 
tions C,, (x) is characterized by the parameter Ax, which has 
the dimension of length and is given by 

1 
Ax= min a,-=- { In,, 

The condition that the second derivative d 'C,, /dx2 on 
the right-hand side of (4) be small in comparison with 
p, dC, /dx is 

pxAxB 1.  
(27) 
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We shall now examine the significance of this condition 
in the nonrelativistic and relativistic approximations, and 
for different relationships between the parameters in (26). 

1. In the nonrelativistic approximation (u(c) we have 
dc = u/w, SO that d>dc in all cases, and 

Suppose now that j3dc(l, i.e., (eu8,,/h2)(1 and 
Ax = dc = u/w. For 0 = 0, the condition p, Ax> 1 gives 

i.e., in a weak field, when In 1 = 1, the de Broglie wavelength 
must be much greater than the path length traversed by the 
electron in one period, or the quantum energy h must be 
much less than the kinetic energy of the electron, which is 
usually the case. 

If, on the other hand, j3dc > 1, i.e., the field 8, is suffi- 
ciently strong: 

the condition (27) assumes the form 

Here u, is the amplitude of the electron oscillation ve- 
locity in the field of the wave, which, according to (30), must 
be much smaller than the translational velocity u of the elec- 
tron. By virtue of (28), condition (30) is not in conflict with 
the assumption (29). The inequality (30) defines the upper 
limit for go in the case of nonrelativistic electrons. This is 
not a very stringent limitation. For example, when 
w = 3 x 10" s-', u = 3 x  10' cm/s, the inequality given by 
(30) yields 8, < 6-10' V/cm, whereas, for o = 1014 s1 and 
u = 3 x lo9 cm/s, we have 8, < 2.10' V/cm. As for the esti- 
mated possible number n,,, of emitted or absorbed quanta, 
it has already been noted that, for u(c, which is the case we 
are considering here, this number is sensitive to the shape of 
the space envelope f (x). When f (x) is a Gaussian, the effect is 
exponentially small, so that, in free space, the absorption or 
emission of field quanta is practically impossible. For f (x) of 
the form given by (18), we have 

e4Yov2 uir mus - = - - 
hoSd v fio2d' (31) 

The factor 

may be not small. For example, when u = 3X lo9 V/cm, 
o = 1014 s- ', and d = 10- ' cm, the value of this factor is 30. 
This means that n,,, - 1 when u,/u- 1/30, i.e., when 
8,- lo7 V/cm. 

When f (x) has the form given by (19), we find, with the 
aid of (20), that 

The last expression contains the additional small factor 
d, /d = u/wd(l as compared with (3 1). This means that the 
factor 

may be not small only at lower frequencies. For example, 
w h e n w = 3 ~ 1 0 ~ ~ s - ' , d =  1 c m , a n d u = 3 ~ 1 0 ~ c m / s , w e  
have n,,, - 3 X lo3 (v,/u), i.e., n,,, - 1 for u, - 3 x u 
or 8,-6.105 V/cm. 

The above estimates show that, in principle, nonrelati- 
vistic electrons in free space can be used to observe multi- 
photon emission or absorption by having an electron beam 
cross a beam of electromagnetic radiation. However, these 
estimates are very sensitive to the shape of the space enve- 
lope and, in particular, the above processes cannot be real- 
ized when f (x) has the Gaussian shape (16). A somewhat dif- 
ferent possible experimental scheme with nonrelativistic 
electrons, which involves the use of the abrupt change in the 
field on the boundary of a metal, will be examined in Sec. 6. 

2. Let us now suppose that the electron has high energy, 
y> 1, and that its direction of motion lies close to the direc- 
tion of the wave vector k, X- l/y(l. It has already been 
shown in Sec. 3 that, in this case, a possible (and the most 
interesting) combination of parameters is that for which (23) 
is satisfied and, consequently, 

Suppose, to begin with, that j3d( 1, i.e., the field 8, is 
weak: e 8 4  1. Condition (27) then assumes the form 

i.e., the transverse dimension of the beam must be much 
greater than the Compton wavelength of the electron 
A, 3 X 10- " cm, which is always the case. 

For stronger fields, for which e 8 & / h >  1, condition 
(27) gives 

This inequality sets the upper limit for the field, This 
limit is never exceeded for existing sources of radiation (for 
example, when w = 1015 s-', we have 80(2.1010 V/cm or 
I( loL7 W/cm2). 

When the conditions given by (23) are satisfied, the 
probability w, of multiphoton processes and the photon 
multiplicity n,,, are given by (14) and (15). Let us estimate 
the maximum energy emitted or absorbed by an electron in 
the limit of validity of the approximation of a thin layer of 
radiation, i.e., for d -dc : 

In practise, relativistic electron beams have an energy 
spreadA&(& which, of course, is much greater than the ener- 
gy of the optical quantum h. It follows that it is not possible 
to observe the discrete structure, with spacing h ,  in the 
energy distribution of the scattered electrons. However, it is 
possible to observe the additional broadening of the electron 
energy distribution, the scale of which, SE (36), is a linear 
function of the field 8,. The condition that will ensure that 
this additional broadening will be appreciable is that SE (36) 
must be greater than the initial w i d t h d ~  of the energy distri- 
bution, i.e., 
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Condition (37) is not inconsistent with the limitation on 
the field strength (35), so that it would seem that this type of 
experiment is realizable. All the necessary conditions are 
satisfied, for example, when o = loLS s- ' (A = 2 X lop4 cm), 
y-1/x-lo2, and d - d , - 2 ~ 1 0 - ~  cm, we have A&/ 
E- if the length of the caustic (region of focusing) is 
I-d /x-2 cm and the field strength is go > 3-lo7 V/cm, i.e., 
when I >  10" W/cm2 and the pulse length is r > d / 
cx- 10-lo s. 

When we examined the conditions governing the transi- 
tion from (4) to (5), we analyzed only the requirement that 
the functions Cn (x) must be sufficiently slow-varying, i.e., 
that the first term on the right-hand side of (4) must be small. 
It is readily verified that, if we explicitly demand that the 
other discarded terms must be small, this does not lead to 
new restrictions but simply reduces to the inequalities (30) 
and (35), which set the upper limit on the field strength in the 
nonrelativistic~and relativistic limits. 

5. SHORT PULSES OF ELECTROMAGNETIC RADIATION 

Let us now suppose that the pulse length r is small in 
comparison with the time taken by an electron to traverse 
the interaction region: 

~ < d / u  cos 8. (38) 

In this case, the space envelope f (x) in the Klein-Gordon 
equation (2) must be replaced with f (t ). The coefficients Cn in 
the expansion (3) are now functions of time, and satisfy equa- 
tions similar to (5). The probabilities w, of multiphoton pro- 
cesses, found by analogy with the foregoing procedure, are 
determined by (1 3) in whichx must be replaced with t and the 
parameters q and p must be multiplied by the velocity v, of 
the electron in the direction of the x axis. Instead of the 
characteristic length d, we now have the characteristic time 

1 a-' for UKC, 0=O, 
t,= - = 

-- 
(39) 

0 l+y2xZ 
for y> l9  x ~ I .  

In the nonrelativistic limit, we have r>t, in all cases, so 
that the argument of the Bessel function, which determines 
w,, is relatively small. Once again, the possibility of detec- 
tion of multiphoton emission and absorption will depend on 
the shape of the envelope f (t ). 

At high energies, the time tc is found to increase rapidly 
(00 f for xy- l) ,  and the situation may arise for which 

The expressions for the probabilities w, and photon 
multiplicity n,, then assume the form 

e&oxc+" 
W.=J.'(~ J d t f  ( t ) )  . 

where 1 = c r  is the length of the train of electromagnetic 
radiation. Although the formula (42) contains the small fac- 

tor ~ ( 1 ,  the value of n,,, can, nevertheless, be quite high. 
For example, at the limit of validity of the first of the condi- 
tions in (40), we have for r - t, - f / o  and for x - 1 y 

The parameter n,,, (43) is a measure of the strong non- 
linearity of the function w, (go) ,  and can be large for moder- 
ate values of the field go. 

Finally, the condition restricting the maximum value of 
go ,  introduced in the formulation of the problem with a time 
envelope f (t ), becomes still less stringent than (35): 

Consider an example: when w = 1015 s-' and y = lo2, 
the pulse length should be r-t, - lo-" s. The minimum 
transverse size of the beam is given by (38): d > crx - 3- lop3 
cm. The additional energy spread in the electron beam that 
arises as a result of the interaction with the short pulse of 
radiation can be readily estimated with the aid of (43), and its 
order of magnitude is given by the same expression (36) as in 
the case of a long pulse. Consequently, when A&/&- lop2, 
the quantity SE becomes, as before, greater than AE for v, / 
v > or go > 3-lo7 V/cm. 

Thus, at relativistic energies, and despite the difference 
between the physical mechanisms involved, the restricted 
pulse length r (in the picosecond range) and the restricted 
transverse size of the laser beam (in the nanosecond range) 
leads to the same energy broadening of the electron beam, 
other things being equal. 

6. ABSORPTION AND EMISSION OF PHOTONS DURING 
THERMlONlC EMISSION BY A METAL IN THE FIELD OF AN 
ELECTROMAGNETIC WAVE 

Let us now return to nonrelativistic electrons and sup- 
pose that the duration of the radiation pulse r is large (T > d / 
v). We can then imagine the following experimental situa- 
tion. The region x < 0 is occupied by a metal, and thermionic 
emission of electrons takes place into the space x > 0. An 
electromagnetic wave propagates along the surface of the 
metal in the free space x > 0. Let us suppose that the skin- 
layer depth S is small in comparison with u / o  and that the 
parameter d that represents the thickness of the layer of elec- 
tromagnetic radiation in the direction x > 0 is large in com- 
parison with v/o. We may then suppose that the field 8 
undergoes a sharp change at x = 0. The Schroedinger equa- 
tion for x < 0 must be solved without the field and, for x > 0, 
with the field 8 [Eq. (I)]. The two solutions must then be 
joined. It is readily verified that the solution of the problem 
leads to a result which is analogous to (13) except that, in- 
stead of the complete Fourier transform of the envelope f (x), 
we now have an integral over a half-space: 

The presence of the sharp change in the field at x = 0 
ensures that the argument of the Bessel functions in (45) is 
not exponentially small even for the Gaussian envelope f (x) 
of the form given by (1 6): 
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where Q, (u) is the probability integral7 and we have used the 
asymptotic behavior of Q, (u) for large values of the imaginary 
argument I u I > 1, Q, (iu) - euz /ur1 l2 .  The result (46) for d>u/ 
w is universal and is independent of the shape of the function 
f (x). The photon multiplicity obtained from (45) and (46) is 

According to (47), the parameter n,,, and the average 
change in the electron energy n,,, fio may not be small, since 
mv2>fio. Two points must be borne in mind in this connec- 
tion. Firstly, the condition that the skin-layer depth S must 
be small in comparison with u/w can readily be satisfied only 
for frequencies smaller than the effective collision frequency 
in the metal, ye,, i.e., for o 5 1013 - loi4 s- '. Secondly, the 
field t9 should not produce an appreciable heating of the 
electrons in the metal within the interval r since, otherwise, 
this effect may mask the change in the energy of the electrons 
due to the direct interaction with the field. 

The condition v ,  ( v  given by (30) ensures that the maxi- 
mum change in the energy of the electron n,, h - mv2(v,/ 
v)  is much greater than the increase in the energy due to 
gradient forces,' which is equal to the energy mv2,/2 of the 
oscillations of the electron in the field of the wave. It follows 
that, when v, ( v ,  the acceleration of electrons in the inho- 
mogeneous field tF by the gradient forces will not mask the 
above quantum effect whereby wave photons are absorbed 
when the field is inhomogeneous. 

The experiment discussed above is very similar to the 
well-known experiment reported by Lomprk et aL9 How- 
ever, the mechanism discussed here for the absorption of 
field quanta does not correspond directly to the conditions in 
Ref. 9. In the latter experiment, the laser beam lay above the 
surface of the metal at a distance -d  above it. The field 8 on 
the surface was therefore practically zero, and the function 
f (x) was smooth throughout. Moreover, in contrast to the 
assumption (28) above, the quantum energy fio in Ref. 9 was 
higher than the electron energy. The question as to whether 

the absorption of field quanta due to spatial or temporal in- 
homogeneity is possible for fio > E will be examined sepa- 
rately elsewhere. 

7. CONCLUSIONS 

The foregoing analysis shows that there are certain spe- 
cific conditions under which the spatial inhomogeneity of 
the field of an electromagnetic wave, or the restricted dura- 
tion of a pulse of radiation, may be responsible for the ab- 
sorption or emission of several field quanta fio by a free elec- 
tron. In principle, this effect can be observed in the various 
experimental arrangements described above. Experiments 
with relativistic electrons, in which one observes the broad- 
ening of the electron energy distribution by the field, are 
physically the most interesting. Of course, from the practical 
point of view, an increase in the energy spread of an electron 
beam is an undesirable effect. Nevertheless, it seems to us 
that the experimental verification of this effect would be in- 
teresting from the standpoint of the physics of the interac- 
tion between strong electromagnetic radiation and free elec- 
trons. 
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